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Abstract. We introduce SparseNeuS, a novel neural rendering based
method for the task of surface reconstruction from multi-view images.
This task becomes more difficult when only sparse images are provided
as input, a scenario where existing neural reconstruction approaches usu-
ally produce incomplete or distorted results. Moreover, their inability of
generalizing to unseen new scenes impedes their application in practice.
Contrarily, SparseNeuS can generalize to new scenes and work well with
sparse images (as few as 2 or 3). SparseNeuS adopts signed distance
function (SDF) as the surface representation, and learns generalizable
priors from image features by introducing geometry encoding volumes for
generic surface prediction. Moreover, several strategies are introduced to
effectively leverage sparse views for high-quality reconstruction, includ-
ing 1) a multi-level geometry reasoning framework to recover the surfaces
in a coarse-to-fine manner; 2) a multi-scale color blending scheme for
more reliable color prediction; 3) a consistency-aware fine-tuning scheme
to control the inconsistent regions caused by occlusion and noise. Exten-
sive experiments demonstrate that our approach not only outperforms
the state-of-the-art methods, but also exhibits good efficiency, general-
izability, and flexibility1.
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1 Introduction

Reconstructing 3D geometry from multi-view images is a fundamental problem
in computer vision and has been extensively researched for decades. Conven-
tional methods for multi-view stereo [2,8,36,18,37,7,19] reconstruct 3D geometry
from input images by finding corresponding matches across the input images.
However, when only a sparse set of images are available as input, image noises,
weak textures and reflections make it difficult for these methods to build dense
and complete matches.

1 Visit our project page: https://www.xxlong.site/SparseNeuS

https://www.xxlong.site/SparseNeuS
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a) Input images b) Ours (inference) c) MVSNerf (inference) d) Ours (fine-tuning 12 mins) e) NeuS (optimizing 15h)

Fig. 1: Our method can generalize across diverse scenes, and reconstruct neural
surfaces from only three input images (a) via fast network inference (b). The
reconstruction quality of the fast inference step is more accurate and faithful
than the result of MVSNerf [3] (c). Our inference result can be further improved
by a per-scene fine-tuning process. Compared to NeuS [44] (e), our per-scene
optimization result (d) not only achieves noticeably better reconstruction quality,
but also takes much less time to converge (12 minutes v.s. 15 hours).

With the recent advances in neural implicit representations, neural surface
reconstruction methods [44,50,49,32] leverage neural rendering to jointly opti-
mize the implicit geometry and the radiance field by minimizing the difference
of rendered views and ground truth views. Although the methods can produce
plausible geometry and photorealistic novel views, they suffer from two major
limitations. First, existing methods heavily depend on a large number of input
views, i.e. dense views, that are often not available in practice. Second, they re-
quire time-consuming per-scene optimization for reconstruction, thus incapable
of generalizing to new scenes. The limitations need to be resolved for making
such reconstruction methods relevant and useful for practical application.

We propose SparseNeuS, a novel multi-view surface reconstruction method
with two distinct advantages: 1) it generalizes well to new scenes; 2) it needs only
a sparse set of images (as few as 2 or 3 images) for successful reconstruction.
SparseNeuS achieves these goals by learning generalizable priors from image
features and hierarchically leverages the information encoded in the sparse input.

To learn generalizable priors, following MVSNerf [3], we construct a geom-
etry encoding volume which aggregates the 2D image features from multi-view
input, and use these informative latent features to infer 3D geometry. Conse-
quently, our surface prediction network takes a hybrid representation as input,
i.e., xyz coordinates and the corresponding features from the geometry encoding
volume, to predict the network-encoded signed distance function (SDF) for the
reconstructed surface.

The most crucial part of our pipeline is in how to effectively incorporate
the limited information from sparse input images to obtain high-quality sur-
faces through neural rendering. To this end, we introduce several strategies to
tackle this challenge. The first is a multi-level geometry reasoning scheme to pro-
gressively construct the surface from coarse to fine. We use a cascaded volume
encoding structure, i.e., a coarse volume that encodes relatively global features
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to obtain the high-level geometry, and a fine volume guided by the coarse level
to refine the geometry. A per-scene fine-tuning process is further incorporated
into this scheme, which is conditioned on the inferred geometry to construct
subtle details to generate even finer-grained surfaces. This multi-level scheme
divides the task of high-quality reconstruction into several steps. Each step is
based upon the geometry from the preceding step and focuses on constructing a
finer level of details. Besides, due to the hierarchical nature of the scheme, the
reconstruction efficiency is significantly boosted, because numerous samples far
from the coarse surface can be discarded, so as not to burden the computation
in the fine-level geometry reasoning.

The second important strategy that we propose is a multi-scale color bend-
ing scheme for novel view synthesis. Given the limited information in the sparse
images, the network would struggle to directly regress accurate colors for render-
ing novel views. Thus, we mitigate this issue by predicting the linear blending
weights of the input image pixels to derive colors. Specifically, we adopt both
pixel-based and patch-based blending to jointly evaluate local and contextual
radiance consistency. This multi-scale blending scheme yields more reliable color
predictions when the input is sparse.

Another challenge in multi-view 3D reconstruction is that 3D surface points
often do not have consistent projections across different views, due to occlusion
or image noises. With only a small number of input views, the dependence of
geometry reasoning on each image further increases, which aggravates the prob-
lem and results in distorted geometry. To tackle this challenge, we propose a
consistency-aware fine-tuning scheme in the fine-tuning stage. This scheme au-
tomatically detects regions that lack consistent projections, and excludes these
regions in the optimization. This strategy proves effective in making the fine-
tuned surface less susceptible to occlusion and noises, thus more accurate and
cleaner, contributing to a high-quality reconstruction.

We evaluated our method on the DTU [11] and BlendedMVS [48] datasets,
and show that our method outperforms the state-of-the-art unsupervised neural
implicit surface reconstruction methods both quantitatively and qualitatively.

In summary, our main contributions are:

– We propose a new surface reconstruction method based on neural rendering.
Our method learns generalizable priors across scenes and thus can generalize
to new scenes for 3D reconstruction with high-quality geometry.

– Our method is capable of high-quality reconstruction from a sparse set of
images, as few as 2 or 3 images. This is achieved by effectively inferring 3D
surfaces from sparse input images using three novel strategies: a) multi-level
geometry reasoning; b) multi-scale color blending; and c) consistency-aware
fine-tuning.

– Our method outperforms the state-of-the-arts in both reconstruction quality
and computational efficiency.
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2 Related Work

2.1 Multi-view stereo (MVS)

Classical MVS methods utilize various 3D representations for reconstruction
such as: voxel grids based [12,13,15,18,37,40], 3D point clouds based [7,19], and
depth maps based [2,8,36,42,46,47,10,27,26,25]. Compared with voxel grids and
3D point clouds, depth maps are much more flexible and appropriate for parallel
computation, so depth map based methods are most common, like the well-
known method COLMAP [36]. Depth map based methods first estimate the
depth map of each image, and then utilize filtering operations to fuse the depth
maps together into a global point cloud, which can be further processed using
a meshing algorithm like Screened Poisson surface reconstruction [16]. These
methods achieve promising results with densely captured images. However, with
a limited number of images, these methods become more sensitive to image
noises, weak textures and reflections, making it difficult for these methods to
produce complete reconstructions.

2.2 Neural surface reconstruction

Recently, neural implicit representations of 3D geometry are successfully applied
in shape modeling [1,4,9,28,33,29], novel view synthesis [39,24,30,21,34,38,38,43]
and mutli-view 3D reconstruction [14,50,31,17,22,44,49,32,52,6]. For the task of
multi-view reconstruction, the 3D geometry is represented by a neural network
which outputs either occupancy field or Signed Distance Function (SDF). Some
methods utilize surface rendering [31] for multi-view reconstruction, but they
always need extra object masks [50,31] or depth priors [52], which is inefficient
for practical applications. To avoid extra masks or depth priors, some meth-
ods [44,49,32,6] leverage volume rendering for reconstruction. However, they also
heavily depend on a large number of images to perform a time-consuming per-
scene optimization, thus incapable of generalizing to new scenes.

In terms of generalization, there are some successful attempts [51,45,3,23,5]
for neural rendering. These methods take sparse views as input and make use of
the radiance information of the images to generate novel views, and can general-
ize to unseen scenes. Although they can generate plausible synthesized images,
the extracted geometries from these methods always suffer from noises, incom-
pleteness and distortion.

3 Method

Given a few (i.e., three) views with known camera parameters, we present a
novel method that hierarchically recovers surfaces and generalizes across scenes.
As illustrated in Figure 2, our pipeline can be divided into three parts: (1) Ge-
ometry reasoning. SparseNeuS first constructs cascaded geometry encoding
volumes that encode local geometry surface information, and recover surfaces
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Fig. 2: The overview of SparseNeuS. The cascaded geometry reasoning scheme
first constructs a coarse volume that encodes relatively global features to ob-
tain the fundamental geometry, and then constructs a fine volume guided by
the coarse level to refine the geometry. Finally, a consistency-aware fine-tuning
strategy is used to add subtle geometry details, thus yielding high-quality re-
constructions with fine-grained surfaces. Specially, a multi-scale color blending
module is leveraged for more reliable color prediction.

from the volumes in a coarse-to-fine manner (see Section 3.1). (2) Appearance
prediction. SparseNeuS leverages a multi-scale color blending module to predict
colors by aggregating information from input images, and then combines the esti-
mated geometry with predicted colors to render synthesized views using volume
rendering (see Section 3.2). (3) Per-scene fine-tuning. Finally, a consistency-
aware fine-tuning scheme is proposed to further improve the obtained geometry
with fine-grained details (see Section 3.3).

3.1 Geometry reasoning

SparseNeuS constructs cascaded geometry encoding volumes of two different res-
olutions for geometry reasoning, which aggregates image features to encode the
information of local geometry. Specially, the coarse geometry is first extracted
from a geometry encoding volume of low resolution, and then it is used to guide
the geometry reasoning of the fine level.
Geometry encoding volume. For the scene captured by N input images
{Ii}N−1

i=0 , we first estimate a bounding box which can cover the region of in-
terests. The bounding box is defined in the camera coordinate system of the
centered input image, and then grided into regular voxels. To construct a geom-
etry encoding volumeM , 2D feature maps {Fi}N−1

i=0 are extracted from the input

images {Ii}N−1
i=0 by a 2D feature extraction network. Next, with the camera pa-

rameters of one image Ii, we project each vertex v of the bounding box to each
feature map Fi and obtain its features Fi(πi(v)) by interpolation, where πi(v)
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denotes the projected pixel location of v on the feature map Fi. For simplicity,
we abbreviate Fi(πi(v)) as Fi(v).

The geometry encoding volume M is constructed using all the projected fea-
tures {Fi(v)}N−1

i=0 of each vertex. Following prior methods [46,3], we first calculate
the variance of all the projected features of a vertex to build a cost volume B,
and then apply a sparse 3D CNN Ψ to aggregate the cost volume B to obtain
the geometry encoding volume M :

M = ψ(B), B(v) = Var
(
{Fi(v)}N−1

i=0

)
, (1)

where Var is the variance operation, which computes the variance of all the
projected features {Fi(v)}N−1

i=0 of each vertex v.
Surface extraction. Given an arbitrary 3D location q, an MLP network fθ
takes the combination of the 3D coordinate and its corresponding interpolated
features of geometry encoding volume M(q) as input, to predict the Signed Dis-
tance Function (SDF) s(q) for surface representation. Specially, positional en-
coding PE is applied on its 3D coordinates, and the surface extraction operation
is expressed as: s(q) = fθ(PE(q),M(q)).
Cascaded volumes scheme. For balancing the computational efficiency and
reconstruction accuracy, SparseNeuS constructs cascaded geometry encoding vol-
umes of two resolutions to perform geometry reasoning in a coarse-to-fine man-
ner. A coarse geometry encoding volume is first constructed to infer the funda-
mental geometry, which presents the global structure of the scene but is relatively
less accurate due to limited volume resolution. Guided by the obtained coarse
geometry, a fine level geometry encoding volume is constructed to further refine
the surface details. Numerous vertices far from the coarse surfaces can be dis-
carded in the fine-level volume, which significantly reduces the computational
memory burden and improves efficiency.

3.2 Appearance prediction

Given an arbitrary 3D location q on a ray with direction d, we predict its color by
aggregating appearance information from the input images. Given limited infor-
mation in the sparse input images, it is difficult for a network to directly regress
color values for rendering novel views. Unlike prior works [51,3], SparseNeuS
predicts blending weights of the input images to generate new colors. A loca-
tion q is first projected to the input images to obtain the corresponding colors
{Ii(q)}N−1

i=0 . Then the colors from different views are blended together as the
predicted color of q using the estimated blending weights.

Blending weights. The key of generating the blending weights {wq
i }

N−1
i=0 is to

consider the photography consistency of the input images. We project q onto
the feature maps {Fi}N−1

i=0 to extract the corresponding features {Fi(q)}N−1
i=0

using bilinear interpolation. Moreover, we calculate the mean and variance of
the features {Fi(q)}N−1

i=0 from different views to capture the global photographic
consistency information. Each feature Fi(q) is concatenated with the mean and
variance together, and then fed into a tiny MLP network to generate a new
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feature F ′
i (q). Next, we feed the new feature F ′

i (q), the viewing direction of the
query ray relative to the viewing direction of the ith input image∆di = d−di, and
the trilinearly interpolated volume encoding feature M(q) into an MLP network
fc to generate blending weight: wq

i = fc(F
′
i (q),M(q), ∆di). Finally, blending

weights {wq
i }

N−1
i=0 are normalized using a Softmax operator.

Pixel-based color blending. With the obtained blending weights, the color
cq of a 3D location q is predicted as the weighted sum of its projected colors

{Ii(q)}N−1
i=0 on the input images. To render the color of the query ray, we first

predict the color and SDF values of 3D points sampled on the ray. The color
and SDF values of the sampled points are aggregated to obtain the final colors
of the ray using SDF based volume rendering [44]. Since the color of a query
ray corresponds to a pixel of the synthesized image, we name this operation
pixel-based blending. Although supervision on the colors rendered by pixel-based
blending already induces effective geometry reasoning, the information of a pixel
is local and lacks contextual information, thus usually leading to inconsistent
surface patches when input is sparse.
Patch-based color blending. Inspired by classical patch matching, we con-
sider enforcing the synthesized colors and ground truth colors to be contextually
consistent; that is, not only in pixel level but also in patch level. To render the
colors of a patch with size k × k, a naive implementation is to query the colors
of k2 rays using volume rendering, which causes a huge amount of computa-
tion. We, therefore, leverage local surface plane assumption and homography
transformation to achieve a more efficient implementation.

The key idea is to estimate a local plane of a sampled point to efficiently
derive the local patch. Given a sampled point q, we leverage the property of
the SDF network s(q) to estimate the normal direction nq by computing the
spatial gradient, i.e., nq = ∇s(q). Then, we sample a set of points on the local
plane (q, nq), project the sampled points to each view, and obtain the colors by
interpolation on each input image. All the points on the local plane share the
same blending weights with q, and thus only one query of the blending weights is
needed. Using local plane assumption, we consider the neighboring geometric in-
formation of a query 3D position, which encodes contextual information of local
patches and enforces better geometric consistency. By adopting patch-based vol-
ume rendering, synthesized regions contain more global information than single
pixels, thus producing more informative and consistent shape context, especially
in the regions with weak texture and changing intensity.
Volume rendering. To rendering the pixel-based color C (r) or patch-based
color P (r) of a ray r passing through the scene, we query the pixel-based colors
ci, patch-based colors pi and sdf values si of M samples on the ray, and then
utilize [44] to convert sdf values si into densities σi. Finally, the densities are
used to accumulate pixel-based and patch-based colors along the ray:

U(r) =

M∑
i=1

Ti (1− exp (−σi))ui, where Ti = exp

−
i−1∑
j=1

σj

 . (2)
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Here U(r) denotes C (r) or P (r), while ui denotes the pixel-based color ci or
patch-based color pi of the ith sample on the ray.

3.3 Per-scene fine-tuning

With the generalizable priors and effective geometry reasoning framework, given
sparse images from a new scene, SparseNeuS can already recover geometry sur-
faces via fast network inference. However, due to the limited information in the
sparse input views and the high diversity and complexity of different scenes,
the geometry obtained by the generic model may contain inaccurate outliers
and lack subtle details. Therefore, we propose a novel fine-tuning scheme, which
is conditioned on the inferred geometry, to reconstruct subtle details and gen-
erate finer-grained surfaces. Thanks to the initialization given by the network
inference, the per-scene optimization can fast converge to a high-quality surface.

Fine-tuning networks. In the fine-tuning, we directly optimize the obtained
fine-level geometry encoding volume and the signed distance function (SDF) net-
work fθ, while the 2D feature extraction network and 3D sparse CNN networks
are discarded. Moreover, the CNN based blending network used in the generic
setting is replaced by a tiny MLP network. Although the CNN based network
can be also used in per-scene fine-tuning, by experiments, we found that a new
tiny MLP can speed up the fine-tuning without loss of performance since the
MLP is much smaller than the CNN based network. The MLP network still
outputs blending weights {wq

i }
N−1
i=0 of a query 3D position q, but it takes the

input as the combination of 3D coordinate q, the surface normal nq, the ray
direction d, the predicted SDF s(q), and the interpolated feature of the geome-
try encoding volume M(q). Specially, positional encoding PE is applied on the
3D position q and the ray direction d. The MLP network f ′c is defined as :

{wq
i }

N−1
i=0 = f ′c (PE(q),PE(d), nq, s(q),M(q)) , where {wq

i }
N−1
i=0 are the predicted

blending weights, and N is the number of input images.

Consistency-aware color loss. We observe that in multi-view stereo, 3D sur-
face points often do not have consistent projections across different views, since
the projections may be occluded or contaminated by image noises. As a result,
the errors of these regions suffer from sub-optima, and the predicted surfaces of
the regions are always inaccurate and distorted. To tackle this problem, we pro-
pose a consistency-aware color loss to automatically detect the regions lacking
consistent projections and exclude these regions in the optimization:

Lcolor =
∑
r∈R

O (r) · Dpix

(
C (r) , C̃ (r)

)
+
∑
r∈R

O (r) · Dpat

(
P (r) , P̃ (r)

)
+ λ0

∑
r∈R

log (O (r)) + λ1
∑
r∈R

log (1−O (r)) ,
(3)

where r is a query ray, R is the set of all query rays, O (r) is the sum of accu-
mulated weights along the ray r obtained by volume rendering. From Eq. 2, we
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can easily derive O (r) =
∑M

i=1 Ti (1− exp (−σi)). C (r) and C̃ (r) are the ren-
dered and ground truth pixel-based colors of the query ray respectively, P (r)
and P̃ (r) are the rendered and ground truth patch-based colors of the query ray
respectively, and Dpix and Dpat are the loss metrics of the rendered pixel color
and rendered patch colors respectively. Empirically, we choose Dpix as L1 loss
and Dpat as Normalized Cross Correlation (NCC) loss.

The rationale behind this formulation is, the points with inconsistent pro-
jections always have relatively large color errors that cannot be minimized in
the optimization. Therefore, if the color errors are difficult to be minimized in
optimization, we force the sum of the accumulated weights O (r) to be zero, such
that the inconsistent regions will be excluded in the optimization. To control the
level of consistency, we introduce two logistic regularization terms: decreasing
the ratio λ0/λ1 will lead to more regions being kept; otherwise, more regions are
excluded and the surfaces are cleaner.

3.4 Training loss

By enforcing the consistency of the synthesized colors and ground truth colors,
the training of SparseNeuS does not rely on 3D ground-truth shapes. The overall
loss function is defined as a weighted sum of the three loss terms:

L = Lcolor + αLeik + βLsparse. (4)

We note that, in the early stage of generic training, the estimated geometry
is relatively inaccurate, and 3D surface points may have large errors, where the
errors do not provide clear clues on whether the regions are radiance consistent
or not. We utilize consistency-aware color loss in the per-scene fine-tuning, and
remove the last two consistence-aware logistic terms of Eq. 3 in the training of
the generic model.

An Eikonal term [9] is applied on the sampled points to regularize the SDF
values derived from the surface prediction network fθ:

Leik =
1

∥Q∥
∑
q∈Q

(∥∇fθ (q)∥2 − 1)
2
, (5)

where q is a sampled 3D point, Q is the set of all sampled points, ∇fθ (q) is
the gradient of network fθ relatively to sampled point q, and ∥·∥2 is l2 norm.
The Eikonal term enforces the network fθ to have unit l2 norm gradient, which
encourages fθ to generate smooth surfaces.

Besides, due to the property of accumulated transmittance in volume ren-
dering, the invisible query samples behind the visible surfaces lack supervision,
which causes uncontrollable free surfaces behind the visible surfaces. To enable
our framework to generate compact geometry surfaces, we adopt a sparseness
regularization term to penalize the uncontrollable free surfaces:

Lsparse =
1

∥Q∥
∑
q∈Q

exp (−τ · |s(q)|) , (6)
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Table 1: Evaluation on DTU [11] dataset.
Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

PixelNerf [51] 5.13 8.07 5.85 4.40 7.11 4.64 5.68 6.76 9.05 6.11 3.95 5.92 6.26 6.89 6.93 6.28
IBRNet [45] 2.29 3.70 2.66 1.83 3.02 2.83 1.77 2.28 2.73 1.96 1.87 2.13 1.58 2.05 2.09 2.32
MVSNerf [3] 1.96 3.27 2.54 1.93 2.57 2.71 1.82 1.72 2.29 1.75 1.72 1.47 1.29 2.09 2.26 2.09
Ours 1.68 3.06 2.25 1.10 2.37 2.18 1.28 1.47 1.80 1.23 1.19 1.17 0.75 1.56 1.55 1.64

IDR†[50] 4.01 6.40 3.52 1.91 3.96 2.36 4.85 1.62 6.37 5.97 1.23 4.73 0.91 1.72 1.26 3.39
VolSdf [49] 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
UniSurf [32] 5.08 7.18 3.96 5.30 4.61 2.24 3.94 3.14 5.63 3.40 5.09 6.38 2.98 4.05 2.81 4.39
Neus [44] 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00
IBRNet-ft [45] 1.67 2.97 2.26 1.56 2.52 2.30 1.50 2.05 2.02 1.73 1.66 1.63 1.17 1.84 1.61 1.90
Colmap [35] 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
Ours-ft 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 0.99 0.87 0.54 1.15 1.18 1.27

† Optimization using extra object masks.

where |s(q)| is the absolute SDF value of sampled point q, τ is a hyperparamter
to rescale the SDF value. This term will encourage the SDF values of the points
behind the visible surfaces to be far from 0. When extracting 0-level set SDF to
generate mesh, this term can avoid uncontrollable free surfaces.

4 Datasets and Implementation

Datasets. We train our framework on the DTU [11] dataset to learn a gener-
alizable network. We use 15 scenes for testing, same as those used in IDR [50],
and the remaining non-overlapping 75 scenes for training. All the evaluation
results on the testing scenes are generated using three views with a resolution
of 600× 800, and each scene contains two sets of three images. The foreground
masks provided by IDR [50] are used for evaluating the testing scenes. For mem-
ory efficiency, we use the center cropped images with resolution of 512 × 640
for training. We observe that the images of DTU dataset contain large black
backgrounds and the regions have considerable image noises, so we utilize a sim-
ple threshold based denoising strategy to alleviate the noises of such regions in
the training images. Optionally, the black backgrounds with zero RGB values
can be used as a simple dataset prior to encourage the geometry predictions of
such regions to be empty. We further tested on 7 challenging scenes from the
BlendedMVS [48] dataset. For each scene, we select one set of three images with
a resolution of 768× 576 as input. Note that, in the per-scene fine-tuning stage,
we still use the three images for optimization without any new images.
Implementation details. Feature Pyramid Network [20] is used as the image
feature extraction network to extract multi-scale features from input images. We
implement the sparse 3D CNN networks using a U-Net like architecture, and use
torchsparse [41] as the implementation of 3D sparse convolution. The resolutions
of the coarse level and fine level geometry encoding volumes are 96 × 96 × 96
and 192× 192× 192 respectively. The patch size used in patch-based blending is
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Fig. 3: Visual comparisons on DTU [11] dataset.

5× 5. We adopt a two-stage training strategy to train our generic model: in the
first stage, the networks of coarse level are first trained for 150k iterations; in the
second stage, the networks of fine level are trained for another 150k iterations
while the networks of coarse level are fixed. We train our model on two RTX
2080Ti GPUs with a batch size of 512 rays.

5 Experiments

We compare our method with the state-of-the-art approaches from three classes:
1) generic neural rendering methods, including PixelNerf [51], IBRNet [45] and
MVSNerf [3], where we use a density threshold to extract meshes from the
learned implicit field; 2) per-scene optimization based neural surface reconstruc-
tion methods, including IDR [50], NeuS [44], VolSDF [49], and UniSurf [32];
3) a widely used classic MVS method COLMAP [35], where we reconstruct a
mesh from the output point cloud of COLMAP with Screened Poisson Surface
Reconstruction [16]. All the methods take three images as input.

5.1 Comparisons

Quantitative comparisons. We perform quantitative comparisons with the
SOTA methods on DTU dataset. We measure the Chamfer Distances of the
predicted meshes with ground truth point clouds, and report the results in Ta-
ble 1. The results show that our method outperforms the SOTA methods by
a large margin in both generic setting and per-scene optimization setting. Our
results obtained by a per-scene fine-tuning with 10k iterations (20 mins) shows
remarkable improvements than those of per-scene optimization methods. Note
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a) MVSNerfReference image b) Ours c) Colmap d) NeuS e) Ours

Fig. 4: Visual comparisons on BlendedMVS [48] dataset.

Table 2: Ablation studies on DTU dataset.
Scheme Setting Chamfer dist.

Single volume
Generic

1.80
Cas. volumes 1.56

Single volume
Fine-tuning

1.32
Cas. volumes 1.21

(a) The usefulness of Cascaded volumes
in both generic and fine-tuning settings.

Pixel Patch Consistency Chamfer dist.

✓ × × 1.39
✓ ✓ × 1.28
✓ ✓ ✓ 1.21

(b) The usefulness of Pixel-based and
Patch-based blending, and Consistency-
aware scheme in per-scene fine-tuning.

that IDR [50] needs extra object masks for per-scene optimization while others
do not need object masks, and we provide the results of IDR for reference.

We further perform a fine-tuning with 10k iterations for IBRNet and MVS-
Nerf with the three input images. With the fine-tuning, the results of IBRNet are
improved compared with its generic setting but still worse than our fine-tuned
results. MVSNerf fails to perform a fine-tuning with the three input images,
therefore, no meaningful geometries are extracted. Furthermore, we observe that
MVSNerf usually needs more than 10 images to perform a successful fine-tuning,
and thus the failure might be caused by the radiance ambiguity problem.

Qualitative comparisons. We conduct qualitative comparisons with MVS-
Nerf [3], COLMAP [35] and NeuS [44] on DTU [11] and BlendedMVS [48]
datasets. As shown in Figure 3, our results obtained via network inference are
much smoother and less noisy than those of MVSNerf. The extracted meshes
of MVSNerf are noisy since its representation of density implicit field does not
have sufficient constraint on level sets of 3D geometry surfaces.
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Reference image a) Single volume b) Cascaded volumes c) Pixel d) Pixel+Patch e) Pixel+Patch+Consistency

Inference Per-scene fine-tuning

Fig. 5: Qualitative ablation studies. The result obtained by cascaded volumes
presents more fine-grained details than that of a single volume. The consistency-
aware scheme can automatically detect the regions lacking radiance consistency
and exclude them in the fine-tuning, thus yielding cleaner result (e) than the
results without consistency-aware scheme (c,d).

After a short-time per-scene fine-tuning, our results are largely improved with
fine-grained details and become more accurate and cleaner. Compared with the
results of COLMAP, our results are more complete, especially for the objects
with weak textures. With only three input images, NeuS suffers from the radiance
ambiguity problem and its geometry surfaces are distorted and incomplete.

To validate the generalizability and robustness of our method, we further
perform cross dataset evaluation on BlendedMVS dataset. As shown in Figure 4,
although our method is not trained on BlendedMVS, our generic model shows
strong generalizability and produces cleaner and more complete results than
those of MVSNerf. Take the fourth scene in Figure 4 as an example, our method
successfully recovers subtle details like the hose, while COLMAP misses the fine-
grained geometry. For the scenes with weak textures, NeuS can only produces
rough shapes and struggles to recover the details of geometry.

5.2 Ablations and analysis

Ablation studies. We conduct ablation studies (Table 2 and Figure 5) to in-
vestigate the individual contribution of the important designs of our method.
The ablation studies are evaluated on one set of three images of the 15 test-
ing scenes. The first key module is a multi-level geometry reasoning scheme for
progressively constructing the surface from coarse to fine. Specially, a cascaded
volume scheme is proposed, a coarse volume to generate coarse but high-level
geometry, a fine volume guided by the coarse level to refine the geometry. As
shown in (a) of Table 2, the cascaded volumes scheme considerably boosts the
performance of our method than single volume scheme. In Figure 5, we can see
the geometry obtained by cascaded volumes contains more detailed geometry
than that of a single volume.

The second important design is a multi-scale color blending strategy, which
can enforce the local and contextual radiance consistency of rendered colors and
ground truth colors. As shown in (b) of Table 2, the combination of pixel-based
and patch-based blending is better than solely using the pixel-based blending.
Another important strategy is a consistency-aware scheme that automatically
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detects the regions lacking photographic consistency and excludes these regions
in fine-tuning. As shown in (b) of Table 2 and Figure 5, result using consistency-
aware scheme is noticeably better than those that do not, which is cleaner and
gets rid of distorted geometries.

Reference image a) w/ priors b) w/o priors

Chamfer distance 1.65 1.98

Fig. 6: Per-scene optimization with pri-
ors or without priors.

Per-scene optimization with or
without priors. Owing to the good
initialization provided by the learned
priors, the per-scene optimization of
our method converges much faster
and avoids sub-optimal caused by the
radiance ambiguity problem. To val-
idate the effectiveness of the learned
priors, we directly perform an opti-
mization without using the learned
priors. As shown in Figure 6, the
Chamfer Distance of the result with
priors is 1.65 while that without prior-
based initialization is 1.98. Obviously,
the result with learned priors is more
complete and smooth, which shows a stark contrast to the direct optimization.

6 Conclusions

We propose SparseNeuS, a novel neural rendering based surface reconstruction
method to recover surfaces from multi-view images. Our method generalizes to
new scenes and produces high-quality reconstructions with sparse images, which
prior works [44,49,32] struggle with. To make our method generalize to new
scenes, we therefore introduce geometry encoding volumes to encode geometry
information for generic geometry reasoning. Moreover, a series of strategies are
proposed to handle the difficult sparse views setting. First, we propose a multi-
level geometry reasoning framework to recover the surfaces in a coarse-to-fine
manner. Second, we adopt a multi-scale color blending scheme, which jointly
evaluates local and contextual radiance consistency for more reliable color pre-
diction. Third, a consistency-aware fine-tuning scheme is used to control the
inconsistent regions caused by occlusion and image noises, yielding accurate and
clean reconstruction. Experiments show our method achieve better performance
than the state-of-the-arts in both reconstruction quality and computational ef-
ficiency. Due to signed distance field adopted, our method can only produce
closed-surfaces reconstructions. Possible future directions include utilizing other
representations like unsigned distance field to reconstruct open-surfaces objects.
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