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Abstract. In this paper, we present a generalizable model-free 6-DoF
object pose estimator called Gen6D. Existing generalizable pose esti-
mators either need the high-quality object models or require additional
depth maps or object masks in test time, which significantly limits their
application scope. In contrast, our pose estimator only requires some
posed images of the unseen object and is able to accurately predict
poses of the object in arbitrary environments. Gen6D consists of an ob-
ject detector, a viewpoint selector and a pose refiner, all of which do
not require the 3D object model and can generalize to unseen objects.
Experiments show that Gen6D achieves state-of-the-art results on two
model-free datasets: the MOPED dataset and a new GenMOP dataset.
In addition, on the LINEMOD dataset, Gen6D achieves competitive
results compared with instance-specific pose estimators. Project page:
https://liuyuan-pal.github.io/Gen6D/.
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1 Introduction

Estimating the orientation and location of an object in 3D space is a prelimi-
nary and necessary step for many tasks involving interaction with the object. In
the last decade, 3D vision has witnessed tremendous development ranging from
robotics, games, to VR/AR. These applications raise new demands for the 6-DoF
object pose estimation, requiring a pose estimator to be generalizable, flexible,
and easy-to-use. However, existing methods suffer from several restrictive condi-
tions. Most methods [28,69,63] can only be used for a specific object or category
same as the training data. Some methods [56,29,73,71,43,41,72] can generalize to
unseen objects, but they rely on high-quality target 3D models [56,29,73,71,43],
or additional depth maps [41] and masks [41,72] at test time. These requirements
severely limit the practical applications of the existing pose estimators.

To meet demands in practical applications, we argue that such a pose estima-
tor should have the following properties. 1) Generalizable. The pose estimator
can be applied on an arbitrary object without training on the object or its cat-
egory. 2) Model-free. When generalizing to an unseen object, the estimator
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(a) Reference Images (b) Query Images (c) Object poses

Fig. 1. Given (a) reference images of an object with known poses and (b) query images
containing the same object with unknown poses, our pose estimator is able to accurately
estimate (c) their object poses in the query images, where green color means ground-
truth and blue color means estimation. Note that all objects are unseen in the
training set and the same estimator is applied for all objects.

only needs some reference images of this object with known poses to define the
object reference coordinate system, as shown in Fig. 1 (a), but does not rely on
a 3D model of the object. 3) Simple inputs. When estimating object poses, the
estimator only takes RGB images as inputs without requiring additional object
masks or depth maps.

To the best of our knowledge, there is no existing pose estimator satisfying
all the above three properties simultaneously. Thus, in this paper, we propose
a simple but effective pose estimator, called Gen6D, which possesses the three
properties above. Given input reference images of an arbitrary object with known
poses, Gen6D is able to directly predict its object pose in any query images,
as shown in Fig. 1. In general, an object pose can be estimated by directly
predicting rotation/translation by regression [69,27,58], solving a Perspective-n-
Points (PnP) problem [42,47] or matching images with known poses [57,68,56].
Direct prediction of rotation and translation by regression is mostly limited to
a specific instance or category, which has difficulty in generalizing to unseen
objects. Meanwhile, due to the lack of 3D models, PnP-based methods do not
have 3D keypoints to build 2D-3D correspondences so that they are incompatible
with model-free setting. Hence, we apply image-matching in our framework for
pose estimation, which can generalize to unseen objects by learning a general
image similarity metric.

In Gen6D, we propose a novel image-matching based framework to estimate
the object pose in a coarse-to-fine manner. The framework consists of an object
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Fig. 2. Overview. The proposed pose estimator consists of a detector which detects
the object in the query image, a viewpoint selector which selects the most similar
viewpoint from reference images, and a pose refiner which refines the initial pose into
an accurate object pose.

detector, a viewpoint selector and a pose refiner, as shown in Fig. 2. Given
reference images and a query image, an object detector first detects the object
regions by correlating the reference images with the query image, which is similar
to [1]. Then, a viewpoint selector matches the query image against the reference
images to produce a coarse initial pose. Finally, the initial pose is further refined
by a pose refiner to search for an accurate object pose.

A challenge is how to design a viewpoint selector when the reference images
are sparse and contain cluttered background. Existing image-matching meth-
ods [57,68,56,22,2] have difficulty in handling this problem due to two problems.
First, these image-matching methods embed images into feature vectors and
compute similarities using distances of feature vectors, in which cluttered back-
ground interferes the embedded feature vectors and thus severely degenerates
the accuracy. Second, given a query image, there may not be a reference image
with exactly the same viewpoint as the query image. In this case, there will be
multiple plausible reference images and the selector has to select the one with
the nearest viewpoint as the query image, which usually are very ambiguous as
shown in Fig. 3.

To address these problems in viewpoint selection, we propose to use neural
networks to pixel-wisely compare the query image with every reference image
to produce similarity scores and select the reference image with highest simi-
larity score. This pixel-wise comparison enables our selector to concentrate on
object regions and reduces the influence of cluttered background. Furthermore,
we add global normalization layers and self-attention layers to share similarity
information across different reference images. These two kinds of layers enable
every reference images to commute with each other, which provides context in-
formation for the selector to select the most similar reference image.

The main challenge of developing our pose refiner is the unavailability of
the object model. Existing pose refiners [29,73] are based on rendering-and-
comparison, which render an image on the input pose and then match the ren-
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Query Nearest 2nd Nearest Query Nearest 2nd Nearest

Fig. 3. Query images and reference images have cluttered background. The reference
image with the nearest viewpoint looks very similar as the one with second nearest
viewpoint, which brings challenges for the selector to correctly select the nearest one.

dered image with the query image to refine the input pose. However, without
the object model, rendering high-quality images on arbitrary poses is difficult,
which makes these refinement methods infeasible in the model-free setting.

To address this problem, we propose a novel 3D volume-based pose refinement
method. Given a query image and an input pose, we find several reference images
that are near to the input pose. These reference images are projected back into
3D space to construct a feature volume. Then, the constructed feature volume is
matched against the features projected from the query image by a 3D CNN to
refine the input pose. In comparison with previous pose refiners [29,73], our pose
refiner avoids rendering any new images. Meanwhile, the constructed 3D feature
volume enables our method to infer the 3D pose refinement in the 3D space. In
contrast, previous pose refiners [29,73] only rely on 2D image features to regress
a 3D relative pose, which are less accurate especially for unseen objects.

To validate the effectiveness of our generalizable model-free pose estimator,
we introduce a new dataset, called General Model-free Object Pose Dataset
(GenMOP), which contains video sequences of objects in different environments
and lighting conditions. We choose one sequence as reference images and the rest
sequences of the same object as test query images. Experiments show that with-
out training on these objects, our method still outperforms instance-specific esti-
mator PVNet [42] on the GenMOP dataset and another model-free MOPED [41]
dataset. We also evaluate our method on the LINEMOD dataset [23], on which
our generalizable pose estimator achieves comparable results as instance-specific
estimators which needs to be trained with excessive rendered images.

2 Related works

2.1 Specific object pose estimator

Most object pose estimators [69,57,42,28,24,67,14,62,34,53,27,45,26,25,46,54] are
instance-specific, which cannot generalize to unseen objects and usually re-
quire a 3D model of the object to render extensive images for training. Recent
instance-specific pose estimators [40,6,33] reconstruct the object model implic-
itly in the pipeline so that they are model-free. Category-specific pose estima-
tors [63,11,66,13,30,10,59,8,31,9,16,15] can generalize to objects in the same cat-
egory and also do not require the object model. However, they are still unable to
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predict poses for objects in unseen categories. In comparison, Gen6D is general-
izable, which makes no assumption of the category or the instance of the object
and also does not need the 3D model of the object.

2.2 Generalizable object pose estimator

Generalizable pose estimators mostly require an object model either for shape
embedding [71,43,12,44] or template matching [22,2,68,56,21,37,74] or rendering-
and-comparison [29,73,38,4,56,18]. To avoid using 3D models, recent works [72,41]
utilize the advanced neural rendering techniques [36] to directly render from
posed images for pose estimation. However, current rendering methods are only
able to render images under exactly the same appearance like lighting conditions,
which degenerates the accuracy under varying appearance. To remedy this, these
methods have to resort to additional depth maps [41] or object masks [41,72]
to achieve robustness. There are also some works focusing on estimating poses
of unseen objects using RGBD sequences [65,38,51,20,5,17]. In contrast to these
methods, Gen6D is model-free and does not require depth maps or masks. There
are also concurrent works [55,50] of generalizable pose estimation.

2.3 Instance detection

Instance detection aims to detect a given object with some images of the ob-
ject [1,35,19,39]. There are some instance detection methods which also estimate
viewpoints [70,3] for novel category in one- or few-shot setting. The detector of
Gen6D is inspired by [1], which uses correlation to find the object region. The
target of Gen6D is to estimate the 6-DoF object pose, which is different from
these methods for detection or category-level viewpoint estimation.

3 Method

Given Nr images of an object with known camera poses, called reference im-
ages, our target is to predict the pose of the object in a query image. The
object pose here means a translation t and a rotation R that transform the ob-
ject coordinate xobj to the camera coordinate xcam = Rxobj+t. All the intrinsics
parameters of images are already known.

Data normalization. For every object, we can estimate a rough size of
the object by triangulating points from reference images or simply unprojecting
reference images to find an intersection. The center of triangulated points or the
center of the 3D intersection region is regarded as the object center. Then, the
object coordinate system is normalized so that the object center locates at the
origin and the object size is 1, which means the whole object resides inside a
unit sphere at the origin. This data normalization ensures the feature volume
constructed by our pose refiner in Sec. 3.3 will contain the target object. More
details about the normalization can be found in the supplementary materials.
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Fig. 4. (a) Detection outputs. Depth can be computed from the bounding box size Sq,
which along with the 2D projection of the object center determine the location of the
object center. (b) Architecture of the detector. We use features of reference images as
kernels to convolve features of multi-scale query images to get score maps. Score maps
are further processed by a CNN to produce a heat map about the object center and a
scale map to determine the bounding box size.

Overview. As shown in Fig. 2, the proposed Gen6D pose estimator consists
of an object detector, a view selector and a pose refiner. The object detector
crops the object region and estimates an initial translation (Sec. 3.1). The view
selector finds an initial rotation by selecting the most similar reference image and
estimating an in-plane rotation (Sec. 3.2). The initial translation and rotation
are used in the pose refiner to iteratively estimate an accurate pose (Sec. 3.3).

3.1 Detection

The query image is usually very large and the object only occupies a small region
on the query image. To focus on the object, we apply a correlation-based instance
detector similar to [1]. We decompose the detection problem into two parts, i.e.
finding the 2D projection q of the object center and estimating a compact square
bounding box size Sq that encloses the unit sphere. As shown in Fig. 4 (a), such a
compact bounding box size is used in computing the depth of the object center
by d = 2f̃/Sq, where 2 is the diameter of the unit sphere and f̃ is a virtual
focal length by changing the principle point to the estimated projection q. The
projection q and the depth d will determine the location of the object center,
which provides an initial translation for the object pose.

The design of our detector is shown in Fig. 4 (b). We extract feature maps on
both the reference images and the query image by a VGG [52]-11 network. Then,
the feature maps of all reference images are regarded as convolution kernels to
convolve with the feature map of the query image to get score maps. To account
for scale differences, we conduct such convolution at Ns predefined scales by
resizing the query images to different scales. Based on the multi-scale score
maps, we regress a heat map and a scale map. We select the location with the
max value on the heat map as the 2D projection of the object center and use the
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Fig. 5. Architecture of the viewpoint selector. We compute the element-wise product of
every reference image with the query image to get a score map, on which a similarity
network is applied to compute an in-plane rotation and a similarity score for this
reference image. Note that in the similarity network, we use global normalization layers
and a transformer to share information across reference images.

scale value s at the same location on the scale map to compute the bounding
box size Sq = Sr ∗ s, where Sr is the size of reference images.

With the detected 2D projections and scales, we compute the initial 3D
translations and crop the object regions for subsequent processing. More de-
tails about architecture and training of detector networks can be found in the
supplementary materials.

3.2 Viewpoint Selection

Viewpoint selection aims to select a reference image whose viewpoint is the
nearest to the query image. Meanwhile, we will estimate an in-plane rotation
between the query image and the selected reference image. We approximately
regard the viewpoint of the selected reference image as the viewpoint of the
query image, which along with the estimated in-plane rotation forms an initial
rotation for the object pose.

As shown in Fig. 5, we design a viewpoint selector to compare the query
image with every reference image to compute similarity scores. Specifically, we
first extract feature maps by applying a VGG [52]-11 on reference images and
the query image. Then, for every feature map of reference images, we compute
its element-wise product with the feature map of the query image to produce
a correlation score map. Finally, the correlation score map is processed by a
similarity network to produce a similarity score and a relative in-plane rotation
to align the query image with the reference image. In our viewpoint selector, we
have three special designs.

In-plane rotation. To account for in-plane rotations, every reference im-
age is rotated by Na predefined angles and all rotated versions are used in the
element-wise product with the query image.

Global normalization. For every feature map produced by the similarity
network, we normalize it with the mean and variance computed from all feature
maps of reference images. Such a global normalization helps our selector select
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the relatively most similar reference image because it allows the distribution
of feature maps to encode the context similarity and amplifies the similarity
differences among different reference images. For every reference image, max-
pooling is applied on its feature map to produce a similarity feature vector.

Reference view transformer. We apply a transformer on the similarity
feature vectors of all reference images, which includes the positional encoding of
their viewpoints and attention layers over all similarity feature vectors. Such a
transformer lets feature vectors communicate with each other to encode contex-
tual information [60,48,64], which is helpful to determine the most similar ref-
erence image. The outputs of reference view transformer will be used to regress
a similarity score and an in-plane rotation angle for each reference image. The
viewpoint of the reference image with highest score will be selected.

With the selected viewpoint and the estimated in-plane rotation, we esti-
mated an initial rotation for the object pose, which will be refined by the pose
refiner. More details about the network and training can be found in the sup-
plementary materials.

3.3 Pose refinement

Combining the translation estimated by the object detector and the rotation
estimated by the viewpoint selector, we get an initial coarse object pose. This
initial pose is further refined by a 3D volume-based pose refiner.

Specifically, since the objects are already normalized inside an unit sphere at
the origin, we build a volume within the unit cube at the origin with S3

v = 323

vertices. As shown in Fig. 6 (a), to construct the features on these vertices, we
first select Nn = 6 reference images that are near to the input pose. We extract
feature maps on these selected reference images by a 2D CNN. Then, these
feature maps are unprojected into the 3D volume and we compute the mean and
variance of features among all reference images as features for volume vertices.
For the query image, we also extract its feature map by the same 2D CNN,
unproject feature map into the 3D volume using the input pose and concatenate
the unprojected query features with the mean and variance of reference image
features. Finally, we apply a 3D CNN on the concatenated features of the volume
to predict a pose residual to update the input pose.

Similarity approximation. Instead of regressing the rigid pose residual
directly, we approximate it with a similarity transformation, as shown in Fig. 6
(b). The approximate similarity transformation consists of a 2D in-plane offset, a
scale factor and a residual 3D rotation. The reason of using this approximation
is that it avoids direct regression of the 3D translation from the red circle to
the solid green circle in Fig. 6, which is out of the scope of the feature volume.
Instead, we regress a similarity transformation from red circle to dotted green
circle, which can be easily inferred from the features defined in the volume. More
details can be found in the supplementary materials. In our implementation, we
apply the refiner iteratively 3 times by default.

Discussion. The key difference between our volume-based refiner and other
pose refiners [29,73,56] is that our pose refiner does not require rendering an
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Fig. 6. (a) Architecture of our pose refiner. (b) A 2D diagram to illustrate the simi-
larity transformation approximation. Though the ground-truth pose residual from the
input object pose (solid red circle) to the ground-truth object pose (solid green circle)
is a rigid transformation, we can approximate this rigid transformation by a similar-
ity transformation inside the feature volume. Our pose refiner predicts the similarity
transformation, which transforms the input red circle to the dotted greed circle. Then,
the similarity transformation can be converted to a rigid transformation.

image on the input pose, which thus is more suitable for the model-free pose
estimation. Meanwhile, since the 3D volume is constructed by multiple reference
images with different poses, our volume-based refiner is able to know the image
features under different poses and infer how pose changes affect the image fea-
tures for unseen objects. In comparison, previous pose refiners [29,73,56] only
compare a rendered image with the input query image to compute a pose resid-
ual. Such a 2D image does not provide enough 3D structure information to infer
how pose changes affect image patterns, especially for unseen objects. Thus, it
is hard for these methods to predict correct pose residuals for unseen objects.

4 Experiments

4.1 GenMOP Dataset

To validate the effectiveness of the proposed method, we collect a dataset called
General Model-free Object Pose Dataset (GenMOP). GenMOP dataset consists
of 10 objects ranging from flatten objects like “scissors” to thin structure objects
like “chair” as shown in Fig. 7. For each object, two video sequences of the same
object are collected in different environments like backgrounds and lighting con-
ditions. Every video sequence is split into ∼200 images. For each sequence, we
apply COLMAP [49] to reconstruct the camera poses in each sequences sepa-
rately and manually label keypoints on the object for cross-sequence alignment.
More details about the GenMOP dataset can be found in the supplementary.

4.2 Protocol

We evaluate Gen6D pose estimator on the GenMOP dataset, the LINEMOD [23]
dataset and the MOPED [41] dataset.
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Chair Piggy PlugEN Scissors TFormer Cup Knife Love PlugCN Miffy

Fig. 7. Objects in the GenMOP dataset. The first 5 objects are used in test and the
last 5 objects are used in training.

GenMOP. On the GenMOP dataset, we select one video sequence as ref-
erence images and the other video sequence in a different environment as test
query images, both of which contain ∼200 images.

LINEMOD. The LINEMOD [23] dataset is a widely-used dataset for object
pose estimation. On the LINEMOD dataset, we follow the commonly-used train-
test split as [58]. We select the training images (∼180) as reference images and
all the rest ∼1000 test images as query images for evaluation.

MOPED. The MOPED [41] dataset is intended for model-free object pose
estimation. Since the MOPED dataset is generated automatically by depth fu-
sion and point cloud registration, object poses in some sequences are not very
accurate. Thus, we manually select reliable subsets from 5 objects for evaluation.
For each object, there are 200-600 reference images and 100-300 query images.

Training datasets. The training dataset of Gen6D estimator consists of:
1) Rendered images from ∼2000 ShapeNet [7] models, 2) Google Scanned Ob-
ject dataset rendered by [64] with 1023 objects, 3) 5 objects from the Gen-
MOP dataset and 4) 5 objects (ape/can/holepuncher/iron/phone) from the
LINEMOD dataset. Note we only train a single model and test its performance
on the unseen objects on GenMOP, LINEMOD and MOPED dataset.

Metrics. We adopt the widely-used Average Distance (ADD) [23] and the
projection error as metrics. On the ADD, we compute the recall rate with 10%
of the object diameter (ADD-0.1d) and the AUC in 0-10cm (ADD-AUC). On
the projection error, we compute the recall rate at 5 pixels (Prj-5).

4.3 Results on GenMOP

For comparison, we choose the generalizable image-matching based ObjDesc [68]
and two instance-specific estimators PVNet [42] and RLLG [6] as baseline meth-
ods. Quantitative results are shown in Table 1 and some qualitative results are
shown in Fig. 1. More qualitative results are in the supplementary.

Baseline implementation. For the generalizable template-matching Ob-
jDesc [68], we use the same training dataset as Gen6D. In testing, we crop the
object region by our object detector and then use ObjDesc to select the most
similar reference image to the query image. The pose of the selected reference
image is regarded as the pose of the query image. All objects used in evaluation
are unseen for Gen6D and ObjDesc in training. For instance-specific estimators
PVNet [42] and RLLG [6], we have to train different models for different objects
separately. On every test object, the reference images for Gen6D are used as
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Table 1. Performance on the GenMOP dataset. “General” means generalizable or not.
“Ours w/o Ref.” means not using the pose refiner in the Gen6D estimator.

Metrics Method General
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d

PVNet [42] ✗ 49.50 2.33 77.89 44.40 19.84 38.79
RLLG [6] ✗ 0.70 1.28 1.01 3.45 0.79 2.71
ObjDesc [68] ✓ 3.50 5.14 14.07 1.25 7.54 8.55
Ours w/o Ref. ✓ 14.00 7.48 39.70 16.81 11.51 17.90
Ours ✓ 61.50 19.63 75.38 32.76 62.70 50.39

Prj-5

PVNet [42] ✗ 15.00 30.37 83.42 96.55 59.52 56.97
RLLG [6] ✗ 2.00 4.67 17.59 35.78 7.94 13.59
ObjDesc [68] ✓ 4.00 10.75 4.52 18.53 8.33 9.23
Ours w/o Ref. ✓ 11.50 40.65 33.17 34.05 64.29 36.73
Ours ✓ 55.00 72.90 92.96 93.53 98.81 82.64

training set for PVNet and RLLG. However, only ∼200 reference images are not
enough to produce reasonable results so we additionally label the object masks
on these reference images and cut the object to randomly paste on backgrounds
from COCO [32] to enlarge their training set. For PVNet, we use its 8 corners
of the 3D bounding box as keypoints for voting because no model is available.

Comparison with baselines. 1) Both ObjDesc [68] and “Ours w/o Ref”
select the most similar reference image to estimate the object pose. The results
show that our viewpoint selector is able to select more accurate viewpoint than
ObjDesc. However, only selecting the best reference viewpoint is not enough for
predicting accurate poses because the reference images do not cover all possible
viewpoints. 2) With further pose refinement, our Gen6D estimator is able to
produce better results than the instance-specific methods PVNet and RLLG on
average. The main reason is that for PVNet and RLLG, these reference images
are not enough for training a very accurate pose estimator. In contrast, Gen6D
well adapts into this setting with limited reference images of a novel object. Our
pose refiner is able to learn generalizable features for accurate pose refinement.

4.4 Results on LINEMOD [23]

We further report results in ADD-0.1d on the LINEMOD [23] dataset in Table 2
and show qualitative results in Fig. 8. For baselines, we include the instance-
specific pose estimators [57,61,73,6,42,69,29] and a generalizable estimator Pose-
From-Shape (PFS) [71]. The instance-specific estimators are either trained on the
synthetic data of the object (“synthetic training”) [57,61,73] or trained on both
the synthetic and real data of the object (“real training”) [42,69,73]. PFS [71] is
trained on ShapeNet [7], which embeds an object shape into a feature vector and
applies the embedded feature vector on a query image to predict an object pose.
For [71,73,69], we also include their reported performance using pose refiners
DeepIM [29] or DPOD [73], both of which are trained on the synthetic data or
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Table 2. ADD-0.1d on LINEMOD [23] dataset. “Training” means what kind of training
set is used. “Synthetic” means the model only uses synthetic data of the given object
for training; “Real” means the model is trained on both the synthetic images and real
images of the given model; “No” means the model is not trained on any data of the
test object. “GT-BBox” means a model uses the ground-truth bounding box or not to
produce its performance. “Refine” means the pose refiner.

Training Name
GT-

Refine
Object Name

Avg.
BBox cat duck bvise cam driller lamp

Synthetic

AAE [57] ✗ No 17.90 4.86 20.92 30.47 23.99 60.47 26.44
Self6D [61] ✗ No 57.90 19.60 75.20 36.90 67.00 68.20 54.13
DPOD [73] ✗ No 32.36 26.12 66.76 24.22 66.60 57.26 45.55
DPOD [73] ✗ DPOD [73] 65.10 50.04 72.69 34.76 73.32 74.27 61.70

Real

PFS [71] ✓ DeepIM [29] 54.10 48.60 63.80 40.00 75.30 55.30 56.18
PVNet [42] ✗ No 79.34 52.58 99.90 86.86 96.43 99.33 85.74

PoseCNN [69] ✗ DeepIM [29] 82.10 77.70 97.40 93.50 95.00 96.84 95.19
DPOD [73] ✗ DPOD [73] 94.71 86.29 98.45 96.07 98.80 97.50 90.53

Gen

PFS [71] ✓ No 15.40 8.20 25.10 12.10 18.60 6.50 14.32
Ours ✓ No 94.11 81.31 99.52 94.31 96.33 93.38 93.16
Ours ✗ No 15.97 7.89 25.48 22.06 17.24 35.80 20.74
Ours ✗ Volume 60.68 40.47 77.03 66.67 67.39 89.83 67.01

real data of the test object. Ground-truth bounding box is used in PFS to crop
the object region for the pose estimation. For baselines, we use the performance
reported in their paper for comparison.

The results in Table 2 show that: 1) In comparison with the generalizable pose
estimator PFS [71], Gen6D outperforms PFS [71] with or without subsequent
pose refinement. Note the PFS [71] uses the DeepIM [29] refiner which actu-
ally is trained on the synthetic data of the test object while our volume-based
refiner is not trained on the test object at all. 2) In comparison with instance-
specific estimators [73,61,57] with synthetic training on the test object, Gen6D
clearly outperforms all these methods. 3) However, Gen6D performs worse than
instance-specific estimators [42,69,73] with real training. The main reason is the
inaccurate estimation of the depth. Since the object is usually very far away from
the camera and small scale difference (1-2 pixels) will result in a huge offset in
the depth direction. Without training on the object, Gen6D cannot perceive such
subtle scale changes, which results in worse performance. 4) With ground-truth
bounding box, Gen6D achieves comparable results as the instance-specific esti-
mators [42,69,73] with real training because such ground-truth bounding boxes
provide correct depths.

4.5 Results on MOPED [41]

On the MOPED dataset, we compare Gen6D with Latent-Fusion [41] and PVNet
[42]. Latent-Fusion [41] is also a generalizable pose estimator which does not
require training on the test object but needs depth and object masks on query
images. We use the official codes and the pretrained weights of Latent-Fusion [41]
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Table 3. ADD-AUC on the MOPED dataset with threshold 0-10cm. “LF” means
Latent-Fusion [41]. “General” means the pose estimator is trained on the specific object
or not. “Input” means the required type of query images at test time.

Method General Input
Object Name

avg.
B.Drill D.Dude V.Mug T.Plane R.Aid

LF [41] ✓ RGBD 74.11 75.40 38.27 54.95 62.97 61.14
PVNet [42] ✗ RGB 49.49 43.30 67.78 48.61 72.92 56.42
Ours ✓ RGB 64.87 59.23 50.95 69.83 72.03 63.38

Fig. 8. Qualitative results on the LINEMOD [23] dataset. Ground-truth poses are
drawn in green while predicted poses of Gen6D are drawn in blue.

for evaluation. For training PVNet [42], we apply the same strategy as used on
the GenMOP dataset. Table 3 reports ADD-AUC on the MOPED dataset, which
shows that Gen6D outperforms both baselines on average while Gen6D only uses
simple RGB inputs and does not require training on the object.

4.6 Analysis

Ablation study on the viewpoint selector. To demonstrate the designs in
the viewpoint selector, we conduct ablation studies on the GenMOP dataset
and results are shown in Table 4. Without global normalization and reference
view transformer, our viewpoint selector already outperforms the baseline im-
age embedding method ObjDesc [68] by a large margin because our selector
pixel-wisely compare the query image with reference images to compute simi-
larity scores, which is more robust to clutter backgrounds. Meanwhile, adding
the global normalization or the reference view transformer further improves the
results because they exchange information between reference images to help the
selector choose the relatively most similar reference image.

Analysis on the pose refiner. To demonstrate the advantage of our volume-
based refiner on unseen objects over other rendering-and-comparison based re-
finers [29,73,56], we report results on the GenMOP in Table 4. For the baseline
refiner DeepIM [29], we regard the reference image selected by our selector as
the rendered image and use DeepIM to match it with the query image to update
the pose, i.e. one step refinement. Note further refinement with more steps using
DeepIM are infeasible because there is no object model to render a new image
on the updated pose. The DeepIM refiner is trained on the same training data
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Table 4. Ablations on the GenMOP dataset. “GN” means the global normalization
used in view selector. “RVT” means the reference view transformer. “+ DeepIM Ref.”
means using the refiner DeepIM [29] to refine the pose for one step. “+Volume Ref.”
means refinement with our volume-base refiner for one step.

Metrics Method
Object Name

avg.
Chair PlugEN Piggy Scissors TFormer

ADD-0.1d

ObjDesc [68] 3.50 5.14 14.07 1.25 7.54 8.55
w/o GN and RVT 8.50 13.08 36.18 14.66 1.98 14.88
w/o RVT 14.50 10.75 36.18 14.22 11.51 17.43
Full selector 14.00 7.48 39.70 16.81 11.51 17.90
+ DeepIM Ref. 12.50 6.54 29.15 18.10 31.35 19.53
+ Volume Ref. 50.50 9.81 55.28 24.57 52.78 38.59

Prj-5

ObjDesc [68] 4.00 10.75 4.52 18.53 8.33 9.23
w/o GN and RVT 7.00 40.19 20.60 28.88 54.76 30.28
w/o RVT 16.00 46.73 31.66 24.57 55.16 34.82
Full selector 11.50 40.65 33.17 34.05 64.29 36.73
+ DeepIM Ref. 4.50 5.23 18.50 61.64 73.81 42.16
+ Volume Ref. 44.00 71.03 92.96 84.48 95.24 77.54

as our volume-based refiner. The results show that our volume-based refiner has
better generalization ability on unseen objects than DeepIM.

More analysis. We provide more analysis about reference image number,
comparison with finetuned DeepIM [29], refinement iterations, ablation on train-
ing data and symmetric objects in the supplementary material.

Limitations. The generalization ability of Gen6D mainly comes from match-
ing image patterns in the viewpoint selection and the pose refinement. Thus,
Gen6D requires enough diverse training data to learn general image matching
for accurate pose estimation and it performs worse with limited training data.
Meanwhile, Gen6D is not specially designed to handle occlusions and the per-
formance may degenerate when severe occlusions exist.

Running time. To process an image of size 540×960, Gen6D estimator costs
∼0.64 second in total on a 2080Ti GPU, in which the object detector costs ∼0.1
second, the viewpoint selector costs ∼0.04 second and the refiner with 3 times
refinement costs ∼0.5 second.

5 Conclusion

In this paper, we propose an easy-to-use 6-DoF pose estimator Gen6D for un-
seen objects. To predict poses for unseen objects, Gen6D does not require the
object model but only needs some posed images of the object to predict its
pose in arbitrary environments. In Gen6D, we design a novel viewpoint selector
and a novel volume-based pose refiner. Experiments demonstrate the superior
performance of Gen6D estimator in predicting poses for unseen objects in the
model-free setting.
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