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Abstract. Stereo depth estimation is of great interest for computer vi-
sion research. However, existing methods struggles to generalize and pre-
dict reliably in hazardous regions, such as large uniform regions. To over-
come these limitations, we propose Context Enhanced Path (CEP). CEP
improves the generalization and robustness against common failure cases
in existing solutions by capturing the long-range global information. We
construct our stereo depth estimation model, Context Enhanced Stereo
Transformer (CEST), by plugging CEP into the state-of-the-art stereo
depth estimation method Stereo Transformer. CEST is examined on dis-
tinct public datasets, such as Scene Flow, Middlebury-2014, KITTI-2015,
and MPI-Sintel. We find CEST outperforms prior approaches by a large
margin. For example, in the zero-shot synthetic-to-real setting, CEST
outperforms the best competing approaches on Middlebury-2014 dataset
by 11%. Our extensive experiments demonstrate that the long-range in-
formation is critical for stereo matching task and CEP successfully cap-
tures such information†.

Keywords: Stereo depth estimation, transformer, context extraction

1 Introduction

Stereo depth estimation is a critical task in computer vision that has been widely
used in various fields, such as robotics [27], autonomous driving [24], and 3D
scene reconstruction [29]. Recent developments in learning-based stereo dispar-
ity estimation algorithms generally use using techniques restricted to local infor-
mation for matching the feature patterns between the left and right images. For
example, prior works [2,8,36] construct a cost volume with pre-defined disparity
range and use 3D convolutions to process the cost volume, limiting themselves
to the receptive field of convolution kernel. Xu et al .[32] proposed to instead
process the cost volume using 2D convolutions, however, facing the same chal-
lenge. Recently, approaches that attempt to capture more global information
have been proposed. For example, STTR [17] and RAFT-Stereo [19] computes

†Code available at: github.com/guoweiyu/Context-Enhanced-Stereo-Transformer
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attention or correlation between all pixels of the left and right images on the
same epipolar lines. However, they all fail to take advantage of cross-epipolar
line information, which is a critical component of global information processing.
Thus, as shown in Figure 1, these methods cannot address hazardous regions like
textureless, large uniform regions, specularity, and transparency [15,37], which
are particularly challenging for stereo algorithms to produce reliable estimates.
The features of left and right frames in these regions are often similar or mis-
leading, which makes the feature matching ambiguous [37]. If disparities of these
regions cannot be reliably predicted, downstream applications, such as 3D object
detection [28], may be severely impacted due to missing or wrong predictions.
Therefore, in this paper, we seek to answer this critical question: how to guide
the stereo models properly handle those hazardous regions.

To address this question, we hypothesize that the long-range contextual in-
formation help to improve the predictions on hazardous regions. For example,
as shown in Figure 1 (a), previous work performs unreliably in large white wall.
However, if we could use the global information (e.g ., orientation, edge infor-
mation) of the house, the prediction can be improved. Such global context in-
formation in theory will inform the model about the geometry on a global scale
and guide the model to resolve the ambiguity in prediction. To this end, we
proposed a plug-in module, called Context Enhanced Path (CEP), which helps
stereo matching models to better understand the global structure of the haz-
ardous regions. Compared to existing methods, CEP offers the following three
unique advantages: (1) strong generalization ability, compared with previous
methods [2,17], CEP shows strong results on unseened real-world data even if
only training on synthetic data; (2) robustness against hazardous, thanks to
modeling the long-range contextual information.(3) generic, unlike [9,14,34], our
method serves as a plug-in that can be potentially applied to most of stereo
matching methods. We construct our stereo depth estimation model based on
CEP, namely Context Enhanced Stereo Transformer (CEST). We have examined
CEST on several popular and diverse datasets, such as, Middlebury-2014[26],
KITTI-2015 [24], and MPI sintel [1]. Our extensive experiments demonstrate
that (1) the long-range information is critical for stereo depth estimation, (2)
CEST attains strong generalization ability, and (3) more importantly, CEST can
better handle hazardous regions, such as texturelessness and disparity jumps
(shown in Figure 1 and Table 3). This result is attributed to our simple yet
powerful observation: using long-range contextual information to better under-
stand the global structure of the image can significantly help stereo depth esti-
mation especially for those hazardous area. This result suggests that modeling
long-range context information is critical for building a robust and generalizable
stereo depth estimation algorithm.

To summarize, our contributions are 3-fold: (1) we found global contextual
information is critical for stereo depth estimation; (2) we design a plug-in module,
Context Enhanced Path (CEP), for generic stereo depth estimation models;
(3) we integrate our plug-in module and build a stereo matching model named
Context Enhanced Stereo Transformer (CEST), which achieves the state-of-the-



CETR 3

S
T

T
R

C
S
T

R

（a） （b） （c） （d） （e）

Fig. 1. Sample visualizations of hazardous regions taken from KITTI-2015 and
Middlebury-2014 datasets. First row is the input left images. Second row is the dispar-
ity predicted by Stereo Transformer (STTR) [17]. Third row is the disparity predicted
by our proposed Context Enhanced Stereo Transformer (CSTR). The color map shown
on the right is based on the disparity value relative to the image width.

Fig. 2. Examples of hazardous regions including: (a) Texturelessness: the wall and the
ceiling in the room a (b) Specularity: the screen of a TV (c) Transparency: the sliding
door (d) Disparity jumps: objects such as bamboos, fences and plants give frequent
disparity discontinuities. Images are from Zhang et al . [37].

art generalisation results on several popular datasets, including Middlebury-
2014-2014[26], KITTI-2015 [24], and MPI-sintel [1].

2 Related Work

Rectified stereo depth estimation obtains per-pixel depth from the left and
right frames provided by the binocular camera. It has a wide range of applica-
tions in robotics, autonomous driving, scene understanding, 3D modeling, etc.
In contrast to the success of deep learning in many high-level vision problems,
low-level deep learning algorithms for vision tasks are still in their early stages
[15]. In the field of stereo depth estimation, many works aim to improve a single
step of the classical pipeline by replacing it with a deep learning module [15,38],
where the quality of cost volume directly determines the accuracy of the dis-
parity map. Chen et al . proposed Deep Embed to learn a cost function from
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different windows by processing multi-patches at different resolutions [4]. After
cost volume computation, cost aggregation is essential for gathering large context
information from the huge cost volume. One of the most popular cost aggrega-
tion techniques is Semiglobal Matching (SGM) [12]. A global energy function
related to the disparity map is set to minimize this energy function to solve the
optimal disparity of each pixel. The raw disparity map should be refined by a
post-processing algorithm.

Although there are still several remaining challenges, recently, end-to-end
deep learning begin to be used in binocular stereo depth estimation and domi-
nate dense disparity estimation in several well-known benchmarks. In order to
keep memory feasible and inference speed manageable, many researchers adopt
2D convolution-based methods. These architectures always contain a self-design
layer namely correlation layer in charge of computing correlation scores between
left and right features. Mayer et al. proposed an encoder-decoder architecture
based on U-net named DispNet [23]. Some researchers adopt 3D convolutions
in stereo matching which take a 4D tensor (disparity range, height, weight, fea-
ture) as the input and directly process a matching volume-like representation.
Chang et al . proposed Pyramidal Stereo Matching network (PSMNet) to inte-
grate Spatial Pyramidal Pooling layers (SPP) in the feature extractor [2]. How-
ever, these methods lead to large computational costs, such as huge memory cost
and low inference speed. Besides, the disparity range of the conventional meth-
ods are limited, preventing them to be used in many cases when the scenes are
close to the camera. Recently, Li et al. use a sequence-to-sequence perspective
to replace cost volume construction with dense pixel matching [17]. Lipson et al.
unify stereo and optical flow approaches and utilize GRU to iteratively gener-
ate the final disparity map [19]. Others [18,16] exploit auxiliary information for
detph estimation. However, stereo depth estimation is still limited by difficulties
like textureless surfaces, disparity jumps, and occlusions.

Hazardous Regions Most of stereo algorithms rely on the following basic as-
sumptions [37]: (1) well-textured local surface for feature extraction without
large homogeneous regions; (2) single image layer assumption with only Lam-
bertian surface; (3) the disparity varies slowly and smoothly in space without
sudden jumps. However, as shown in Figure 2, these assumptions can easily be
broken in many real world scenarios. For example, textureless regions like large
wall are commonly seen and specular surfaces will create multiple image lay-
ers. Furthermore, disparity jumps can break the local smoothness assumption.
The aforementioned regions are called hazardous regions [35]. In this work, we
specifically study these commonly seen yet challenging scenarios for more robust
stereo depth estimation.

Efficient Attention Attention has a good ability to capture correspondence
between two sequences and solves the problem that RNN cannot be calculated
in parallel[30]. There are many successful applications that adopt attention to
encode long-range sequences [3]. Recently, attention has been applied to extract
non-local features in computer vision and led to SOTA performance for many vi-
sion tasks [7]. However, it is computational expensive when the input of attention
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Fig. 3. CSTR consists of two main components:(1) Context Enhanced Path that ex-
tracts long-range context information in low resolution feature. (2) Main Matching
Path that use Axial-Attention to enhance context and Cross-Attention to compute
raw disparity. Then a learnable Up Sampling block up restore the original scale of
disparity and Context Adjustment block refines the disparity with context information
across epipolar lines conditioned on the left image.

module is large. In order to reduce its complexity, efficient attention approaches
have been proposed. Yang et al .incorporate coarse-grained global attention and
fine-grained local attentions depending on the distance to the token [33] .

Axial Attention Wang et al . factorize 2D self-attention into two 1D self-
attentions to propose Axial-Attention [31]. In this paper, we adopt Axial-Attention
to enhance context of feature before pixel matching. Most previous works pro-
posed efficient attention by adding various local constraints. However, these con-
straints always sacrifice the global context and limit the attention’s receptive
field.

To ensure both efficient computation and global context, Wang et al. em-
ploy two Axial-Attention layers consecutively for the height-axis and width-axis,
respectively[31]. A width-axis attention layer can be described as:

yi =
∑

j∈N(W∗1)(i)

S(qTi ki + qTi rj−i)(vj) (1)

where Nw∗1(i) is the w ∗ h scale 1D region around i stands for relative posi-
tion encoding, and q, k, v, S denote query, key, value, soft-max, respectively. In
practice, w ∗ h is much smaller than the full feature shape.

Compared with local constraints attention, width-Axial-Attention computes
the attention line by line with weight sharing. W is equal to the width of input.
Height-axis attention is the same as width-Axial-Attention besides computing
the attention column by column.

Furthermore, positional information is critical for pixel matching, especially
in large textureless regions. Due to shift-invariance in an image, we adopt relative
position encoding to add data-only-dependent spatial information. A classical
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attention mechanism with relative position encoding can be described as follows.

ai,j = xiWqW
T
k xT

j + xiWqW
T
k pTj

+piWqW
T
k xT

j + piWqW
T
k pTj

(2)

In Equation (2), the four terms for addition represent content-content, content-
position, position-content, position-position, respectively. However, disparity com-
putation mainly depends on the image content. To remove redundancy and en-
sure efficiency, we delete the last term in Equation (2) and the equation becomes:

ai,j = xiWqW
T
k xT

j + xiWqW
T
k pTj + piWqW

T
k xT

j (3)

In the field of NLP, a similar design is adopted in DeBERT[11] and it is found
that most tasks only require relative position information.

3 Context Enhanced Path

We propose a plug-in module, Context Enhanced Path (CEP), that provides ad-
ditional context information to help stereo matching model to better understand
the global structure of the input images. The goal of CEP is to maintain the con-
text features for left and right images, and provide the context features to the
Main Matching Path as additional complementary information. The detailed
structure of the CEP is shown in Figure 4. As a layer-by-layer module, CEP
first obtains the context feature from the previous CEP layer. Then, the Axial-
Attention layer and the Cross-Attention layer are applied to further process the
context features. The processed context features are served as the complementary
information used for fusing with the Main Matching Path. Finally, we generate
the context features as the input of the next CEP layer with 3 different strategies
(M1, M2, M3). From M1 to M3, the enhancement of the context information
extraction increases sequentially. In the M1, we only use low-level features to
extract context information. Specifically, the features output by backbone only
go through one layer of Axial-Attention and one layer of Cross-Attention before
fusing with the main matching path. Compared to M1, M2 extract higher-level
context information. In the M2, the features output by backbone go through L
layers of Axial-Attention and one layer of Cross-Attention before being fused to
the L-th layer of the main matching path. In the M3, the features output by
backbone go through L layers of Axial-Attention and L layers of Cross-Attention
before the fusion.

4 Context Enhanced Stereo Transformer

Based on our proposed Context Enhanced Path, we further propose a transformer-
based stereo depth estimation model, Context Enhanced Stereo Transformer
(CSTR). We will first introduce the architecture of CSTR, and then introduce
each component in detail.
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Fig. 4. Three different design choices for Context Enhanced Path (CEP). All strategies
are composed of Axial-Attention and Cross-Attention, but the feature fed to next layer
is different.

4.1 Pipeline

The architecture of CSTR is shown in Figure 3. The whole pipeline is mainly
following the architecture of STTR [17] but the context information is enhanced.
Given the pair of left (L) and right (R) input images, a convolution-based back-
bone is used to extract the left and the right features separately. The pair of left
and right features then processed by several CSTR layers to obtain the dispar-
ity map with a coarse-to-fine manner. In each CSTR layer, there are 3 critical
modules (Context Enhanced Path, Main Matching Path, and the path fusion
module) that helps to incorporate the context information for generating bet-
ter disparity map. The Context Enhanced Path is discussed in Section 3, the
other two modules, Main Matching Path and the path fusion module, will be
explained in detail in the rest part of this section. Finally, we apply several post-
processing modules (e.g ., optimal transport layer, upsampling layer, and context
adjust layer) to obtain the final disparity.

4.2 Main Matching Path

Main Matching Path is similar to the Transformer module from STTR [17], which
includes a self-attention module followed by a Cross-Attention module as shown
in Figure 6 (a). The self-attention module is used to aggregate the information
in the same image, while the Cross-Attention module is used to compute the
similarity of pixels from the different images. Note that the self-attention module
only computes attention between pixels along the same epipolar line in the
same image, leading to difficulty to collection contextual information from other
epipolar lines.

To help the model gather more context information, as shown in Figure 6 (b),
we replace the original self-attention layer to an Axial-Attention layer, including
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a horizontal Axial-Attention module and a vertical Axial-Attention module, to
collect the context information from both horizontal and vertical axials.

4.3 Path Fusion Module

The path fusion module aims to fuse the context feature from the Context En-
hanced Path (CEP) to the main matching features in the Main Matching Path
(MMP). This will keep the main matching path capturing long-range context
from low-resolution features. The architecture is shown in Figure 5. Specifically,
the MMP feature is first concatenated with the upsampled context feature. Then,
two convolution layers are applied to the concatenated feature to aggregate the
context information to the main features. Finally, we use the fused feature as
the input of the next main matching path module.
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4.4 Other Important Modules

This section discuss other important modules in our pipeline, including Attention
Mask, Optimal Transport, Raw Disparity and Occlusion Computation. Other
details are illustrated in Section 5.2.

Attention Mask and Optimal Transport We further compress the pixels’
matching space based on the following two observations.

First, when a point in the physical world is imaged by a binocular camera,
the imaging position in the left image will be more to the left than the imaging
position in the right image. Let us denote the PL, PR as the imaging point of a
real point in the left and right image. Then the following formula always holds:

PL − PR <= 0 (4)

Therefore, the point at PL in the left image should just match the candidate
point at P > PL in the right image.

Second, every pixel in the left image can only match one pixel in the right im-
age which is called uniqueness constraint. We adopt entropy-regularized optimal
transport [5] to implement such constraints in a soft way. Entropy-regularized
optimal transport is proposed to improve the network performance in a similar
task of semantic correspondence matching [21]. In the following section, we de-
note the optimal transport assignment matrix as T which contains a correlation
score of pixels in two images.

Raw Disparity and Occlusion Computation In order to improve the model
robustness in multi-modal distributions, we use a small number of candidate
disparity in a local region rather than use all candidate disparity. First, we
compute raw disparity by finding the location(Sh) of the highest correlation
score. Then,a 3 px window N3x3(Sh) is built around Sh in matrix T to regress
raw disparity. t is used to represent correlation score in N3x3(Sh). The raw
disparity regression can be described as:∑

i∈N3∗3(Sh)

ti = 1, i ∈ N3∗3(Sh) (5)

ti =
ti∑

i∈N3∗3(Sh)

, i ∈ N3∗3(Sh) (6)

draw(Sh) =
∑

i∈N3∗3(Sh)

diti (7)

where draw represents regressed raw disparity and di denotes the raw disparity in
N3∗3(Sh). Occlusion probability(pocc(Sh)) can be interpreted as the probability
that one pixel has no matching pixel in another image. Thus it can be described
as:

pocc(Sh) = 1−
∑

i∈N3∗3(Sh)

ti (8)
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Fig. 7. Results on KITTI-2015, Middlebury-2014, MPI Sintel in zero-shot synthetic-
to-real setting. Black represent occlusion. The color map is the image width × 0.2 and
is shown on the right which used to visualize disparity.

5 Experiments

5.1 Experimental Settings

Datasets. We evaluate CSTR on four popular but diverse datasets: Scene Flow
[23], KITTI-2015 [24], Middlebury [26], and MPI Sintel [1]. These datasets con-
tain random objects, real street scene, indoor scene, and realistic artifacts, re-
spectively. Scene Flow is a synthetic dataset of random object with many subset.
We use FlyingThings3D subset with 21818 training samples (960×540) in the
experiment. KITTI-2015 contains stereo videos of road scenes from a calibrated
pair of cameras mounted on a car with 200 training samples (1242×375). MPI
Sintel contains sufficiently realistic scenes including natural image degradations
such as fog and motion blur with 1064 training samples (1024×436).

Evaluation Metric. We use both EPE (end-point-error) and 3 px Error (per-
centage of EPE > 3) as evaluation metrics. we use Intersection over Union (IOU)
to evaluate occlusion estimation. In the rest of this Section, we report the results
for the non-occluded regions.

5.2 Implementation Details

CSTR is implemented in Pytorch [25] and is trained using one Tesla A100 GPU.
During training, we use the AdamW[22] optimizer with weight decay of 1e-4.
We pre-train on Scene Flow for 17 epochs using a fixed learning rate of 1e-4 for
the CSTR layer and backbone, and 2e-4 for the context adjustment layer.

Feature Extractor In order to efficiently extract both global and local con-
text information, we adopt an hourglass-shaped feature extractor composed of
encoding and decoding paths. The encoding path is based on spatial pyramid
pooling [2] modules and residual blocks [10] while the decoding path consists
of dens-blocks [13], transposed convolution layer, a final average pooling layer
for generating multi-scale features. The scale of feature map output by trans-
posed convolution layer is at 1/4 resolution as the input image. For an input
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Fig. 8. KITTI-2015’s ground truth is missing part of occlusion. However CSTR can
accurately give this part of the missing occlusion. First row are left image and ground
truth. Second row are right image and our predicted disparity.

like (H,W ), we generate a multi-scale feature(H,W/2K) with repeating average
pooling of the width dimension, where K is the down sample rate.

Supervision Motivated by Relative Response loss Lrr[20], we split assignment
matrix T to matched pixel sets M and unmatched pixel sets U . The loss can be
described as:

t∗i = LinerInterp(Ti, pi − dgt,i) (9)

Lrr =
1

NM

∑
i∈M

−log(t∗i ) +
1

NU

∑
i∈M

−log(ti,Φ) (10)

where ti stands for i-th matching probability and dgt,i represents i-th ground
truth disparity. To accelerate the convergence of the model, we adopt smooth
L1 [6] on both raw and final disparities. Furthermore, we use a binary-entropy
loss to supervise the occlusion map. The total loss L is computed as:

L = w1Lrr,raw + w2Ld1,raw+

w3Ld1,final + w4Lbe,final

(11)

where Lrr,raw, Ld1,raw, Ld1,final, Lbe,final represent Relative Response loss on
raw disparity, L1 loss on raw disparity, L1 loss on final disparity,binary-entropy
loss on final occlusion, respectively.

Hyperparameters. In our experiments, we use 6 CSTR layers with feature
of 128 channels. We use multi-head attention with 4 heads. The resolution of
feature in MMP is set to 1/4 of full resolution. Sinkhorn algorithm is run for 10
iterations [5].

Baselines. In this work, we compare CSTR with prior work based on differ-
ent learning-based stereo depth paradigms: PSMNet [2] is a 3D convolution-
based model consists two main modules — spatial pyramid pooling and 3D
CNN; AANet[32] is a correlation-based model which is proposed to replace 3D
convolutions to realize fast inference speed while ensure comparable accuracy;
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Table 1. Generalization experiment. The models are only trained on Scene Flow with-
out fine-tuning on MPI Sintel, KITTI-2015, Middlebury-2014 dataset. Bold is the best
result.

Middlebury 2014(varies) MPI Sintel† (1024 * 436) KITTI-2015 (1242 * 375)
3px Error ↓ EPE ↓ Occ IOU ↑ 3px Error ↓ EPE ↓ Occ IOU ↑ 3px Error ↓ EPE ↓ Occ IOU ↑

AANet 6.29 2.24 Null 9.57 1.71 Null 7.06 1.31 Null
PSMNet 7.93 3.70 Null 10.24 2.02 Null 7.43 1.39 Null
GwcNet-g 5.83 1.32 Null 6.60 1.95 Null 6.75 1.59 Null
RAFT-Stereo 7.57 1.21 Null 13.02 17.36 Null 5.68 1.10 Null
STTR 6.19 2.33 0.95 5.75 3.01 0.86 6.74 1.50 0.98

CSTR (Ours) 5.16 1.16 0.95 5.51 2.58 0.92 5.78 1.43 0.98

GwcNet-g[8] is a correlation and 3D convolution hybrid approach which con-
structs the cost volume by group-wise correlation; STTR[17] is a transformer-
based model which revisits the problem from a sequence-to-sequence correspon-
dence perspective to replace cost volume construction; RAFT-stereo[19] is a
state-of-the-art recurrent model on Middlebury-2014 and Scene Flow datasets
using iterative refinement to compute disparity.

5.3 Zero-Shot Generalization

We compare the zero-shot generalization ability between our proposed CSTR
and previous popular stereo depth estimation methods. Specifically, the models
are trained on the SceneFlow synthetic dataset, and then test on real data such
as KITTI-2015 (real outdoor scene), Middlebury-2014 (real indoor scene), and
MPI Sintel (Synthesized complex game scenes).

The results are shown in Table 1. Our model CSTR is better than our base-
line method STTR [17] on all datasets and on all different metrics. For example,
compared with the STTR baseline, the 3px error on Middlebury dataset is im-
proved from 6.19 to 5.16. These improvement shows that the design of context
extraction of our network facilitates generalization.

Besides, our model achieves the best results on both Middlebury 2014 and
MPI Sintel datasets compared with previous methods. The quantitative results
on KITTI-2015 dataset is not as good as RAFT-Stereo. Compared with RAFT-
Stereo, the 3px error is dropped from 5.68 to 5.78. However, by visualizing and
comparing the ground-truth label and the output of CSTR, we observe that our
predicted results are even more precise than the grounding truth in the occlusion
areas. See Figure 8 for more details.

5.4 Ablations

In Table 2, we provide quantitative results for the effects of the Axial-Attention
and three different context extraction strategies. All ablated models are trained
on FlyingThings of Scene Flow. Below we describe each of the experiments in
more detail.
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Table 2. Ablation generalization experiments.The model only trained on Scene Flow
without fine-tune. Following prior work, we validate on the Scene Flow test set. STTR:
Stereo Transformer; MMP: Main Matching Path with Aixal-Attention; M1,M1,M1 are
three different Context Enhanced Path.

Experiment Scene Flow Middlebury-2014

STTR MMP M1 M2 M3 3px Err EPE IOU 3px Err EPE IOU

✓ 1.54 0.50 0.97 6.93 2.24 0.95
✓ ✓ 1.28 0.43 0.98 5.55 2.03 0.95
✓ ✓ ✓ 1.18 0.42 0.98 5.47 1.44 0.95
✓ ✓ ✓ 1.20 0.42 0.98 5.38 1.60 0.95
✓ ✓ ✓ 1.20 0.42 0.98 5.13 1.16 0.95

Main Matching Path Main Matching Path adopt Axial-Attention which fac-
torizing 2D self-attention into two 1D self-attentions rather than the stand-alone
self attention. This allows performing attention in a larger region to extract con-
text information with acceptable computation cost. As shown in Table 2, com-
paring with STTR which adopt 1D attention on epipolar, Main Matching Path
have better EPE and 3px Err. Especially, it reduce EPE by 17% and reduce 3px
Err by 14% on Scene Flow. This improvement shows that the global information
extracted by Axial-Attention is benefit to stereo matching.

Three Context Enhanced Path Strategies We design three different con-
text enhanced strategies(M1,M2,M3) that extract the context from low reso-
lution features to enhanced the Main Matching Path. M1,M2,M3 improve the
result of EPE and 3px Error on Scene Flow, especially, M3 achieves an EPE 7%
reduction. As it has been approved, these context enhanced strategies of CEP
further impove the stereo matching performance. The result on Scene FLow of
three strategies are verly similar, we will further compare their real-world gen-
eralization performance and robustness in following Section.

Real World Generalization Experiment We evaluate the generalization
performance of MMP and three CEP on Middlebury-2014. The model only
trained on FlyingThings of Scene Flow. As listed in Table 2, the MMP signifi-
cantly outperform the baseline setting STTR which only has 1D self-attentions
epipolar. The Axial-Attention for global information extraction reduce the EPE
and the 3px Err by 20% and 9% on Middlebury-2014. This shows the global
information is critical for model’s generalization.

All three context enhanced strategies outperform the MMP. It shows that the
context information provided by CET facilitates generalization. M3 achieves the
best results on both EPE and 3px Err. For example, compared with MMP, M3

reduce the 3px error by 7% and even reduce the EPE by 42%. This proves that
the design of our CEP is important for enhancing generalization performance.
Finally, compared with STTR, the best setting of CSTR with Axial-Attention
and CEP of M3 reduce the 3px error by 26% and even reduce the EPE by 48%.
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Table 3. EPE results of Ablation and Rubostness experiments.The model only
trained on Scene Flow without fine-tune. Hazardous Data is a dataset that label
the hazardous regions in KITTI-2015[37]; SPL: Specularity ; TEL:Texturelessness;
TRS:Transparency.

Experiment Hazardous Data

STTR MMP M1 M2 M3 SPL TEL TRS AVG

✓ 5.43 10.42 7.03 7.63
✓ ✓ 4.98 8.59 6.8 6.79
✓ ✓ ✓ 4.75 10.74 7.64 7.71
✓ ✓ ✓ 3.68 11.28 7.01 7.32
✓ ✓ ✓ 4.54 8.21 6.01 6.25

Robustness Against Hazardous regions The images regions like texture-
lessness, transparency, specularity are likely to cause the failure of an algorithm,
namely hazardous regions[35]. Zhang et al . [37] lable the hazardous regions
in KITTI-2015 and we use it to provide quantitative results for the effects of
the MMP, three CEP strategies summarized in Table 3. Using Axial-Attention
instead of stand alone self-attention can effectively improve average EPE of
harzardous regions in with 11%, especially on Textureless regions with 17%. Us-
ing M1 or M2, which memory feature just past one Cross-Attention layer, lead to
a decrease in average EPE. However, M3 which are used in our final CSTR, can
bring additional 8 % improvement in average EPE compared with MMP. This
may be because M3 uses the same number of Cross-Attention layers as MMP,
which is beneficial for MMP to better integrate context information.

6 Conclusions

Current stereo depth estimation models usually fail to handle the hazardous
regions. In this paper, we found using global context information mitigate this
issue. Therefore, we proposed a plug-in module, Context Enhanced Path. Based
on CEP, we then built a stereo depth estimation model, Context Enhanced
Stereo Transformer. According to our experimental results, our method achieves
strong cross dataset generalization ability, handles hazardous regions robustly,
and provides accurate occlusion prediction.

Acknowledgments This paper is supported by Key-Area Research and Development
Program of Guangdong Province (Grant No. 2019B010155003), Guangdong Basic and
Applied Basic Research Foundation (Grant No. 2020B1515120044, 2020A1515110495),
Johns Hopkins University internal funds, ONR award N00014-21-1-2812, and NIH
award K08DC019708.



CETR 15

References

1. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: European conference on computer vision. pp. 611–
625. Springer (2012)

2. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 5410–5418
(2018)

3. Chaudhari, S., Mithal, V., Polatkan, G., Ramanath, R.: An attentive survey of at-
tention models. ACM Transactions on Intelligent Systems and Technology (TIST)
12(5), 1–32 (2021)

4. Chen, Z., Sun, X., Wang, L., Yu, Y., Huang, C.: A deep visual correspondence em-
bedding model for stereo matching costs. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 972–980 (2015)

5. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Ad-
vances in neural information processing systems 26 (2013)

6. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. pp. 1440–1448 (2015)

7. Guo, M.H., Xu, T.X., Liu, J.J., Liu, Z.N., Jiang, P.T., Mu, T.J., Zhang, S.H.,
Martin, R.R., Cheng, M.M., Hu, S.M.: Attention mechanisms in computer vision:
A survey. arXiv preprint arXiv:2111.07624 (2021)

8. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo
network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3273–3282 (2019)

9. Hartmann, W., Galliani, S., Havlena, M., Gool, L.V., Schindler, K.: Learned multi-
patch similarity. In: 2017 IEEE International Conference on Computer Vision
(ICCV) (2017)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
IEEE (2016)

11. He, P., Liu, X., Gao, J., Chen, W.: Deberta: Decoding-enhanced bert with disen-
tangled attention. arXiv (2020)

12. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Transactions on pattern analysis and machine intelligence 30(2), 328–
341 (2007)

13. Huang, G., Liu, Z., Laurens, V., Weinberger, K.Q.: Densely connected convolu-
tional networks. IEEE Computer Society (2016)

14. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: Deepmvs: Learning
multi-view stereopsis. IEEE (2018)

15. Laga, H., Jospin, L.V., Boussaid, F., Bennamoun, M.: A survey on deep learn-
ing techniques for stereo-based depth estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020)

16. Li, Z., Drenkow, N., Ding, H., Ding, A.S., Lu, A., Creighton, F.X., Taylor, R.H.,
Unberath, M.: On the sins of image synthesis loss for self-supervised depth esti-
mation. arXiv preprint arXiv:2109.06163 (2021)

17. Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F.X., Taylor, R.H., Unberath,
M.: Revisiting stereo depth estimation from a sequence-to-sequence perspective
with transformers. In: 2021 IEEE International Conference on Computer Vision
(ICCV) (2021)

18. Li, Z., Ye, W., Wang, D., Creighton, F.X., Taylor, R.H., Venkatesh, G., Un-
berath, M.: Temporally consistent online depth estimation in dynamic scenes.
arXiv preprint arXiv:2111.09337 (2021)



16 W. Guo et al.

19. Lipson, L., Teed, Z., Deng, J.: Raft-stereo: Multilevel recurrent field transforms
for stereo matching. In: 2021 International Conference on 3D Vision (3DV). pp.
218–227. IEEE (2021)

20. Liu, X., Zheng, Y., Killeen, B., Ishii, M., Hager, G.D., Taylor, R.H., Unberath,
M.: Extremely dense point correspondences using a learned feature descriptor.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 4847–4856 (2020)

21. Liu, Y., Zhu, L., Yamada, M., Yang, Y.: Semantic correspondence as an optimal
transport problem. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4463–4472 (2020)

22. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

23. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4040–4048 (2016)

24. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 3061–3070
(2015)

25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

26. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X.,
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