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Abstract. Existing deep learning based stereo matching methods either
focus on achieving optimal performances on the target dataset while
with poor generalization for other datasets or focus on handling the
cross-domain generalization by suppressing the domain sensitive features
which results in a significant sacrifice on the performance. To tackle these
problems, we propose PCW-Net, a Pyramid Combination and Warping
cost volume-based network to achieve good performance on both cross-
domain generalization and stereo matching accuracy on various bench-
marks. In particular, our PCW-Net is designed for two purposes. First,
we construct combination volumes on the upper levels of the pyramid
and develop a cost volume fusion module to integrate them for initial
disparity estimation. Multi-scale receptive fields can be covered by fus-
ing multi-scale combination volumes, thus, domain-invariant features can
be extracted. Second, we construct the warping volume at the last level
of the pyramid for disparity refinement. The proposed warping volume
can narrow down the residue searching range from the initial disparity
searching range to a fine-grained one, which can dramatically alleviate
the difficulty of the network to find the correct residue in an uncon-
strained residue searching space. When training on synthetic datasets
and generalizing to unseen real datasets, our method shows strong cross-
domain generalization and outperforms existing state-of-the-arts with a
large margin. After fine-tuning on the real datasets, our method ranks
1st on KITTI 2012, 2nd on KITTI 2015, and 1st on the Argoverse among
all published methods as of 7, March 2022.

Keywords: Stereo Matching, Pyramid Cost Volume, Cross-domain gen-
eralization

1 Introduction

Stereo matching aims to estimate the disparity map between a rectified image
pair, which contributes to various applications, such as autonomous driving [3]

† Corresponding authors
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(a) KITTI 2015 (b) KITTI 2012
Fig. 1: Model generalization ability vs fine-tuning performance on KITTI
2012&2015 datasets. X-axis: all methods are trained on synthetic datasets and then
tested on KITTI training sets to evaluate the cross-domain generalization. Y-axis: all
methods are finetuned on the KITTI training sets and then tested on KITTI testing
sets to evaluate the fine-tuning performance. D1 all is used for evaluation (the lower
the better) and PCWNet is our method, which achieves the best overall performance.

and robotics navigation [1]. Benefiting from the unprecedented development of
deep learning technologies, remarkable progress has been achieved in solving the
task of stereo matching.

To achieve remarkable stereo matching performance, approaches [21] are usu-
ally trained on large-scale synthetic datasets (e.g., SceneFlow [16]) first and then
fine-tuned on limited target dataset collected from the real scenarios such as
KITTI [8], Middlebury [23], and ETH3D [24]. By extracting representative fea-
tures [2,19] and constructing powerful cost volume [13,11], these methods achieve
state-of-the-art performances on most of the standard stereo matching bench-
marks. However, their performance decreases dramatically on unseen real-world
scenes due to the large domain gaps across different datasets. Furthermore, these
methods even cannot achieve consistent fine-tuning performances on different
real-world datasets from similar scenarios. For example, some methods [2,34]
perform well on the KITTI datasets [17,8], while having limited performances
on the Argoverse benchmark [29] with high image resolutions though both of
them are collected by a driving vehicle in the traffic environment.

Meanwhile, many approaches [35,25,28] are also specifically designed to han-
dle domain generalization issues in stereo matching which aims to improve the
generalization of the network to unseen scenes. By incorporating geometry pri-
ors and extracting domain-invariant features, these methods show strong cross-
domain generalization when trained on synthetic datasets and generalized to
unseen real datasets. However, such methods [35] normally need a significant
sacrifice on accuracy to improve the cross-domain generalization due to the fil-
tration of domain-sensitive features. Thus, a key problem for further research
is designing a framework that can achieve excellent performances on the target
dataset and also have satisfactory generalization ability to novel scenarios.

To relieve the issue mentioned above, we introduce the PCW-Net to construct
a Pyramid Combination and Warping cost volume to hit two birds with one
stone for achieving both generalization ability and good performance. Specif-
ically, we use the pyramid cost volumes for two purposes. On one hand, we
construct multi-scale combination volumes on the upper levels of the pyramid
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and develop a cost volume fusion module to integrate them for initial disparity
estimation. The pyramid cost volume aims to cover multi-scale receptive fields
and boost the network to see different scale regions of the original image. Thus,
multi-level information can be fused together, i.e., textures, contours, and areas.
Typically, non-local information (such as contours and area) is more robust to
domain changes, thus better performance and generalization ability for different
resolutions of images can be obtained. On the other hand, we also construct a
3D warping volume at the final level of the pyramid to further refine the initial
disparity map. With the constructed 3D warping volume, we can narrow down
the residue searching range from an initial disparity searching range to a fine-
grained one, which can dramatically alleviate the difficulty of the network to
find the correct residue in an unconstrained residue searching space.

To prove the effectiveness of the proposed PCW-Net, we perform extensive
experimental evaluations on various benchmarks to verify its fine-tuning per-
formance and generalization ability. When trained on synthetic datasets and
generalized to unseen real-world datasets, PCW-Net shows strong cross-domain
generalization and outperforms best prior work [25] by a noteworthy margin.
After fine-tuning on the real dataset, our method can achieve consistent SOTA
performance across diverse datasets. Specifically, it ranked first on KITTI 2012
leaderboard1, second on KITTI 2015 leaderboard, and first on Argoverse leader-
board2 [29] among all published methods as of 6 March 2021. As demonstrated
in Fig. 1, our method can achieve the best overall performance when considering
both the fine-tuning accuracy and cross-domain generalization on the KITTI
2015 benchmark.

Our main contributions can be summarized as:
– An effective framework, i.e., PCW-Net, is proposed which achieves remarkable

generalization ability from synthetic dataset to real dataset while also excellent
performances on the various target benchmarks after model fine-tuning.

– A novel multi-scale cost volume fusion module is proposed to cover multi-
scale receptive fields and extract domain-invariant structural cues, thus better
stereo matching performance of different resolutions of images is achieved.

– An efficient warping volume-based disparity refinement module is proposed
to narrow down the unconstrained residue searching space to a fine-grained
one, which can dramatically alleviate the difficulty of the network to find the
correct residue in an unconstrained residue searching space.

– The proposed PCW-Net set new SOTA performance on both KITTI 2012 and
Argoverse leaderboards among all the methods with publications, while it also
achieves the 2nd on the KITTI 2015 benchmark.

2 Related Work

Cost Volume based Deep Stereo Matching. DispNet [16] first introduces
the concept of cost volume (correlation volume) into end-to-end stereo matching

1 http://www.cvlibs.net/datasets/kitti
2 https://eval.ai/web/challenges/challenge-page/917/leaderboard/2412

http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
https://eval.ai/web/challenges/challenge-page/917/leaderboard/2412


4 Shen, Zhelun et al.

Fig. 2: General Structure of the proposed PCW-Net, which consists of three main
modules as multi-scale feature extraction, multi-scale combination volume based cost
aggregation, and warping volume based disparity refinement.

methods. Following this work, GCNet [13] proposes to construct concatenation
volume and regularize it with 3D convolution layers and GwcNet [11] introduces
group-wise correlation to provide better similarity measures. For all these prior
works, cost volume construction has been placed in an extremely important
position and deserves further exploration.
Deep Stereo Matching with Disparity Refinement. Recently, many re-
searchers [20,27,26,14,7,36,38] attempt to integrate the disparity refinement step
into an end-to-end model. [20] introduces a two-stage network called CRL in
which the first stage extends DispNet [16] to get an initial disparity map and
the second stage refines the initial disparity map in a residual manner. MCV-
MFC [14] proposes to calculate reconstruction error in feature space rather than
color space and share features between disparity estimation network and re-
finement network. PWCNet [26] proposes a context network, which is based on
dilated convolutions to refine flow. However, existing methods mainly depend on
the fitting capabilities of the networks to directly regress a residue with context
information. Different from these works[20,14], here we introduce the warping
volume to guide the disparity refinement. Specifically, the warping volume is
constructed by warped right image features and left image features according
to a pre-defined residue range. That is the warping volume narrows down the
residue searching space from initial disparity searching space to a fine-grained
one, which makes the network easier to find the corresponding pixel-level residue.
Multi-scale-based Deep Stereo Matching.Multi-scale information has been
widely employed in deep stereo matching methods. These methods can be roughly
categorized into two types: (1) The first category [2,14,19] usually employs a
multi-scale feature extraction network to generate feature maps at different
scales and then fuse them to construct a single volume at a fixed resolution.
That is these methods mainly use multi-scale features rather than multi-scale
cost volumes. (2) The second category [32,10,4,15] proposes to construct cascade
pyramid cost volume and progressively regress a high-quality disparity map from
the coarsest cost volume. That is these methods employ each scale cost volume
to estimate disparity maps separately. Different from the former two categories,
our work selects to directly fuse multi-scale combination volumes to capture a
more robust feature representation for initial disparity estimation. Then, we em-
ploy warping volume to further refine the initial disparity. More related to our
work is SSPCV [30], which also proposes a cost volume fusion module. How-
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Fig. 3: Visualization of extracted multi-scale feature maps on two real-world datasets
(from top to bottom: ETH3D and KITTI). All methods are trained on synthetic data
(SceneFlow) and tested on unseen real scenes. Note that GWCNet only extracts feature
maps at 1/4 scale for following single-scale cost volume construction while our method
extracts multi-scale feature maps for pyramid cost volume construction.

ever, SSPCV just fuses the pyramid cost volume by constantly employing 3D
hourglass modules to regularize the upsampled cost volume. Such operation is
time-consuming and GPU memory-unfriendly.

3 Proposed Approach

We propose a PCW cost volume to effectively exploit the multi-scale cues for
accurate and robust disparity estimation. The architecture of our network is
illustrated in Fig. 2, which consists of three parts: multi-scale feature extraction,
multi-scale combination volume based cost aggregation, and warping volume
based disparity refinement. Specifically, the extracted multi-scale features are
first employed to construct a pyramid cost volume. Then, the pyramid volumes
have been used for two purposes. Firstly, we construct combination volumes
on the upper levels of the pyramid and develop a cost volume fusion module
to integrate them for initial disparity estimation. Secondly, we construct the
warping volume at the last level of the pyramid for disparity refinement. Details
of each module will be introduced as follows.

3.1 Multi-scale Features Extraction

As shown in Fig. 2, given an image pair, following the Resnet-like network pro-
posed in [11,2], we use three convolution layers with 3 × 3 kernels, four basic
residual blocks, and a ×2 dilated block to get the unary feature map at the first
level (1/4 of the original input image size). Then three residual blocks with stride
2 are employed to obtain the feature maps at the other three levels with 1

8 ,
1
16

and 1
32 of the original input image size. With the extracted features, a series of

pyramid cost volumes can be constructed at different levels.

3.2 Combination volume based 3D Aggregation

We propose to construct multi-scale combination volumes and develop a cost
volume fusion module for initial disparity estimation. Previous work [35] ob-
serves that the limited effective receptive field of current deep stereo matching
methods will drive the network to learn domain-sensitive local features. Instead,
our method can cover multi-scale receptive fields and boost the network to see
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different scale regions of the original image by fusing multi-scale cost volumes.
As shown in the figure 3, we visualize the extracted multi-scale feature map on
various real datasets. It can be seen from figure 3. (b) that GWCNet [11] only
extracts 1/4 scale features of the input image, which only contains local infor-
mation such as textures, thus the performance is limited. On the contrary, our
method extracts features with multi-scales, which contain much more high-level
information (sub-figs (c)-(f)), i.e., textures (c), contours (d,e), and areas (f).
Typically, non-local information (such as contours and area) is more robust to
domain changes and that is why our method achieves better generalization abil-
ity. Moreover, sub-figs (a) shows that the used two real datasets have significant
domain shifts, e.g., indoors vs outdoors and color vs gray. However, our method
can still extract domain-invariant contours (sub-figs (d)-(e)) and areas (sub-figs
(f)) information from two real datasets, which further verifies the effectiveness of
the proposed method. In addition, high-level information, i.e., contours and area
can drive the network to better learn the affiliation between an object and its
sub-region, e.g., textureless regions and repeated patterns such as car window is
a part of the car, thus, better performance and generalization ability for different
resolutions (high and low resolutions) of images can be obtained.

Multi-scale Combination Volume Construction The combination volume
is constructed at 4 pyramid levels and for each level i, the combination volume
V i
comb is a 4D volume with the size of Hi × W i × Di × C which includes con-

catenation volume V i
concat and group-wise correlation volume V i

corr [11], where
(Hi, W i) is the spatial size. Assuming the extracted feature at level i is f i, the
combination volume V i

comb can be computed as:

V i
comb = V i

concat || V i
corr,

V i
concat(d, x, y) = δ1(f

i
L(x, y)) || δ1(f i

R(x− d, y))

V i
corr(d, x, y, g) =

1

N i
c/Ng

〈
δ2(f

ig
L (x, y)), δ2( f

ig
R (x− d, y))

〉 (1)

where || denotes concatenation operation at the feature axis and f i
L, f

i
R are

extracted features at left and right images respectively. f ig are grouped features,
which are evenly divided from the extracted feature f i according to the number
of group Ng. d denotes all disparity levels in (0, Di

max), Nc is the channels of
f i and ⟨, ⟩ represents the inner product. Different with gwcnet[11], during the
construction of combination volume, we add one more convolution layer without
activation function and batch normalization (named as normalization layer δ)
to make the two terms of feature (f i and f ig) share the same data distribution.
Experimental results show that this simple while efficient operation can optimize
the two terms of cost volume complementary to each other and thus promote
the final performance. Then the multi-scale combination volume will be fused
together to predict the initial disparity map.

Multi-scale Cost Volumes Fusion The multi-scale cost volume fusion mod-
ule is shown in Fig. 4 (a), where the combination volumes, encoder blocks,
fusion blocks, and decoder blocks are denoted as V i, Ei, F i, Di, respectively,
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Fig. 4: (a) Structure of multi-scale cost volume fusion module. (b) Structure of warping
volume-based refinement network. Df denotes the final disparity estimation.

(i ∈ {1, 2, 3, 4} denotes different levels). The final output fused cost volume is
D1

output. Then we use three stacked 3D hourglass networks to further process the
fused cost volume and generate the initial disparity map di.
Fusion blocks. The proposed fusion blocks have two main inputs. i) The en-
coder blocks, which characterize the information of higher resolution cost volume.
ii) The combination volume, which directly measures the similarity between the
left feature and the corresponding right feature according to a coarser disparity
index. By employing the fusion blocks, we can integrate multi-scale cost volume
and boost the network to evaluate the similarity of the left feature and candi-
date matching right feature at different scale disparity plane intervals, e.g., each
disparity index represents 4 pixels interval at scale one while 32 pixels interval
at scale four. Specifically, the fusion process can be formulated as:

F i = Conv(V i||Ei), (2)
where || denotes the concatenation operation at the feature axis and Conv()
refers to the 3D convolution layer.
Encoder block. Encoder block is downsampled from the previous scale fusion
block by a 3D convolution with stride 2, except for E1, which is directly down-
sampled from the first scale combination volume.
Decoder blocks. Decoder blocks comprise two main components. i) The main
data flow, which continually upsamples different scale decoder blocks from D4 to
D1. ii) The shortcut connection, which combines scale-matching fusion (encoder
blocks at scale one) and decoder blocks by element-wise addition. By employ-
ing the shortcut connection, we can control the contribution of the last scale
decoder block and thus balance the information flowing between upsampled de-
coder blocks and corresponding fusion blocks. Specifically, the decoder process
can be formulated as:

Di =

{
ConvT (Di+1) + S(F i) if i = 2, 3, 4

ConvT (Di+1) + S(V i) if i = 1
(3)

Where ConvT () denotes the 3D transposed convolution. S() refers to the shortcut
connection, which is implemented by 1× 1× 1 3D convolution.

3.3 Warping Volume-based Disparity Refinement

As an essential step in typical stereo matching algorithms, disparity refinement
has been widely used in deep learning-based methods. Different from previous
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stereo matching methods [20,14] which learn the residual disparity value directly
by the network, a multi-modal input is introduced to help our network more
purposefully learn the residue. Specifically, our multi-modal input consists of
the 3D warping volume, initial disparity map, left features, and reconstructed
error, where the 3D warping volume is at the core. By employing the 3D warping
volume, we can define a fine-grained residue searching range and alleviate the
difficulty of the network to find the correct residue in an unconstrained residue
searching space. Below we will describe each input in more detail.

3D Warping Volume. We employ the left feature and warped right feature to
construct the warping volume at the last level of the pyramid. Other than the
right features we used in the combination volume, we select to warp the right
features according to the estimated initial disparity Di. In this case, we can
narrow down the residue searching range from initial disparity searching range
(0, Di

max) to a fine-grained one (Di − dres, Di + dres). Intuitively, the residual
disparity is small. Hence, a small residue searching range dres is enough to correct
the wrong correspondences. Specifically, the warping volume is computed as:

Vw(dres, x, y) =
1
Nc

⟨fl(x, y), fwr(x− dres, y)⟩ ,

fwr = warping(fr, Di),
(4)

where fl and fr are upsampled from the first level feature to the original image
size, d denotes all residue levels in (Di − dres, Di + dres) and ⟨ , ⟩ represents the
inner product.

Besides, the warping operation is implemented differentially by bilinear sam-
pling [12]. Note that the proposed warping volume measures the similarities be-
tween left features and warped right features at each residue level which guides
the network to output the optimal residual disparity with the most similarity.
Moreover, we construct 3D warping volume (H × W × D × 1) by inner prod-
uct to avoid 3D convolutions which can significantly decrease the computational
complexity and memory consumption.

Reconstructed Error. We introduce the reconstructed error to identify inac-
curate regions of initial disparity estimation, which can be computed as:

Erec = fl(x, y)− fwr(x, y). (5)

The definition of our reconstruction error is inspired by the typical left-right
consistency check, while we select to construct it at the feature level rather than
the image level. By employing the reconstructed error to indicate the incorrect
regions of initial disparity, our refinement network can better identify the pixels
that should be further optimized.

Left Image Feature and Initial Disparity. Left image features and initial
disparity map are the other two inputs of our refinement network. The initial
disparity map provides the network a base estimation for further optimization
and the left image feature contains the context informing for residual learning.
To balance the weight of multi-model input, the one-channel initial disparity
map is regularized by a convolution layer to generate a 32-channel feature map.
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Warping Volume-based Refinement Network. In summary, the warping
volume, initial disparity map, left image features, and reconstructed error are
the input of our refinement network. The detailed architecture of the refinement
network is given in Fig. 4 (b). A dilated convolution [33] based network is em-
ployed to enlarge the receptive field which can enhance the network to give a
better estimation in low-texture and occluded regions. Specifically, it has 5 con-
volution layers and three basic residual blocks with different dilation constants.
The dilation constants are 1, 1, 2, 4, 8, 16, 1, and 1 from top to bottom.

3.4 Loss Function

Inspired by previous work [2,11], we employ smooth L1 loss function [9] to train
our network in an end-to-end way. For each cost volume fusion module and
stacked hourglass network in cost aggregation, the same output module and soft
argmin operation are used to get intermediate disparity map [11]. In total, we
get six disparity maps d0, d1, d2, d3, d4, d5 and the loss function is described as:

L =

j=5∑
j=0

wj · Lsmooth-L1(dj − d̂), (6)

Lsmooth-L1 represents the smooth − L1 loss and d̂ represents the ground-truth
disparity and wj is the weight of the jth estimation of disparity map.

4 Experimental Results

We evaluate our PCW-Net on various of benchmarks, including: Scene Flow [16],
ETH3D [24], KITTI 2012&2015 [8,17], and Argoverse [29].

4.1 Datasets

(1). SceneFlow: is a large synthetic dataset with 35,454 training and 4,370 test
images of size 960×540. It includes “Flyingthings3D”, “Driving”, and “Monkaa”
with dense and accurate ground-truth for training. Here, we use the Finalpass
of the Scene Flow datasets for pre-training. (2). ETH3D: is a grayscale image
dataset with both indoor and outdoor scenes. The 27 training image pairs of
ETH3D are employed to verify the generalization of different approaches. (3).
Middlebury: is an indoor dataset with 15 training image pairs and 15 testing
image pairs with full, half, and quarter resolutions. We select half-resolution
training image pairs to evaluate the generalization of different approaches. (4).
KITTI 2015 & KITTI 2012: are collected from the real world with a driving
car. KITTI 2015 contains 200 training and 200 testing image pairs while KITTI
2012 provides 194 training and 195 testing image pairs, respectively. For each
dataset, we select 180 image pairs from the training split for training and the rest
image pairs are taken as the validation set. (5). Argoverse: is a high-resolution
real-world dataset collected from a driving car. It provides 5530 training images
and 1094 testing images of size 2056×2464. We use it to evaluate the performance
of our method on high-resolution datasets, e.g., 10 times higher than KITTI.
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Table 1: (a) Evaluation Results on the KITTI 2012&2015 benchmark and all pixels in
occluded and non-occluded areas are evaluated. (b) Evaluation Results on the Argo-
verse stereo benchmark. For a clear comparison, we highlight the best result in bold
and the second-best result in blue for each column. All metrics are the lower the better.

Methods
KITTI 2015 KITTI 2012

D1-bg D1-fg D1-all 2 px 3 px 4 px 5 px

CSPN [5] 1.51 2.88 1.74 2.27 1.53 1.19 0.98
GANet-deep [34] 1.48 3.46 1.81 2.50 1.60 1.23 1.02
ACFNet [37] 1.51 3.80 1.89 2.35 1.54 1.21 1.01
GWCNet [11] 1.74 3.93 2.11 2.71 1.70 1.27 1.03
SSPCVNet [30] 1.75 3.89 2.11 3.09 1.90 1.41 1.14
PSMNet [2] 1.86 4.62 2.32 3.01 1.89 1.42 1.15

LEAStereo [6] 1.40 2.91 1.65 2.39 1.45 1.08 0.88

Our PCW-Net 1.37 3.16 1.67 2.18 1.37 1.01 0.81

(a)

Mehtod
10 px(%) 5 px(%) 3 px(%)

all fg bg all fg bg all fg bg

4Fun 1.79 2.20 1.62 3.39 3.07 3.52 6.92 4.41 7.95
SMD-Stereo 1.90 2.26 1.75 3.62 3.15 3.81 7.32 4.48 8.49
Cicero-stereo 1.99 2.29 1.87 3.68 3.13 3.90 6.37 4.13 7.29
NLCANet [22] 2.00 2.38 1.85 3.69 3.31 3.84 7.44 4.60 8.59

GANet-refine [34] 2.17 2.23 2.15 3.73 3.09 3.99 7.35 4.43 8.55
CFNet [25] 2.38 3.79 1.80 4.05 4.72 3.78 7.60 6.18 8.18
PSMNet [2] 3.05 3.81 2.75 4.85 4.98 4.79 8.51 6.20 9.45

Our PCW-Net 1.64 1.98 1.49 3.17 2.89 3.28 7.05 4.29 8.18

(b)

(a) left image (b) PCW-Net (c) GANet-deep (d) GWCNet
Fig. 5: Visualization results on KITTI 2012 testset. The left panel shows the left input
image of the stereo image pair, and for each example, the first row shows the predicted
colorized disparity map and the second row shows the error map.

4.2 Implementation Details

The proposed framework is implemented using Pytorch and trained in an end-to-
end manner with Adam optimizer (β1 = 0.9, β2 = 0.999). Inspired by HSM-Net
[31], we employ asymmetric chromatic augmentation and asymmetric occlusion
for data augmentation. Moreover, we proposed a switch training strategy to train
our model for better network parameters. Specifically, it can be realized in three
steps. First, the Relu activation function is employed to train our network from
scratch on the SceneFlow dataset for the first 20 epochs. We set the initial
learning rate as 0.001 and down-scale it by 2 times after epoch 12, 16, and
18, respectively. Then, Mish [18] is used to prolong the pre-training process on
the SceneFlow dataset for another 15 epochs. Finally, the pre-trained models
are fine-tuned on KITTI 2015 and KITTI 2012 for another 400 epochs. The
learning rate of this process begins at 0.001 and decreases to 0.0001 after epoch
200. Similar to other approaches, we only use the training images of KITTI
2012 for the fine-tuning process on KITTI 2012 benchmark while we merge the
training images of both datasets for the training of KITTI 2015 benchmark. For
all the experiments, the batch size is set to 4 for training on 2 NVIDIA V100
GPUs and the weights of six outputs are 0.5, 0.5, 0.5, 0.7, 1.0, and 1.3. The
inherent principle of the proposed switch training strategy will be discussed in
the supplementary materials.

4.3 Fine-tuning Performance Evaluation

In this section, we conduct experiments on various benchmarks to verify our
claim in Sec. 1 that the proposed method can achieve consistent SOTA fine-
tuning performance on diverse real-world datasets with different proprieties.
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Specifically, Argoverse [29] and KITTI 2012&2015 [8,17] are used for evalua-
tion. Below we describe each dataset’s result in more detail.

Results on KITTI 2012&2015. We train our model on the SceneFlow
dataset first and then fine-tune it on the KITTI dataset. Here, we compare our
fine-tuned model with other existing state-of-the-art methods. All results are
obtained from the official KITTI evaluation website. Tab. 1(a) illustrates the
comparison of the proposed method with others on the KITTI-2012. It can be
shown that the proposed method achieves the best performances across all the
pixels error thresholds. For the ranking criterion e.g., three-pixel-error rate, our
model achieves a 1.37% overall error rate which outperforms our base model
GWCNet [11] by 19.4%. Furthermore, compared to the current best-published
method LEAStereo [6], our method can also achieve a 5.5% error reduction on
the overall three-pixel-error rate.

The comparison with other state-of-the-art approaches on the KITTI-2015
benchmark is given in Tab. 1(a). From this table, generally, we can easily find
that the proposed method achieves 1 first-place and 1 second-places among all
the three categories. Specifically, our method achieves a 1.67% overall three-
pixel-error rate, which surpasses the base model GWCNet by 20.85%. Compared
to LEAStereo [6], we can obtain very similar results, especially for the ranking
criterion “D1-all” category (1.65 vs 1.67).

Qualitative comparison results on the KITTI 2012 benchmark are shown
in Fig. 5, and we can see that our method shows significant improvement in ill-
posed regions and fence regions (see dash boxes in the picture). The visualization
results further support our claim that employing multi-scale cost volumes can
guide the network to learn the affiliation between an object and its sub-region,
thus promoting the estimation of the textureless region and repeated pattern.
More qualitative results are given in the supplementary materials.

Results on Argoverse. Argoverse is a high-resolution real-world dataset
collected from a driving car. In comparison to KITTI, it has 10 times the resolu-
tion and 16 times as many training frames, making it a more robust and challeng-
ing dataset. Similar to the KITTI, we train our model on the SceneFlow dataset
first and then fine-tuning it on the Argoverse dataset. Here, we compare our
fine-tuned model with other existing state-of-the-art methods in Tab. 1(b). All
results are obtained from the official Argoverse evaluation website. To be clear,
the 10-pixel error is taken as the official evaluation metric in this benchmark
due to its high image resolution. From this table, we can easily find that existing
state-of-the-art stereo matching methods [34,2,22,25] cannot achieve consistent
finetuning performance on the Argoverse dataset. This is likely caused by the
different proprieties between KITTI and Argoverse, e.g., high-resolution vs low-
resolution and large-scale dataset vs small-scale dataset. Instead, as shown in
Tab. 1(b), we can easily find that the proposed method achieves 6 first places
among all the nine categories, which further verifies our claim that the proposed
method can achieve consistent performance on diverse datasets. We attribute this
result to the proposed multi-scale cost volume fusion module, which can cover
multi-scale receptive fields and boost the network to see different scale regions
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Table 2: Cross-domain generalization evaluation on four real datasets. For a fair com-
parison, all methods are only trained on the SceneFlow training set and tested on four
real datasets. We highlight the best result in bold and the second-best result in blue
for each column. All the metrics are the lower the better. Half resolution training sets
of Middlebury is employed for evaluation.

Method
KITTI2012
D1 all(%)

KITTI2015
D1 all(%)

Middlebury(half)
bad 2.0(%)

ETH3D
bad 1.0(%)

time (s)

HDˆ3 23.6 26.5 37.9 54.2 0.14
PSMNet 15.1 16.3 25.1 23.8 0.41
GWCNet 12.0 12.2 24.1 11.0 0.32
GANet 10.1 11.7 20.3 14.1 1.8
DSMNet 6.2 6.5 13.8 6.2 1.5
CFNet 4.7 5.8 19.5 5.8 0.22

Our PC-Net 4.5 5.8 19.00 5.4 0.33
Our PCW-Net 4.2 5.6 15.77 5.2 0.44

(a) left image (b) PCW-Net (c) GANet-deep (d) GWCNet
Fig. 6: Cross-domain generalization comparison on KITTI2012 trainset. All methods
are trained on the synthetic dataset and tested on KITTI2012 trainsets. The left panel
shows the left input image of stereo image pairs, and for each example, the first row
shows the predicted colorized disparity map and the second row shows the error map.

of the original image. Such an operation is well suited for both low-resolution
and high-resolution images. Specifically, our method outperforms state-of-the-
art approaches on overall ten-pixel-error and five-pixel-error rates with 1.64%
and 3.17%. Cicero-stereo is the best method on the three-pixel-error rate and
our method can achieve comparable results with it, especially for the ranking
criterion “fg” category (4.29% vs 4.13%). Note that the evaluation images in
Argoverse Dataset are with high resolution (2056× 2464). Thus, ten-pixel-error
and five-pixel-error are the main evaluation metrics. All in all, our method ranks
1st on the Argoverse leaderboard and sets a new SOTA performance.

4.4 Cross-Domain Generalization Evaluation

In this section, we conduct experiments to verify our claim in Sec. 1 that the
proposed PCWNet can achieve strong cross-domain generalization. Specifically,
we design an experiment by training the model on the synthetic data only and
testing it on four real datasets such as KITTI 2012, KITTI 2015, ETH3D, and
Middlebury. To make a fair comparison, all the methods are trained only on
the Scene Flow dataset (without any other synthetic or real data will be used,
e.g., Carla [35]). The comparison with other approaches is given in Tab. 2. From
this table, we can find that our method outperforms the baseline model gwcnet
on all four datasets with a large margin. Compared to the second-best method
CFNet[25], our proposed PCNet (refers to the network without the warping vol-
ume based disparity refinement) has achieved comparable performance and the
proposed PCWNet can further surpass it on all four datasets. Specifically, the
error rate on KITTI 2012, KITTI 2015, ETH3D, and Middlebury has been de-
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creased by 10.64%, 3.45%, 10.34%, and 19.13%, respectively compared to CFNet.
Most importantly, both CFNet and DSMNet are specially designed for cross-
domain generalization and will make a significant compromise on finetuning
performance, e.g., the D1 all error rate of CFNet [25] on the KITTI 2015 bench-
mark is 1.88%, which is 10.11% higher than ours. In summary, the comparison
between these domain-generalization methods further shows that our PCW-Net
can make a good balance between performance and generalization.

In addition, we compare the generalization results of our method with some
state-of-the-art methods in Fig. 6. From this figure, we can clearly see that most
existing dataset-specific methods [11,34] generalize poorly to unseen real scenes
while our method can correct most errors and generate a reasonable result. More
qualitative results on other datasets will be given in the supplementary materials.

4.5 Ablation Studies

To verify the effectiveness of different modules, we set a series of experiments in
this section. For efficient evaluation, only the KITTI 2015 dataset (without pre-
training from Scene Flow) has been used for training and evaluation. Generally,
four types of experiments have been executed here.
Multi-scale cost volume fusion. The proposed multi-scale cost volume fusion
module consists of the combination volumes, encoder blocks, fusion blocks, and
decoder blocks. Here, we verify the impact of removing the fusion blocks, which
means that the multi-scale combination volume information is ignored. As shown
in the Multi−scale Cost V olume Fusion section of Tab. 3, the D1 all error rate
increase from 1.97% (D+E+F(ours)) to 2.09% (D+E) after removing the fusion
blocks, which further verifies the necessity of including multi-scale information.
Cost volume construction. The proposed combination volume consists of con-
catenation volume and group-wise correlation volume. Here, We test the impact
of using different cost volumes. As shown in Tab. 3, the proposed combination
volume achieves the best result. Moreover, the performance of combination vol-
ume without the normalization layer δ is even worse than the usage of single
cost volume. Thus, it’s essential to add this layer to make the two cost volumes
share the same data distribution.
Multi-modal input evaluation. In the disparity refinement module, we em-
ploy multi-modal input to help our network learn the residue more purposefully.
Here, we test the impact of each input individually. As shown in the Multi-
modal input section of Tab. 3, each input is indispensable and the 3D warping
volume is at the core. Specifically, the improvements of each part are: 0.29% for
Vw, 0.08% for Erec, 0.02% for fi and Di, respectively. The result verifies all the
multi-modal inputs work positively to improve the performance and compared
with other inputs, the 3D warping volume Vw achieves the largest gain.
Model Generalization. Moreover, to further verify the generalization of the
proposed method, we conduct two more ablation studies. In this setting, all the
frameworks are trained on the SceneFlow dataset and evaluated on the Scene-
Flow testing set and KITTI 2015 training set without finetuning. The comparison
results are given in Tab. 4 (a). From the table, we can find that the proposed
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Table 3: Ablation Study of the proposed method on the KITTI2015 dataset. Vw, Erec,
fl, Di denote the 3D warping volume, reconstructed Error, left features, and initial
disparity map, respectively. D, E, and F represent decoder blocks, encoder blocks, and
fusion blocks, respectively. D1 all is used for evaluation (the lower the better). We test
a component of our method individually in each section of the table and the approach
which is used in our final model is underlined.

Experiment Method
KITTI

D1 all

Multi-scale Cost Volume Fusion
D+E 2.09

D+E+F (ours) 1.97

Cost Volume

concatenation volume 2.04

group-wise correlation volume 2.13

combination volume without Cr 2.14

combination volume (ours) 1.97

Multi-modal input

Multi-modal input without Vw 2.26

Multi-modal input without Erec 2.05

Multi-modal input without fl and Di 1.99

Multi-modal input (ours) 1.97

Table 4: (a) Ablation study of model generalization. (b) Sub-module generalization
analysis on three real datasets. All methods are only trained on the synthetic dataset
and tested on three real datasets. MSCVF and WVBDF denote the multi-scale cost
volume fusion module and warping volume based disparity refinement module, respec-
tively. Raw disparity refers to the disparity estimation result before cost volume fusion.

Method
SceneFlow KITTI 2015 (w/o finetuning)
EPE (px) D1 all (%)

no WVBDF + MSCVF 0.8578 6.18
no WVBDF 0.8387 5.81
PCWNet 0.7868 5.55

(a)

Different operations
KITTI 2012
D1 all (%)

KITTI 2015
D1 all (%)

ETH3D
bad 1.0 (%)

raw disparity 8.60 8.57 16.44
MSCVF 5.62 (-2.98) 6.5 (-2.07) 9.96 (-6.48)

Stacked hourglass 4.49 (-1.13) 5.84 (-0.66) 6.57 (-3.39)
WVBDF 4.23 (-0.26) 5.55 (-0.29) 5.2 (-1.37)

(b)

multi-scale cost volume fusion(MSCVF) and warping volume based disparity re-
finement (WVBDF) can both promote the generalization ability on KITTI as
well as finetuning performance on SceneFlow. The error on the KITTI dataset
has been decreased from 6.18% to 5.55%. Moreover, we further analyze the effect
of each module on generalization in Tab. 4 (b). As shown, each module works
positively for better generalization, and the multi-scale cost volume fusion mod-
ule (MSCVF) is at the core, which contributes 68.19%, 68.54%, 57.65% error
reduction on KITTI2012, KITTI2015, and ETH3D, respectively.

5 Conclusion

In this paper, we have proposed a pyramid combination and warping cost vol-
ume based network, i.e., PCW-Net, for accurate and robust stereo matching. Our
pyramid cost volume can be divided into two parts. First, we construct combina-
tion volumes on the upper levels of the pyramid and develop a cost volume fusion
module to integrate them for initial disparity estimation. Second, we construct
the warping volume on the last level of the pyramid and employ it to refine the
initial disparity. Experimental results show the superiority of PCW-Net across
a diverse range of datasets. Specifically, PCW-Net achieves state-of-the-art per-
formance and strong cross-domain generalization at the same time.
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