
Supplementary Material:
Gen6D: Generalizable Model-Free 6-DoF Object

Pose Estimation from RGB Images

Yuan Liu1 , Yilin Wen1 , Sida Peng2 , Cheng Lin3 ,
Xiaoxiao Long1 , Taku Komura1 , and Wenping Wang4

1 The University of Hong Kong
2 Zhejiang University

3 Tencent
4 Texas A&M University

1 Overview

This supplementary material has the following contents.

1. Sec. 2 contains implementation details of the data normalization (Sec. 2.1),
the object detector (Sec. 2.2), the viewpoint selector (Sec. 2.3), the pose
refiner (Sec. 2.4) and the inference process.

2. Sec. 3 includes experiment details about the training set, the GenMOP
dataset and the reference/query splits.

3. Sec. 4 provides more qualitative results on the LINEMOD [2] dataset, the
MOPED [4] dataset and the GenMOP dataset.

4. Sec. 5 contains additional analysis on comparison with finetuned DeepIM [3],
reference image number, unevenly distributed reference images, refinement
iterations, ablations on training data, symmetric objects and imperfect view
selection.

2 Implementation detail

2.1 Data normalization

Object size and center. On the GenMOP dataset, the object size and object
center are roughly estimated from reconstructed points of COLMAP [7]. On the
LINEMOD [2] dataset and the MOPED [4] dataset, we directly use the provided
3D model to compute the object size and the object center. Note we do not need
an exact object size and an object center.

Normalization of object coordinate system. Given the object size d
and the object center c, we normalize the object coordinate system by

xnorm = (x− c)/d× 2, (1)

where xnorm is the normalized coordinate and x is the original coordinate.

https://orcid.org/0000-0003-2933-5667
https://orcid.org/0000-0002-5981-1276
https://orcid.org/0000-0001-6546-4525
https://orcid.org/0000-0002-3335-6623
https://orcid.org/0000-0002-3386-8805
https://orcid.org/0000-0002-2729-5860
https://orcid.org/0000-0002-2284-3952

2 Y. Liu, Y. Wen, S. Peng, et al.

Normalization of reference images. Since the raw reference images may
not look at the object, we normalize these reference images by warping the
image with a homography and changing the intrinsic correspondingly, as shown
in Fig. 1. The normalized reference images all look at the object and they enclose
the projection of the unit sphere at the origin. Note we can do this normalization
because we have already normalized the object coordinate and we know the poses
of reference images.

Raw Reference Image

Normalized
Reference Image

Normalization

Projection of unit sphere

Fig. 1. Raw reference images are normalized to look at the object. The projections of
the unit sphere are enclosed by the reference images.

2.2 Detector

Networks architecture. The detailed architecture is shown in Fig. 2. The
input reference images are resized to 120 × 120. We actually use three levels of
feature maps from the query image and the corresponding three levels of Conv
kernels from reference images. We conduct convolutions on the feature map at
each level with the corresponding conv kernel at the same level. Ns = 5 scales
are used and we downsample the input query image with

√
2 as the factor.

Loss. Given the heat map H, we regard all values of the heat map as logits
and use a binary classification loss to supervise the heat map prediction. Here,
we first project the object center to the image using the ground-truth object
pose. Then, a pixel on the heat map is assumed to be correct if it is within
1.5-pixel distance from the object center projection. Otherwise, it is incorrect.

ℓheat =
∑
p

−1(∥p−cprj∥2 < 1.5) log σ(H(p))−(1−1(∥p−cprj∥2 < 1.5)) log(1−σ(H(p))),

(2)
where 1 is an indicator function, cprj ∈ R2 is the 2D projection of the object
center, p is a pixel on the heat map, σ is the Sigmoid function, H(p) means the
heat value on the pixel p. To supervise the scale map prediction, we apply a
scale loss to minimize the L2 distance between the ground-truth scale and the

Gen6D Pose Estimator 3

predicted scale in the log space. Note we only apply such scale loss on the pixels
within 1.5-pixel distance away from the projected object center.

ℓscale =
∑
p

1(∥p− c2d∥2 < 1.5)∥ log sgt − S(p)∥22, (3)

where sgt is the ground-truth scale, S is the scale map, S(p) means the scale
value at pixel p. sgt can be computed from the distance l between the camera
center and the object center by

sgt =
2f

lSr
, (4)

where f is a virtual focal length by changing the principle point to the object
center projection cprj , 2 is the diameter of the unit sphere and Sr = 120 is the
size of reference image.

…

Reference images

𝑁𝑟 × 3 × 120 × 120

3 × 𝐻 ×𝑊

𝑁𝑟 × 512 × 15 × 15

𝑁𝑟 × 512 × 7 × 7

𝑁𝑟 × 512 × 3 × 3
Conv kernels

512 × 𝐻/8 ×𝑊/8

512 × 𝐻/16 ×𝑊/16

512 × 𝐻/32 ×𝑊/32

Score map

𝑁𝑟 × (𝑁𝑠 × 3) × 𝐻/8 ×𝑊/8

VGG-11

VGG-11

Heat map

Scale map
𝐻/8 ×𝑊/8

𝐻/8 ×𝑊/8

Scale 𝑠

Location

Results

𝑁𝑟 × 32 × 𝐻/8 ×𝑊/8

Conv+ReLU MaxPooling

32 × 𝐻/8 ×𝑊/8

(Conv+ReLU)*2

+Conv

(Conv+ReLU)*2

+Conv

𝑁𝑟 × 𝐻/32 ×𝑊/32

𝑁𝑟 × 𝐻/16 ×𝑊/16

𝑁𝑟 × 𝐻/8 ×𝑊/8 𝑁𝑟 × 3 × 𝐻/8 ×𝑊/8

Resize+Concat

Apply

convolution

Score map

(scale 0)

Score map

(scale 1)

Score map

(scale 2)

3 × 𝐻/ 2 ×𝑊/ 2 3 × 𝐻/2 ×𝑊/2

…

…

Concatenate

𝑁𝑠 scales here

𝑁𝑠 scales here

Corr Block

Corr Block(+Upsample)

Fig. 2. Detailed pipeline of the detector. All “Conv” layers use 3×3 kernel size.

2.3 Selector

Network architecture. The detailed architecture of the selector is shown in
Fig. 3. The input query image is cropped according to the detection results and
resized to 128× 128. All reference images are also cropped to the size 128×128.
We also use three levels of feature maps to conduct the pixel-wise product. The
viewpoint is represented by a 3-dimensional vector. The in-plane rotation is a
scalar of the clock-wise rotation angle. The final similarity score for a reference
image is also a scalar. We use Na = 5 rotation angles in [−π/2, π/2] to rotate
every reference image.

4 Y. Liu, Y. Wen, S. Peng, et al.

3 × 128 × 128

Rotated reference images

Cropped query image

𝑁𝑎 × 3 × 128 × 128

VGG-11

VGG-11

𝑁𝑎 × 512 × 16 × 16

𝑁𝑎 × 512 × 8 × 8

𝑁𝑎 × 512 × 4 × 4

512 × 16 × 16 512 × 4 × 4

512 × 8 × 8

Pixel-wise product

𝑁𝑎 × 256 × 16 × 16

𝑁𝑎 × 512 × 8 × 8

𝑁𝑎 × 512 × 4 × 4

𝑁𝑎 × 256 × 4 ×4

𝑁𝑎 × 256 × 4 ×4

𝑁𝑎 × 256 × 4 ×4

Branch 1 Branch 2 Branch 3

Branch 1：[(Conv+GN+ReLU)*2+MaxPool(2,2)]*2+Conv+GN+ReLU

Branch 2：[(Conv+GN+ReLU)*2+MaxPool(2,2)]*1+Conv+GN+ReLU

Branch 3：Conv+GN+ReLU

Concat

𝑁𝑎 × 768 × 4 ×4

Merge

Conv

Merge Conv：(Conv+GN+ReLU)*2+MaxPool(4,4)

𝑁𝑎 × 512

Rotation

Predict

Rotation Predict: Linear+ReLU+Linear (𝑁𝑎 × 512→32→1)

In-plane

rotation
Viewpoint

Viewpoint

Embedding

512

Transformer

Maxpooling

512

Similarity

Predict

Similarity

scoreViewpoint Embedding: Linear+ReLU+Linear (3→256→512)

Transformer: Self-attention *2 (512→512,head_num=8)

Similarity Predict: Linear+ReLU+Linear (512→1)

Fig. 3. Detailed pipeline of the selector. We only draw one reference image in the
figure for clear visualization. “Conv” means a convolution layer with 3×3 kernels.
“GN” means the global normalization that normalize the feature maps using the mean
and variance computed from feature maps of all reference images. “Transformer” is
applied among all feature vectors of reference images.

Loss. To compute the loss, we first introduce how we compute the ground-
truth similarity between two viewpoints. In the object coordinate system, we
denote the camera locations of all reference images as {ui ∈ R3|i = 1, ..., Nr}
where Nr is the number of reference images. Note that the object center is
the origin so that −ui is the vector from the camera to the object center. In
training, we know the query camera pose and compute the camera location v of
the query image in the object coordinate system. Both ui and v are normalized
by ũi = ui/∥ui∥2 and ṽ = v/∥v∥2. Then, the ground-truth viewpoint similarity
between i-th reference image and the query image is their dot product ũi · ṽ.

We normalize the ground-truth viewpoint similarity to [0,1], which is denoted
as s̃j . Then, the similarity loss is

ℓsim =
∑
j

BCE(sj , s̃j) (5)

where BCE means binary cross entropy loss and we force the predicted score to
be consistent with the ground-truth viewpoint similarity.

To train the in-plane rotation angle prediction, we adopt a L2 loss,

ℓangle = ∥αj − αgt∥22, (6)

where αj is the predicted in-plane angle on the ground-truth nearest reference
image and αgt is the ground-truth in-plane rotation between the query image
and the reference image.

Gen6D Pose Estimator 5

2.4 Refiner

Network architecture. The detailed architecture for the refiner is shown in
Fig. 4. In the figure, we show the 2D CNN and the 3D CNN separately. In the
2D CNN, both reference images and query images are resized to 128×128 and
the final feature map for unprojection is extracted from three levels of feature
maps. In the 3D CNN, we first embed reference mean, reference variance and
query features separately. Then, they are concatenated and processed by several
3D convolution layers. Final 3D pose residuals are regressed by linear layers
from the flatten feature vector of the 3D volume. We use Nn = 6 neighboring
reference images in refinement.

2D CNN

3 × 128 × 128

VGG-11

256 × 32 × 32 512 × 8 × 8

Branch 1 Branch 2 Branch 3

64 × 32 × 32 64 × 32 × 32 64 × 32 × 32

512 × 16 × 16

128 × 32 × 32

Merge

Conv

Concat

Branch 1：Conv+IN+ReLU+Conv

Branch 2：Conv+IN+ReLU+Conv+Upsample

Branch 3：Conv+IN+ReLU+Conv+Upsample

Merge Conv：Conv+IN+ReLU+Conv

128 × 32 × 32 × 32 128 × 32 × 32 × 32 128 × 32 × 32 × 32

3D Branch 1 3D Branch 2 3D Branch 3

Ref Mean Ref Var Que Feats

64 × 323 64 × 323 64 × 323

192 × 323

Concat

128 × 163

3DLayer

256 × 83

3DLayer

512 × 43

3DLayer

32768

Flatten

Linear

512

In-plane

Translation
Scale Quaternion

412

Linear

3D CNN

3D Branch 1/2/3：
Conv3D+IN+ReLU+Conv3D

3DLayer：
Conv3D+IN+ReLU+Conv3D +IN+ReLU

Stride=2

Fig. 4. Detailed architecture of the refiner. “IN” means instance normalization.

Loss. To train the refiner, we first sample 323 voxel points in the unit cube
in the object coordinate system. Then, these points are transformed to the input
camera coordinate system by the input pose. The loss is the distance between
the sample points transformed by the ground-truth similarity transformation
and the sample points transformed by the predicted similarity transformation.

ℓref =

323∑
k

∥sprRpr(pk + t′pr)− sgtRgt(pk + t′gt)∥2, (7)

where pk ∈ R3 is the coordinate of a sample point in the input camera coordinate,
spr and sgt are predicted scale and ground-truth scale respectively, Rpr and Rgt

are the predicted rotation and the ground-truth rotation respectively, t′pr and t′gt
are the predicted 2D translation and the ground-with 2D translation respectively.
We set the third element of t′pr and t′gt to 0 to form a 3D-translation. Note the
predicted and ground-truth similarity transformations are used in transforming

6 Y. Liu, Y. Wen, S. Peng, et al.

the object (red circle in Fig. 5) with the input pose to the object with the
ground-truth pose (green dotted circle in Fig. 5).

Object under GT pose

Object under input pose

Constructed volume

Input pose

Legend

Input camera coordinate

Fig. 5. Diagram to illustrate the transfor-
mation. Note all transformations are ap-
plied on coordinates in the input camera
coordinate system.

Similarity approximation. We
discuss how to convert the similar-
ity transformation (red circle to dot-
ted green circle in Fig. 5) to the
rigid transformation (red circle to
solid green circle in Fig. 5). Denot-
ing the similarity transformation as
(R, s, t), our target is to compute the
rigid transformation (R, t′). Actually,
we only need to convert (s, t) to t′

because rotation R is the same in
two transformations. Assuming the
red circle center is (cx, cy, cz) in the in-
put camera coordinate, then the cen-
ter of the green dotted circle is (cx +
tx, cy + ty, z) where tx and ty are the
first and the second element of t re-
spectively. The depth affects the scale,
so the center of the green solid circle is ((cx + tx)/s, (cy + ty)/s, z/s). The final
rigid translation is t′ = ((cx + tx)/s− cx, (cy + ty)/s− cy, z/s− z).

2.5 Inference details

In inference, we apply pose refiner iteratively for 3 times. For the input data, not
all reference images are used in the object detector and the viewpoint selector.
Instead, we use farthest point sampling to sample 32 and 64 images for the
detector and the selector respectively.

3 Experimental setting

Training set for Gen6D. The training objects on the LINEMOD [2] dataset
are “ape”, “can”, “holepuncher”, “iron” and “phone”. There are ∼1200 images
per object and we randomly use them as reference images and query images. The
training objects on the GenMOP dataset are “cup”, “knife”, “love”, “plugCN”
and “Miffey”, each of which contains ∼200 reference images and ∼200 query
images. On every object from ShapeNet [1], we render 1024 images. On every
object from Google Scanned Objects, we use 512 rendered images from IBR-
Net [9] for training. To train the 2D object detector, we additionally use the
CO3D [6] for training.

Reference/query split on training sets. On the LINEMOD [2] dataset,
the ShapeNet dataset and the Google Scanned objects dataset, we randomly
select 128 images by farthest point sampling on camera locations as reference
images while the other images are selected as query images. On the GenMOP

Gen6D Pose Estimator 7

dataset, we use images from one video as reference images while images from
the other video as query images.

Reference/query split on test sets. On the LINEMOD [2] dataset, we use
the training set of previous instance-specific estimators [8,5] as reference images
and the other images are selected as query images. On the GenMOP dataset, we
also use images from one video sequence as reference images and images from
the other video sequence as query images On the MOPED dataset [4], we use
the provided reference video sequences as reference images and the other video
sequences as query images. We list the number of reference images and query
images in Table 1. Note that reference images are used in inference of Gen6D
but not in training the Gen6D estimator while instance-specific estimators like
PVNet [5] actually use these reference images to train their models.

Table 1. Numbers of reference images and test query images on different datasets.

GenMOP
Chair PlugEN Piggy Scissors TFormer

Reference 212 199 227 202 206
Query 200 214 199 232 252

LINEMOD [2]
cat duck bvise cam driller

Reference 177 189 183 182 179
Query 1002 1065 1032 1020 1009

MOPED [4]
B.Drill D.Dude V.Mug T.Plane R.Aid

Reference 355 451 606 662 394
Query 215 297 91 250 58

GenMOP. On every object of the GenMOP dataset, we collect two 1-minute
videos in different environments by a cell-phone. On each video, we sample 1 im-
age per 10 frames, which results in ∼200 images for every video. On each video
sequence, we apply COLMAP [7] to recover the extrinsics and intrinsics of all
cameras. Then, in every sequence, we manually select two images, label 4 key-
points on the selected images, and use triangulation to compute the 3D points.
For two difference sequences of the same object, we compute the transformation
from the triangulated 3D points to align them.

4 Qualitative Results

More qualitative results on the LINEMOD dataset, the MOPED [4] dataset and
the GenMOP dataset are shown in Fig. 10, Fig. 11 and Fig. 12 respectively.

8 Y. Liu, Y. Wen, S. Peng, et al.

5 More analysis

5.1 Comparison with finetuned DeepIM

Based on the pretrained generalizable DeepIM [3] model in the experiments of
the main paper, we further finetune it separately on every test object using the
reference images of the object as the training set. The performance of finetuned
DeepIM model is shown in Table 2, which shows that finetuning DeepIM brings
significant improvements but still underperforms the Gen6D model which does
not train on the object.

Table 2. Performance on the GenMOP dataset. “General” means generalizable or not.
“DeepIM [3]-Ft” means we finetune DeepIM models on every object’s reference images
separately.

Metrics Method General
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d
DeepIM [3] ✓ 12.50 6.54 29.15 18.10 31.35 19.53
DeepIM [3]-Ft ✗ 65.50 36.92 62.31 19.40 38.49 44.52
Ours ✓ 61.50 19.63 75.38 32.76 62.70 50.39

Prj-5
DeepIM ✓ 4.50 52.34 18.50 61.64 73.81 42.16
DeepIM [3]-Ft ✗ 40.00 70.56 82.37 73.28 98.41 72.92
Ours ✓ 55.00 72.90 92.96 93.53 98.81 82.64

5.2 Fewer reference images

To show the performance of Gen6D estimator with less reference images, we
reduce the reference images on the GenMOP dataset from 128 to 8 by farthest
point sampling (FPS) as shown in Table 3. Sampling 128 images by FPS even
slightly improves the performance because FPS makes the view distribute evenly.
With 64 reference images, the Gen6D estimator still produces similar results as
with all images. When only 16 or 8 reference images retain, the performance
reduces reasonably. We further provide detailed Prj-5 of different objects on
the GenMOP dataset in Table 4. This show that the suitable view numbers for
different objects are different. 16 reference views on “piggy” still produce 91%
Prj-5 while 16 views on “chair” will reduce Prj-5 to 34%.

5.3 Uneven reference image distribution

By default, reference images are preferred to be distributed evenly around the
object as shown in Fig. 6 (a), which benefits the viewpoint selection and the
refinement using neighboring views. When only a part of viewpoints are avail-
able like Fig. 6 (b), Gen6D is not able to accurately predict object poses on
images captured from uncovered region. We show the performance of Gen6D
using reference images of Fig. 6 (b) in Table 5.

Gen6D Pose Estimator 9

Table 3. Performance of the Gen6D estimator on the GenMOP dataset with different
numbers of reference images. Two metrics are averaged among all objects. “All” means
using all images (∼ 200) from the sequence as reference images.

Metrics
Reference image number

All 128 64 32 16 8

ADD-0.1d 50.39 51.30 49.68 39.45 33.56 27.55
Prj-5 82.64 83.28 82.30 81.03 73.51 37.33

Table 4. Prj-5 on GenMOP dataset of Gen6D with different reference image numbers.

Ref. Img.
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

All 55.00 72.90 92.96 93.53 98.81 82.64
128 58.00 69.63 96.48 92.67 99.60 83.28
16 34.00 69.63 90.95 79.74 93.25 73.51
8 11.00 61.68 28.14 26.29 59.52 37.33

(a) (b)

Reference poses

Fig. 6. (a) Reference images are homogeneously-distributed around the object. (b)
Reference images only distribute in the Y- half space.

Table 5. Performance of Gen6D on the GenMOP dataset using homogeneously-
distributed reference images (“Even”) or only images whose camera centers are in
the Y- space (Fig. 6(b)) (“Partial”).

Metrics Ref. Img.
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d
Even 61.50 19.63 75.38 32.76 62.70 50.39
Partial 43.00 8.53 56.28 5.17 30.95 28.79

Prj-5
Even 55.00 72.90 92.96 93.53 98.81 82.64
Partial 32.50 7.48 73.37 17.24 47.22 35.56

10 Y. Liu, Y. Wen, S. Peng, et al.

5.4 Refinement iterations

In Table 6, we show results on the GenMOP dataset with different refinement
iterations. The results show that applying 1 refinement iteration already greatly
improves performance from 17.90 to 38.59 on the ADD-0.1d metric. Further
applying 2 refinement iteration will continuously improve the results while using
3 iterations does not.

Table 6. Results of our Gen6D estimator on the GenMOP dataset. “#Refine” means
the number of refinement iterations used to produce the results.

Metrics #Refine
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d

0 14.00 7.48 39.70 16.81 11.51 17.90
1 50.50 9.81 55.28 24.57 52.78 38.59
2 62.00 29.91 80.90 37.07 56.75 53.32
3 61.50 19.63 75.38 32.76 62.70 50.39

Prj-5

0 11.50 40.65 33.17 34.05 64.29 36.73
1 44.00 71.03 92.96 84.48 95.24 77.54
2 51.50 72.90 94.97 94.40 99.60 82.67
3 55.00 72.90 92.96 93.53 98.81 82.64

5.5 Ablations on training data

To show the effects of different training data, we show the performance of Gen6D
using different training sets in Table 7. Training only on synthetic datasets suffers
from the domain gap between the real data and synthetic data. Using real data
for training greatly improves the results. LINEMOD [2] brings more obvious
improvements than adding GenMOP. The main reason is that LINEMOD has
more images (∼1200) on every object while GenMOP only has ∼ 200 reference
images and ∼ 200 query images for training.

5.6 Symmetric objects

Gen6D is able to predict poses for symmetric objects. We evaluate Gen6D on two
unseen symmetric objects from LINEMOD [2], i.e. “glue” and “eggbox”. Quali-
tative results are shown in Fig. 7 and quantitative results are shown in Table 8.
The results show that our method is able to achieve reasonable performance on
symmetric objects. The main reason is that Gen6D is based on matching query
images with reference images. Though symmetry makes multiple feasible poses
for a query image, the selector and refiner of Gen6D are able to find reference
images near to one of such feasible poses.

5.7 Imperfect viewpoint selection

Gen6D Pose Estimator 11

Table 7. Performance of Gen6D on the GenMOP and LINEMOD [2] datasets with
different training sets. “Syn.” means the ShapeNet [1] and Google Scanned Objects [9]
datasets. “GMP” means 5 training objects from the GenMOP dataset. “LM” means 5
training objects from the LINEMOD [2] dataset. All test objects are not in the training
set.

Metrics Trainset
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d
Syn.+GMP+LM 61.50 19.63 75.38 32.76 62.70 50.39
Syn.+GMP 39.00 11.21 71.86 37.93 39.68 39.94
Syn. 30.00 21.96 61.81 24.57 30.16 33.70

Prj-5
Syn.+GMP+LM 55.00 72.90 92.96 93.53 98.81 82.64
Syn.+GMP 34.50 77.57 92.46 91.38 89.68 77.18
Syn. 10.05 77.57 68.84 74.57 98.41 65.98

Metrics Trainset cat duck bvise cam driller avg.

ADD-0.1d
Syn.+GMP+LM 60.68 40.47 77.03 66.67 67.39 62.45
Syn.+GMP 40.92 16.24 62.11 45.59 48.76 42.72
Syn. 31.04 11.64 61.63 35.39 54.61 38.86

Fig. 7. Qualitative results on symmetric objects.

Table 8. Results on symmetric objects of the LINEMOD [2] dataset. For the ADD
metric, we report “ADD-S-0.1d” which computes the nearest distance between the
object points transformed by ground-truth pose and the estimated pose. Note PVNet [5]
is trained on the specific test object with both synthetic and real images while our
Gen6D is not trained on the test object.

Name
Prj-5 ADD-S-0.1d

PVNet [5] Ours PVNet [5] Ours

Eggbox 99.34 97.84 99.15 98.40
Glue 98.45 96.24 95.66 87.16

12 Y. Liu, Y. Wen, S. Peng, et al.

0-4 4-8 8-12 12-16 16-20
Ground-truth viewpoint difference

0

10

20

30

40

50

Se
le

ct
ed

 v
ie

wp
oi

nt
 d

iff
er

en
ce

Gen6D
ObjDesc

Fig. 8. Viewpoint difference between the selected
reference image and the query image (y-axis); View-
point difference between the ground-truth reference
image and the query image (x-axis).

As discussed in the Section 1
in the main paper, it would be
challenging for selector to se-
lect the most similar reference
image when there is no ref-
erence image with an exactly
same viewpoint as the query
image. To show this, we show
Fig. 8, where the x-axis shows
the viewpoint difference be-
tween the ground-truth near-
est reference image and the
query image while the y-axis
shows the viewpoint differ-
ence between the selected ref-
erence image and the query
image. The viewpoint differ-
ence is computed as the an-
gle between the query view-
point and the reference view-
point by arccos ũ · ṽ. With the increase of viewpoint difference between the
ground-truth reference image and the query image, the viewpoint difference
between the selected reference image and the query image is also increasing.
However, the proposed selector is able to select more accurate reference image
than the baseline ObjDesc [10]. Figure 9 also shows some examples.

Query GT Gen6D ObjDesc Query GT Gen6D ObjDesc

Fig. 9. The input query image, the ground-truth reference image with nearest view-
point, the reference images selected by Gen6D and ObjDesc [10].

Gen6D Pose Estimator 13

Fig. 10. Additional qualitative results on the LINEMOD [2] dataset. Ground-truth
poses are drawn in green while predicted poses are drawn in blue.

Fig. 11. Qualitative results on the MOPED [4] dataset. Ground-truth poses are drawn
in green while predicted poses are drawn in blue.

14 Y. Liu, Y. Wen, S. Peng, et al.

Fig. 12. More qualitative results of Gen6D on the GenMOP dataset.

Gen6D Pose Estimator 15

References

1. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

2. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab,
N.: Model based training, detection and pose estimation of texture-less 3d objects
in heavily cluttered scenes. In: ACCV (2012)

3. Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: Deepim: Deep iterative matching for
6d pose estimation. In: ECCV (2018)

4. Park, K., Mousavian, A., Xiang, Y., Fox, D.: Latentfusion: End-to-end differen-
tiable reconstruction and rendering for unseen object pose estimation. In: CVPR
(2020)

5. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: Pixel-wise voting network
for 6-dof pose estimation. In: CVPR (2019)

6. Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.:
Common objects in 3d: Large-scale learning and evaluation of real-life 3d category
reconstruction. In: CVPR (2021)

7. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
8. Tekin, B., Sinha, S.N., Fua, P.: Real-time seamless single shot 6d object pose

prediction. In: CVPR (2018)
9. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-

Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: CVPR (2021)

10. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3d pose
estimation. In: CVPR (2015)

	Supplementary Material: Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images

