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Abstract. Conventional self-supervised monocular depth prediction meth-
ods are based on a static environment assumption, which leads to accu-
racy degradation in dynamic scenes due to the mismatch and occlusion
problems introduced by object motions. Existing dynamic-object-focused
methods only partially solved the mismatch problem at the training loss
level. In this paper, we accordingly propose a novel multi-frame monocu-
lar depth prediction method to solve these problems at both the predic-
tion and supervision loss levels. Our method, called DynamicDepth, is
a new framework trained via a self-supervised cycle consistent learning
scheme. A Dynamic Object Motion Disentanglement (DOMD) module is
proposed to disentangle object motions to solve the mismatch problem.
Moreover, novel occlusion-aware Cost Volume and Re-projection Loss are
designed to alleviate the occlusion effects of object motions. Extensive
analyses and experiments on the Cityscapes and KITTI datasets show
that our method significantly outperforms the state-of-the-art monocu-
lar depth prediction methods, especially in the areas of dynamic objects.
Code is available at https://github.com/AutoAILab/DynamicDepth

1 Introduction

3D environmental information is crucial for autonomous vehicles, robots, and
AR/VR applications. Self-supervised monocular depth prediction [8,9,11,29] pro-
vides an efficient solution to retrieve 3D information from a single camera with-
out requiring expensive sensors or labeled data. In recent years these methods are
getting more and more popular in both the research and industry communities.

Conventional self-supervised monocular depth prediction methods [8,9,11]
take a single image as input and predicts the dense depth map. They generally
use a re-projection loss which constraints the geometric consistency between
adjacent frames in the training loss level, but they are not capable of geometric
reasoning through temporal frames in the network prediction level, which limits
their overall performance.

Temporal and spatially continuous images are available in most real-world
scenarios like autonomous vehicles [3,24] or smart devices [13,16]. Recent years
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Fig. 1: Conventional monocular depth prediction methods like Manydepth [35]
makes severe mistakes on dynamic object areas due to mismatch and occlu-
sion problems introduced by object motions. Our method achieved significant
improvement with our proposed Dynamic Object Motion Disentanglement and
Occlusion Alleviation.

multi-frame monocular depth prediction methods [4,35,36,26,33,37] are proposed
to utilize the temporal image sequences to improve the depth prediction accu-
racy. Cost-volume-based methods [35,36] adopted the cost volume from stereo
match tasks to enable the geometric reasoning through temporal image sequences
in the network prediction level, and achieved overall state-of-the-art depth pre-
diction accuracy while not requiring time-consuming recurrent networks.

However, both the re-projection loss function and the cost volume construc-
tion are based on the static environment assumption, which does not hold for
most real-world scenarios. Object motion will violate this assumption and cause
re-projection mismatch and occlusion problems. The cost volume and loss values
in the dynamic object areas are unable to reflect the quality of depth hypothesis
and prediction, which will mislead the model training. Recent work [18,9,22,19]
attempted to optimize depth prediction of dynamic object areas and achieved
noticeable improvements, but they still have several drawbacks. (1) They only
solve the mismatch problem at the loss function level, still cannot reason geo-
metric constraints through temporal frames for dynamic objects, which limits
its accuracy potential. (2) The occlusion problem introduced by object motions
is still unsolved. (3) Redundant object motion prediction networks increased the
model complexity and does not work for the motions of non-rigid objects.

Pursuing accurate and generic depth prediction, we propose DynamicDepth,
a self-supervised temporal depth prediction framework that disentangles the dy-
namic object motions. First, we predict a depth prior from the target frame
and project to the reference frames for an implicit estimation of object mo-
tion without rigidity assumption, which is later disentangled by our Dynamic
Object Motion Disentanglement (DOMD) module. We then build a multi-frame
occlusion-aware cost volume to encode the temporal geometric constraints for the
final depth prediction. In the training level, we further propose a novel occlusion-
aware re-projection loss to alleviate the occlusion from the object motions, and
a novel cycle consistent learning scheme to enable the final depth prediction and
the depth prior prediction to mutually improve each other. To summarize, our
contributions are as follows:
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– We propose a novel Dynamic Object Motion Disentanglement (DOMD)
module which leverages an initial depth prior prediction to solve the ob-
ject motion mismatch problem in the final depth prediction.

– We devise a Dynamic Object Cycle Consistent training scheme to mutually
reinforce the Prior Depth and the Final Depth prediction.

– We design an Occlusion-aware Cost Volume to enable geometric reasoning
across temporal frames even in object motion occluded areas, and a novel
Occlusion-aware Re-projection Loss to alleviate the motion occlusion prob-
lem in training supervision.

– Our method significantly outperforms existing state-of-the-art methods on
the Cityscapes [3] and KITTI [24] datasets.

2 Related Work

In this section, we review self-supervised depth prediction approaches relevant
to our proposed method in the following three categories: (1) single-frame, (2)
multi-frame, (3) dynamic-objects-optimized.

Self-supervised Single-frame Monocular Depth Prediction: Due to
the limited availability of labeled depth data, self-supervised monocular depth
prediction methods [8,9,29,1,21,11] have become more and more popular. Mon-
odepth2 [9] set a benchmark for robust monocular depth, FeatDepth [29] tried to
improve the low-texture area depth prediction, and PackNet [11] explored a more
effective network backbone. These self-supervised depth models generally take
a single frame as input and predict the dense depth map. In the training stage,
the temporally neighboring frames are projected to the current image plane by
the predicted depth map. If the prediction is accurate, the re-projected images
are supposed to be identical to the actual current frame image. The training is
based on enforcing the re-projection photo-metric [34] consistency.

These methods provided a successful paradigm to learn the depth prediction
without labeled data, but they have a major and common problem with dynamic
objects: the re-projection loss function assumes the environment is static, which
does not hold for real-world applications. When objects are moving, even if the
prediction is perfect, the re-projected reference image will still not match the
target frame image. The loss signal from the dynamic object areas will generate
misleading gradients to degrade the model performance. In contrast, our pro-
posed Dynamic Object Motion Disentanglement solves this mismatch problem
and achieves superior accuracy, especially in the dynamic object areas.

Multi-frame Monocular Depth Prediction: The above mentioned re-
projection loss only uses temporal constraints at the training loss function level.
The model itself does not take any temporal information as input for reason-
ing, which limits its performance. One promising way to improve self-supervised
monocular depth prediction is to leverage the temporal information in the in-
put and prediction stage. Early works [4,26,33,37] explored recurrent networks to
process image sequences for monocular depth prediction. These recurrent models
are computationally expensive and do not explicitly encode and reason geomet-
ric constraints in their prediction. Recently, Manydepth [35] and MonoRec [36]
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adopt the cost volumes from stereo matching tasks to enable the geometric-based
reasoning during inference. They project the reference frame feature map to the
current image plane with multiple pre-defined depth hypothesises, whose differ-
ence to the current frame feature maps are stacked to form the cost volume.
Hypothesises which are closer to the actual depth are supposed to have a lower
value in the cost volume, while the entire cost volume is supposed to encode
the inverse probability distribution of the actual depth value. With this inte-
grated cost volume, they achieve great overall performance improvement while
preserving real-time efficiency.

However, the construction of the cost volume relies on the static environment
assumption as well, which leads to catastrophic failure in the dynamic object
area. They either circumvent this problem [36] or simply use a L1 loss [35] to
mimic the prediction of the single-frame model, which makes less severe mistakes
for dynamic objects. This L1 loss alleviates but does not actually solve the
problem. Our proposed Dynamic Object Motion Disentanglement, Occlusion-
aware Cost Volume, and Re-projection Loss solve the mismatch and occlusion
problem at both the reasoning and the training loss levels and outperform all
other methods, especially in the dynamic object areas.

Dynamic Objects in Self-supervised Depth Prediction: The research
community has attempted to solve the above-mentioned ill-posed re-projection
geometry for dynamic objects. SGDepth [18] tried to exclude the moving ob-
jects from the loss function, Li et al. [22] proposed to build a dataset only con-
taining non-moving dynamic-category objects. The latest state-of-the-art meth-
ods [1,7,10,19,20,21] tried to predict pixel-level or object-level translation and
incorporate it into the loss function re-projection geometry.

However, these methods still have several drawbacks. First, their single frame
input did not enable the model to reason from the temporal domain. Second,
explicitly predicting object motions requires redundant models and increased
complexity. Third, they only focused on the re-projection mismatch, the oc-
clusion problem introduced by object motions is still unsolved. Our proposed
Dynamic Object Motion Disentanglement works at both the cost volume and
the loss function levels, solving the re-projection mismatch problem while en-
abling the geometric reasoning through temporal frames in the inference stage,
without additional explicit object motion prediction. Furthermore, we propose
Occlusion-aware Cost Volume and Occlusion-aware Re-projection Loss to solve
the occlusion problem introduced by object motion.

3 Method

3.1 Overview

Given two images It−1 ∈ RW×H×3 and It ∈ RW×H×3 of a target scene, our pur-
pose is to estimate a dense depth map Dt of It by taking advantage of two views’
observations while solving the mismatch and occlusion problems introduced by
object motions.
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Fig. 2: DynamicDepth Architecture: The inputs are images It−1 and It,
from which dynamic-object-disentangled frame Idt−1 is generated by the DOMD
module for the final depth prediction Dt. The occlusion-aware cost volume is
constructed to facilitate geometric reasoning and the Dynamic Object Cycle
Consistency Loss is devised for mutual reinforcement betweenDt andDpr

t . Green
arrows indicates knowledge flow.

As shown in Fig. 2, our model contains three major innovations: We first use
a Depth Prior Net θDPN and Pose Net θp to predict an initial depth prior Dpr

t

and ego-motion, which is sent to the (1) Dynamic Object Motion Disentangle-
ment (DOMD) to solve the object motion mismatch problem (see Sec. 3.2). The
disentangled frame Idt−1 and the current frame It are encoded by the Depth En-
coder to construct the (2) Occlusion-aware Cost Volume for reasoning through
temporal frames while diminishing the motion occlusion problem (see Sec. 3.3).
The final depth prediction Dt is generated by the Depth Decoder from our cost
volume. During training, our (3) Dynamic Object Cycle Consistency Loss Lc

enables the mutual improvement of the depth prior Dpr
t and the final depth pre-

diction Dt, while our Occlusion-aware Re-projection Loss Lor solved the object
motion occlusion problem (see Sec. 3.4).

3.2 Dynamic Object Motion Disentanglement (DOMD)

There is an observation [1,9] that single-frame monocular depth prediction mod-
els suffer from dynamic objects, which cause even more severe problems in multi-
frame methods [35,36]. This is because the static environment assumption does
not hold for dynamic objects, which introduce mismatch and occlusion problems.
Here, we describe our DOMD to solve the mismatch problem.

Why the Cost Volume and Self-supervision Mismatch on Dynamic
Objects: Either in the cost volume or re-projection loss function, the current
frame feature map Ft or image It is projected to the 3D space and re-projected
back to the reference frame t − 1 by the depth hypothesis or predictions. We
illustrate the re-projection geometry in Fig. 3. The dynamic object moves from
Wt−1 to Wt, its corresponding image patches are Ct−1 and Ct respectively. Con-
ventional methods suppose the photo-metric difference between Ct−1 and the
re-projected Ct is lowest when the depth prediction or hypothesis is correctly
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Fig. 3: Dynamic Object Motion Disentangle-
ment: A dynamic object moves from Wt−1 to Wt,
Ct−1 and Ct are corresponding image patches. Dpr

t

is our depth prior prediction. Conventional methods
tend to mismatch at W ′. We re-project Ct to Cd

t−1

with depth prior Dpr
t to replace Ct−1 to disentangle

the object motion. This solves the mismatch prob-
lem, making our cost volume and re-projection loss
correctly converge at Wt.

Fig. 4: Dynamic ob-
ject motion disen-
tangled image: Left
is the Idt−1 when depth
prior is accurate. The
right blue image patch
shows the re-projected
Cd

t−1 with inaccurate
depth prior.

close to Wt. However, due to the object motions, image or feature patches tend
to mismatch at W ′ instead: E(Ct−1, πt−1(W

′)) < E(Ct−1, πt−1(Wt)), π is the
projection operator. This mismatch misleads the reasoning in the cost volume
and the supervision in the re-projection loss.

Dynamic Object Motion Disentanglement: Our DOMD module Mo takes
two image frames (It−1, It) with its dynamic category (e.g.,vehicle, people, bike)
segmentation masks (St−1, St) as input to generate the disentangled image Idt−1.

Mo : (It, It−1, St−1, St) 7→ Idt−1. (1)

We first use a single-frame depth prior network θDPN to predict an initial
depth prior Dpr

t . As shown in Fig. 3, the Dpr
t is used to re-project the dynamic

object image patch Ct to Cd
t−1, which indicates the t− 1 camera perspective of

the dynamic object at location Wt. Finally, we replace the Ct−1 with Cd
t−1 to

form the dynamic object motion disentangled image Idt−1. Note that we do not
require the rigidity of the dynamic object.

Ca = Ia · Sa, Cd
t−1 = πt−1(π

−1
t (Ct, D

pr
t )), Idt−1 = It−1(Ct−1 → Cd

t−1). (2)

Our Multi-frame model θMF then construct the geometric constraint in the
cost volume with the disentangled image frame Idt−1 and current image frame It
to predict the final depth Dt.

We further propose a Dynamic Object Cycle Consistency Loss Lc (Details
in Sec. 3.4 and Sec. 4.4.) to enable the Dt to backward supervise the Dpr

t train-
ing. Both the Dpr

t and Dt could be greatly improved with our cycle consistent
learning. Our θDPN already outperforms the existing dynamic-object-focused
state-of-the-art methods such as InstaDM [19] with joint and cycle consistent
learning.
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Fig. 5: Occlusion-aware Cost Volume: Feature map F d
t−1 of the Idt−1 is

warped to the It plane with multiple pre-defined depth hypothesizes Pi to con-
struct the cost volume. The black area in the cost volume indicates the noise
from object motion occlusion, which is replaced with the nearby non-occluded
area to avoid polluting the cost distribution.

Why Final Depth Improves Over Depth Prior: As shown in Fig. 4, when
the depth prior prediction is inaccurate, the re-projected image patch Cd

t−1 will
occlude some background pixels which are visible at time t. Those pixels will
generate a higher photometric error in the re-projection loss. To minimize it, the
network will manage to decode the error of depth prior from the disentangled
image Idt−1 to predict a better final depth to improve the depth prior prediction
by our later introduced cycle-consistency loss.

3.3 Occlusion-aware Cost Volume

To encode the geometric constraints through the temporal frames while solv-
ing the occlusion problem introduced by dynamic objects motions, we pro-
pose an Occlusion-aware Cost Volume CV occ ∈ R|P |×W×H×C , where P =
{p1, p2, ..., p|P |} is the pre-defined depth hypothesis, C is the channel number.

As shown in Fig. 5, we warp the feature map F d
t−1 of the dynamic object

disentangled image Idt−1 to the current frame image plane with all pre-defined
depth hypothesis P . The cost volume layer CVi is the L1 difference between
the warped feature map Fw

i and the current frame feature map Ft. We obtain
the cost volume CV by stacking all the layers. For each pixel, the cost value is
supposed to be lower when the corresponding depth hypothesis is closer to the
actual depth. The cost values over different depth hypotheses are supposed to
encode the inverse probability distribution of the actual depth.

CVi = |Ft − Fw
i |1 , Fw

i = πt(π
−1
t−1(F

d
t−1, pi)). (3)

In Fig. 5, the black area in the image Idt−1 corresponds to the backgrounds
which may be visible at time t but are occluded by the dynamic object at time
t − 1. The L1 difference between the feature of backgrounds at time t and the
feature of black pixels is meaningless, which pollutes the distribution of the cost
volume. We propose to replace these values with non-occluded area cost values
from neighboring depth hypothesis p′. This preserves the global cost distribution
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and leads the training gradients flow to the nearby non-occluded areas. Our
ablation study in Sec. 4 confirms the effectiveness of our design.

CV occ
p,w,h =

{
CVp,w,h, if Fw

p,w,h ∈ V,

CVp′,w,h, if Fw
p,w,h ∈ O,Fw

p′,w,h ∈ V, p′ ∈ r,
(4)

where O/V are the set of occluded/visible areas in Fw, r is the neighbors of p.

3.4 Loss Functions

During the training of our framework, our proposed Occlusion-aware Re-projection
Loss Lor enforces the re-projection consistency between adjacent frames while
alleviating the influence of the object-motion-caused occlusion problem. Our
joint learning and novel Dynamic Object Cycle Consistency Loss Lc further en-
ables the depth prior prediction Dpr

t and final depth prediction Dt to mutually
reinforce each other to achieve the best performance.

Dynamic Object Cycle Consistency Loss: As shown in Fig. 2, during the
self-supervised learning, our initial depth prior prediction Dpr

t is used in our Dy-
namic Object Motion Disentanglement (DOMD) module to produce the motion
disentangled reference frame Idt−1 which is later encoded in our Occlusion-aware
Cost Volume to guide the final depth prediction Dt. To enable the multi-frame
final depth Dt to backward guide the learning of single-frame depth prior Dpr

t

to achieve a mutual reinforcement scheme, we propose a novel Dynamic Object
Cycle Consistency Loss Lc to enforce the consistency between Dt and Dpr

t .
Since only the dynamic objects area of Dpr

t are employed in our DOMD
module, we only apply the Dynamic Object Cycle Consistency Loss Lc at these
areas and only active when the inconsistency is large enough:

A = {i ∈ It|

∣∣∣Di
t −Dpr,i

t

∣∣∣
1

min{Di
t, D

pr,i
t }

> 1}, (5)

Lc =
1

|A ∩ S|
∑

i∈(A∩S)

∣∣∣Di
t −Dpr,i

t

∣∣∣
1
. (6)

Where S is the semantic segmentation mask of dynamic category objects.

Occlusion-aware Re-projection Loss: In self-supervised monocular depth
prediction, the image from reference frames (It−1, It+1) are warped to the cur-
rent image plane with the predicted depth map Dt. If the depth prediction
is correct, the conventional re-projection loss Lr supposes the warped image
(It−1→t, It+1→t) to be identical with the current frame image It. They penalize
the photo-metric error E between them.

Êa = E(It, Ia→t), Lr =
1

2
(Êt−1 + Êt+1). (7)
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Fig. 6: Occlusion-aware Re-projection Loss: Using the non-occluded source
pixels for the re-projection loss could avoid most occlusions. The widely-
used [9,35,29] per-pixel minimum Lmin

r fails when the occluded pixels do not
have lower photo-metric error. We propose Occlusion-aware Re-projection Loss
Lor to solve this problem.

As mentioned above, the dynamic object motions break the static environ-
ment assumption and lead to the mismatch problem in this re-projection geom-
etry. Our Dynamic Object Motion Disentanglement (DOMD) module Mo could
solve this mismatch problem but the background pixels occluded by the dy-
namic object at reference time (t− 1, t+1) are still missing. As shown in Fig. 6,
using the photo-metric error E between these occluded pixels in the warped im-
age ((It−1→t, It+1→t)) and visible background pixels in It as training loss only
introduces noise and misleads the model learning.

Fortunately, object motions are normally consistent in a short time window,
which means the backgrounds occluded at time t− 1 are usually visible at time
t+ 1 and vise-versa. It is possible to switch the source frame between t− 1 and
t+ 1 for each pixel to avoid the occlusion. The widely used per-pixel minimum
re-projection loss [9] Lmin

r assumes the visible source pixels will have lower photo-
metric error than the occluded ones, they thus proposed to choose the minimum
error source frame for each pixel: Lmin

r = 1
|It|

∑
i∈It

min(Êi
t−1, Ê

i
t+1).

However, in practice, as shown in the right columns of Fig. 6 we observe that
around half of the visible source pixels do not have a lower photo-metric error
than the occluded source. Since we can obtain the exact occlusion mask O and
visible mask V from our DOMD module Mo, we propose Occlusion-aware Re-
projection Loss Lor, which always choose the non-occluded source frame pixels
for photo-metric error. More details are in the supplementary materials.

Following [8,38], a combination of L1 norm and SSIM [34] with coefficient γ
is used as our photo-metric error Ep. The SSIM takes the pixels within a local
window into account for error computation. In It−1→t and It+1→t the occluded
pixels thus influence the neighboring non-occluded pixel’s SSIM error. We pro-
pose Occlusion Masking Ma, which paints the corresponding pixels in target
frame It to be black when calculating the SSIM error with reference frames.
This neutralizes the influence of the occlusion areas on neighboring pixels in
SSIM. The ablation study in Sec. 4.4 confirms applying our source pixel switch-
ing and occlusion masking mechanisms together makes the best improvement in
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: Our Prediction
: Manydepth Prediction

: Ground Truth

𝑡𝑡

𝑡𝑡 − 1

Fig. 7: Error Visualization: In the left t − 1 image, red image patch is the
original data used by the Manydepth [35] while the blue patch is generated by
the DOMD module for our prediction. We project the dynamic object depths
into point clouds. Our prediction matches the ground truth better.

the depth prediction quality.

Ep [Ia, Ib] =
γ

2
(1−SSIM(Ia, Ib))+(1−γ) |Ia − Ib|1 . (8)

EOt′ = Ep [Ma(It), It′→t] , (9)

We further adopt the edge-aware metric from [31] into our smoothness loss
Ls to make it invariant to output scale, which is formulated as:

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (10)

where d∗t = dt/dt is the mean-normalized inverse depth, ∂ is the image gradient.
Our final loss L is the sum of our Dynamic Object Cycle Consistency Loss

Lc, Occlusion-aware Re-projection Loss Lor, and smoothness loss Ls:

L = Lc + Lor + 1e−3 · Ls. (11)

4 Experiments

The experiments are mainly focused on the challenging Cityscapes [3] dataset,
which contains many dynamic objects. To comprehensively compare with more
state-of-the-art methods, we also report the performance on the widely-used
KITTI [24] dataset. Since our method is mainly focused on the dynamic objects,
we further conduct additional evaluation on the depth errors of the dynamic
objects areas, which clearly demonstrate the effectiveness of our method. The
design decision and the effectiveness of our proposed framework is evaluated by
an extensive ablation study.

4.1 Implementation Details:

We use frames {It−1, It, It+1} for training and {It−1, It} for testing. All dynamic
objects is this paper are determined by an off-the-shelf semantic segmentation
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Method Test frames WxH
The lower the better The higher the better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

K
IT

T
I

Ranjan et al.[28] 1 832 x 256 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [23] 1 832 x 256 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth (M) [1] 1 416 x 128 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Li et al.[21] 1 416 x 128 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Videos in the wild [10] 1 416 x 128 0.128 0.959 5.230 0.212 0.845 0.947 0.976
Monodepth2 [9] 1 640 x 192 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Lee et al. [20] 1 832 x 256 0.114 0.876 4.715 0.191 0.872 0.955 0.981
InstaDM [19] 1 832 x 256 0.112 0.777 4.772 0.191 0.872 0.959 0.982
Packnet-SFM [11] 1 640 x 192 0.111 0.785 4.601 0.189 0.878 0.960 0.982
Johnston et al. [15] 1 640 x 192 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Guizilini et al.[12] 1 640 x 192 0.102 0.698 4.381 0.178 0.896 0.964 0.984
Patil et al.[26] N 640 x 192 0.111 0.821 4.650 0.187 0.883 0.961 0.982
Wang et al.[32] 2 (-1, 0) 640 x 192 0.106 0.799 4.662 0.187 0.889 0.961 0.982
ManyDepth [35] 2 (-1, 0) 640 x 192 0.098 0.770 4.459 0.176 0.900 0.965 0.983
DynamicDepth 2 (-1, 0) 640 x 192 0.096 0.720 4.458 0.175 0.897 0.964 0.984

C
it
y
sc
a
p
es

Pilzer et al.[27] 1 512 x 256 0.240 4.264 8.049 0.334 0.710 0.871 0.937
Struct2Depth 2 [2] 1 416 x 128 0.145 1.737 7.280 0.205 0.813 0.942 0.976
Monodepth2 [9] 1 416 x 128 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Videos in the Wild [10] 1 416 x 128 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Li et al.[21] 1 416 x 128 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Lee et al. [20] 1 832 x 256 0.116 1.213 6.695 0.186 0.852 0.951 0.982
InstaDM [19] 1 832 x 256 0.111 1.158 6.437 0.182 0.868 0.961 0.983
Struct2Depth 2 [2] 3 (-1, 0, +1) 416 x 128 0.151 2.492 7.024 0.202 0.826 0.937 0.972
ManyDepth [35] 2 (-1, 0) 416 x 128 0.114 1.193 6.223 0.170 0.875 0.967 0.989
DynamicDepth 2 (-1, 0) 416 x 128 0.103 1.000 5.867 0.157 0.895 0.974 0.991

Table 1: Depth Prediction on KITTI and Cityscapes Dataset. Following the
convention, methods in each category are sorted by the Abs Rel, which is the relative
error with the ground truth. Best methods are in bold. Our method out-performs
all other state-of-the-art methods by a large margin especially on the challenging
Cityscapes [3] dataset, which contains significantly more dynamic objects. Note that
all KITTI result in this table are based on the widely-used original [24] dataset, which
generates much greater error than the improved [30] dataset.

model EffcientPS [25]. Note that we do not need instance-level masks and inter-
frame correspondences, all dynamic category pixels are projected together at
once. All network modules including the depth prior net θDPN are trained to-
gether from scratch or ImageNet [5] pre-training. ResNet18 [14] is used as the
backbone. We use the Adam [17] optimizer with a learning rate of 10−4 to train
for 10 epochs, which takes about 10 hours on a single Nvidia A100 GPU.

4.2 Cityscapes Results

Cityscapes [3] is a challenging dataset with significant amount of dynamic ob-
jects. It contains 5, 000 videos each with 30 frames, totaling 150, 000 image
frames. We exclude the first, last, and static-camera frames in each video for
training, resulting in 58, 335 frames training data. The official testing set con-
tains 1, 525 image frames.

Table 1 shows the depth prediction results on the Cityscapes [3] testing set.
Following the convention, we rank all methods based on the absolute-relative-
errors. Since the Cityscapes dataset contains significant amount of dynamic ob-
jects, the object-motion-optimized method InstaDM [19] achieved the best ac-
curacy among all the existing methods. With the help of our proposed Dynamic
Object Motion Disentanglement (DOMD), Dynamic Object Cycle Consistency
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Method WxH
The lower the better The higher the better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

K
IT

T
I

Monodepth2 [9] 640 x 192 0.169 1.878 5.711 0.271 0.805 0.909 0.944
InstaDM [19] 832 x 256 0.151 1.314 5.546 0.271 0.805 0.905 0.946
ManyDepth [35] 640 x 192 0.175 2.000 5.830 0.278 0.776 0.895 0.943
Our Depth Prior 640 x 192 0.155 1.317 5.253 0.269 0.805 0.908 0.946
DynamicDepth 640 x 192 0.150 1.313 5.146 0.264 0.807 0.915 0.949

C
it
y
sc
a
p
es

Monodepth2 [9] 416 x 128 0.159 1.937 6.363 0.201 0.816 0.950 0.981
InstaDM [19] 832 x 256 0.139 1.698 5.760 0.181 0.859 0.959 0.982
ManyDepth [35] 416 x 128 0.169 2.175 6.634 0.218 0.789 0.921 0.969
Our Depth Prior 416 x 128 0.137 1.285 4.674 0.174 0.852 0.961 0.985
DynamicDepth 416 x 128 0.129 1.273 4.626 0.168 0.862 0.965 0.986

Table 2: Depth Error on Dynamic Objects. We evaluate the depth predic-
tion errors of dynamic objects (e.g.,Vehicles, Person, Bike) on KITTI [24] and
Cityscapes [3] datasets. The best results are in bold, second best are underlined.
Our depth prior prediction Dpr

t already outperform the state-of-the-art method
InstaDM [19] using the same single frame input, while our final depth prediction
Dt sets a new benchmark.

Loss, Occlusion-aware Cost Volume and the Occlusion-aware Re-projection Loss,
our method outperforms the InstaDM [19] by a large margin in all of the met-
rics using a lower resolution and more concise architecture (we do not require
the explicit per-object-motion network, instance level segmentation prior and
inter-frame correspondences). Qualitative visualizations are in Fig. 8.

Table 2 shows the depth errors in the dynamic objects area. Our Depth
Prior Network θDPN shares a similar architecture with the Monodepth2 [9]
while trained jointly with our multi-frame model θMF using Dynamic Object
Cycle Consistency Loss Lc. It outperforms all the existing methods including
Monodepth2 [9] and InstaDM [19]. Manydepth [35] suffers catastrophic failure
on the dynamic objects due to the aforementioned mismatch and occlusion prob-
lems. They employed an separate single-frame model as a teacher for dynamic
objects area. However, since it does not actually solve the mismatch and occlu-
sion problems, it still makes severe mistakes on dynamic objects. In contrast,
with our proposed innovations, our multi-frame model θMF boosts up the ac-
curacy even higher, achieves superior advantages on all the metrics, showing its
significant effectiveness. We show a qualitative visualization in Fig. 7.

4.3 KITTI Results

Our proposed framework is further evaluated on the widely-used KITTI [24]
dataset Eigen [6] split, which contains 39, 810 training images, 4, 424 validation
images, and 697 testing images. According to our statistic, only 0.34% of the
pixels in the KITTI [24] dataset are dynamic category objects (e.g.,Vehicle,
Person, Bike), and most of the vehicles are not moving.

The comparison of our method with the state-of-the-art single-frame mod-
els [9,1,21,11], multi-frame models [26,32,35], and dynamic-objects-optimized
models [19,20] is summarized in Table 1. Unsurprisingly dynamic-objects-focused
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Dynamic Object Dynamic Object Occlusion-aware Occlusion-aware Loss The Lower the Better
Motion Disentanglement Cycle Consistency Cost Volume Switching Masking Abs Rel Sq Rel RMSE RMSElog

Evaluating Dynamic Object Motion Disentanglement

0.114 1.193 6.223 0.170

✓ 0.110 1.172 6.220 0.166

Evaluating Occlusion-aware CV and Loss

✓ 0.110 1.172 6.220 0.166

✓ ✓ 0.110 1.168 6.223 0.166

✓ ✓ 0.110 1.167 6.210 0.167

✓ ✓ ✓ 0.108 1.139 5.992 0.163

✓ ✓ 0.108 1.131 5.994 0.162

Evaluating Dynamic Object Cycle Consistent Training

✓ ✓ ✓ ✓ 0.107 1.121 5.924 0.160

✓ ✓ ✓ ✓ ✓ 0.103 1.000 5.867 0.157

Table 3:Ablation Study: Evaluating the effects for our proposed Dynamic Ob-
ject Motion Disentanglement, Cycle Consistent Training, Occlusion-aware Cost
Volume and Re-projection Loss on the Cityscapes [3] dataset.

methods [1,19,20,7,10,21] showed a minor advantage on this dataset. Our method
only achieve 2% improvement over the existing state-of-the-art method Many-
depth [35]. However, when we only focus on dynamic objects as in Table 2, our
method achieve a much more significant 14.3% improvement.

4.4 Ablation Study

To comprehensively understand the effectiveness of our proposed modules and
prove our design decision, we perform an extensive ablation study on the chal-
lenging Cityscapes [3] dataset. As shown in Table 3, our experiments fall into
three groups, evaluating Dynamic Object Motion Disentanglement, Occlusion-
aware Cost Volume and Loss, and Cycle Consistent Training.

Dynamic Object Motion Disentanglement: In the first group of the
Table 3, we evaluate our proposed Dynamic Object Motion Disentanglement
(DOMD) module. When the DOMD is enabled, the cost volume and the re-
projection loss is based on the disentangled Idt−1 image instead of the original
It−1 image. The Abs Rel Error reduced by 4%, confirms its effectiveness.

Occlusion-aware Cost Volume and Loss: The second group of the Ta-
ble 3 shows the effectiveness of the proposed Occlusion-aware Cost Volume CV occ

and Occlusion-aware Re-projection Loss Lor. Our innovation in the Occlusion-
aware Re-projection Loss includes two operations: the switching and masking.
Solely using either the switching or masking mechanism does not improve the
accuracy. These results meet our expectation. The re-projection loss switching
mechanism is designed to switch the re-projection source between two refer-
ence frames Idt−1 and Idt+1 to avoid occlusion areas, and the masking mechanism
is designed to neutralize the influence on the photo-metric error [34] from oc-
clusion areas to neighboring non-occluded areas. Only avoiding the occlusion
area while ignoring its influence on the neighboring areas or vise-versa could not
solve the problem. Applying both mechanisms together can significantly improve
the depth accuracy. As for the Occlusion-aware Cost Volume, our occlusion-
filling mechanism replaces the noisy occluded cost voxels with neighboring non-
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Fig. 8: Qualitative visualization: The left column shows the input image
frames and our disentangled image Idt−1, later columns show the comparison with
other state-of-the-art methods. In the Histograms, most pixels of our method has
lower depth error. In the error map, our method has lighter red color which indi-
cates lower depth errors. We project the dynamic object area depths to 3D point
clouds and compare them with ground truth point clouds in the last column.
Our prediction matches the ground truth significantly better. More comparisons
are provided in the supplementary document.

occluded voxel values to recover the distribution of the costs and guide the
training gradients. Experiments confirm the effectiveness of our design.

Cycle Consistent training: The depth prior prediction Dpr
t from θDPN is

used in our DOMD module to disentangle the dynamic objects motion, which
is further encoded with geometric constraints in the cost volume to predict the
final depth Dt. The proposed Dynamic Object Cycle Consistency Loss Lc en-
ables the final depth Dt to backwards supervise the training of the depth prior
prediction Dpr

t and forms a closed-loop mutual reinforcement. In the first row
of the Table 3 third group, we first train the Depth Prior Net θDPN separately,
then freeze it and train the later multi-frame model to cut off the backwards
supervision. In this experiment, θDPN performs similar as normal single-frame
model Monodepth2 [9] and the final depth prediction only shows limited per-
formance. In the last row, when we unfreeze the θDPN to enable the joint and
consistent training, our model achieves the best performance.

5 Conclusions

We presented a novel self-supervised multi-frame monocular depth prediction
model, namely DynamicDepth. It disentangle object motions and diminish occlu-
sion effects caused by dynamic objects, achieved the state-of-the-art performance
especially at the dynamic object areas on the Cityscapes [3] and KITTI [24]
datasets.
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grant # No. 69A3551747117-2024230, and National Science Foundation (NSF)
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