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Supplementary Material

This supplementary material presents technical details, results, and experi-
ments not included in the main paper due to the space limit.

A Technical Details

In this section, we explain the details of experimental settings (in Sec. A.1)
and method (in Sec. A.2) of our high dynamic range radiance Plenoxels (HDR-
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Plenoxels) and other baselines. We build our code based on PyTorch open li-
brary [8] and use one NVIDIA GeForce RTX 3090 GPU or A100 for training
and rendering novel view synthesis.

A.1 Experimental Settings

Synthetic Dataset. To generate the synthetic dataset, we use Blender [2]
to modify the various camera. Each image is created in OpenEXR format and
conducted post-processing like changing exposure and white balance at high
dynamic range (HDR) colorspace for comparing physical camera tone mapping.
Synthetic scenes have five different scenes, i.e., book [3], classroom (CC0) [14],
kitchen (CC-BY) [4], palace (CC-BY) [1], and room [3]. To demonstrate the
ability of novel view synthesis to our HDR-Plenoxels, we generate synthetic data
with complex geometry and various radiometric conditions. In the test stage, we
split the test image into left- and right- half. We train the left-half of a test image
and test with the right-half because our method needs trained parameters of the
tone mapping module for rendering. The left-half of the test image is trained,
and the right-half is used at test time. Exposure was set to ±3EV at the basis
image, white balance was applied by multiplying each color channel with 1.25
separately, and camera response function (CRF) was set to gamma correction
with γ = 3. We show experimental results on five synthetic datasets. Each scene
is created at an 800 × 800 pixels resolution, with views sampled from the roughly
forward-facing camera. We use 43 views of each scene as training input and 7
for testing.

Real Dataset. We take all real scenes with exposure bracketing setting, and
changing white balance measured in Kelvin. Various camera shooting conditions,
i.e., exposure value with three intervals and white balance with 3000K, 3500K,
and 4000K, are applied sparsely to whole datasets. Our real datasets are taken
with Canon EOS 5D Mark IV , captured 30 to 50 views, and taken 1/5 as a
test set. Most images are taken in strong sunlight or darkroom, so each pixel is
easily saturated and needs an HDR colorspace to represent the accurate color of
a pixel. The experimental results on four real datasets are shown in Sec. B.

Hyperparameters. We follow the learning processes suggested by Plenox-
els [15] with some modifications. We train our HDR-Plenoxels with 10 epochs,
a total of 128,000 iterations each, with 5,000 rays per batch. We set a learning
rate of the spherical harmonics (SH) and tone mapping parts to pure exponen-
tial decay. The learning rate of SH and tone mapping starts from 0.01, and both
decays to 5 · 10−5 at step 250,000 to match each other’s learning speed. Voxel
opacity σ is updated using a delayed exponential function with decaying up to
0.05 during 250,000 iterations.

For learning stability of opacity σ and SH, total variance (TV) loss is applied
only for the 3 epochs until the first upsampling process. We apply the weight of
TV loss for opacity σ and SH as λTV,σ = 5 · 10−4, λTV,SH = 1 · 10−2. Each loss
is updated with RMSProp optimizer.

Our HDR-Plenoxels are a voxel grid-based method, so it is important to find
the proper range of the initial grid for retaining the expressible volume. Several
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Character Desk Plant Coffee
Fig. S1. Results of static and varying camera settings in real scenes. The
static and varying represent different camera conditions (i.e., exposure, white balance,
and camera response function (CRF)). In static camera conditions, all views of the
scene have the same exposure, white balance, and CRF, and the varying one is vice
versa. The first two rows are results from original Plenoxels, and last row is from HDR-
Plenoxels. Each column represents a different real scene.

scenes contain large depth in synthetic Blender data, which is hard to express
with a default concentric sphere grid. To properly determine the grid range,
we first compute the rough 3D geometry of the scene, and we then obtain the
camera poses with the 3D boundary of the scene through the COLMAP [12,13]
sparse reconstruction. We start grid voxel resolution in (128, 128, 64) and then
upsample the resolution in the order of (256, 256, 128), (512, 512, 256), and
(800, 800, 512) after each 25,600 iterations.

We similarly obtain the unknown camera pose through COLMAP and initial-
ize the grid in the real data. In particular, we conduct undistortion of the entire
image through calibration before the training learning due to the lens distortion
frequently appearing in the image. The resolution of the real image is updated
in the order of (128, 128, 128), (256, 256, 256), and (750, 600, 300).

A.2 Baseline Method Details

NeRF in the Wild (NeRF-W) [6]. We conduct the comparison of NeRF-W
based on the PyTorch version of NeRF-W implementation [9] with the same
width and depth of the original model [6]. We train the model with the left half
side of the images in the training set and test the novel view synthesis on the
right half side of the images. We use NeRF-A (appearance) without transient
embeddings for a fair comparison because our dataset has no transient parts.

Approximate Differentiable One-Pixel Point Rendering (ADOP) [11].
We use the official code of [10]. Given the COLMAP dense reconstruction results,



4 Jun-Seong K. et al.

LD
R
re
fe
r

O
ur
s

A
D
O
P

Fig. S2. Comparisons of qualitative results to baseline. The first row represents
the LDR reference image, which is used at training. All experiments are trained with
varying conditioned data and rendered with the tone mapping stage. Our results rep-
resent fine-grained rendering results compared to the ADOP baseline. Especially, ours
shows satisfying color representations compared to ADOP.

we train the ADOP model for 100 epochs, which are enough to show the model
performance on the novel view synthesis. We use the mask covering the right half
side of the images for dense reconstruction and model optimization, following
NeRF-W [6].

B Novel View Synthesis of Real Scenes

To evaluate our method, we compare against novel view synthesis baseline,
which handles the varying appearance of images. We present several experimen-
tal results to verify the effectiveness of our method in qualitative and quantitative
views of real scenes.

B.1 Qualitative Results

We compare our HDR-Plenoxels with original Plenoxels in different cam-
era settings, and its qualitative results are in Fig. S1. The results of original
Plenoxels with static camera condition located in the first row, represent our
upper bound performance of novel view synthesis. As described in (Sec. A.2),
the right half of the test image is unseen data and meaning novel view synthesis.
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Table S1. Quantitative results of novel view synthesis on real scenes. S denote
the static and V is the varying datasets. The blue and red color stand for the best and
the second best, respectively. We report the averaged results of all the views in each
test data. Our method shows the highest or the second-best performance compared to
other models.

Type Method
Character Desk Plant Coffee

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
S Baseline 32.40 0.955 0.278 25.53 0.895 0.303 24.58 0.833 0.324 25.87 0.922 0.301

V
Baseline 19.13 0.762 0.526 13.75 0.553 0.518 21.29 0.623 0.511 17.49 0.751 0.476
ADOP 17.56 0.801 0.114 10.298 0.390 0.518 18.26 0.529 0.192 18.44 0.822 0.085
Ours 33.14 0.960 0.343 28.32 0.907 0.312 24.27 0.790 0.369 27.40 0.928 0.269

In the second row, original Plenoxels with varying camera settings show poor
renderings results, especially in right half, where we split as test image.

We also compare the qualitative results with baseline models, ADOP, and
our HDR-Plenoxels, as shown in Fig. S2. Both ADOP and our results repre-
sent comparable novel view synthesis with predicting fine-detailed 3D geometry.
However, ADOP shows biased results in estimating satisfying color and shadows
compared to ours. If a hole occurs during the point-cloud generation, the recon-
struction result also shows vacancy in the rendered result because ADOP is a
point-cloud-based rendering model. The training stage of ADOP is unstable if
they are in local optima, resulting in the imperfect color of novel view synthe-
sis. In contrast, our HDR-Plenoxels successfully reconstruct 3D real scenes with
achieving a highly favorable tone-mapping stage. Due to the properties of SH,
which regularize complex color information on a few bases, we can optimize the
model fast and stable.

B.2 Quantitative Results

We compare our HDR-Plenoxesl with other methods, consisting of the origi-
nal Plenoxels (denoted as Baseline) in both static and varying conditioned data
and ADOP in the varying data, and its quantitative results are in Table S1.

ADOP performs the gamma correction (γ = 1/2.2) as default by design,
not the learned CRF function; thus, we first linearized the image by applying
inverse gamma correction and then learned CRF. ADOP is based on a dense re-
constructed point-cloud, which can recover structurally detailed scenes. However,
ADOP shows low performance in inferring the overall white balance and chang-
ing colors, including shading, which leads to low scores on SSIM and PSNR. In
contrast, our HDR-Plenoxels show overall high performance in all three metrics
demonstrating that ours can understand physically appropriate tone-mapping
part and 3D structure as well.

C Controllable Rendering at Novel View Synthesis

This section represents controllable rendering results with arbitrary exposure,
white balance, and CRF settings. Our tone mapping module consists of two
stages, i.e., white balance and CRF. Each stage is designed following the physical
properties and represented by an explicit function to change the values of each
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Fig. S3. Novel view synthesis results with varying exposure rendering. The
exposure condition changes from dark to bright from left to right. The novel view
rendering result of the middle column has a basis exposure value.

Basis Red Green Blue
Fig. S4. Novel view synthesis results with varying white balance rendering.
The white balance changes w.r.t . red, green, and blue, in the results of the second, third,
and last columns, respectively. The novel view rendering result of the first column has
a basis white balance value.

stage. To eliminate the ambiguity between exposure and white balance, we apply
a white balance module with a scale suggested by Kim et al . [5]. In our white
balance parameters, the exposure value is represented by a scale of white balance,
which enables us to control exposure value as well.

C.1 Exposure and White Balance

We show controllable rendering results of arbitrary exposure in Fig. S3. To
change the exposure value, we set the basis exposure value by globally averaging
the white balance values of full view. With scaling basis exposure value, we can
control the exposure of novel view rendering.

To control the white balance, we set the basis white balance by channel-
wise averaging the white balance values of full view. By changing respective red,
green, and blue components on the basis of the white balance, we can control
the white balance of novel view rendering, as shown in Fig. S4. This controllable
rendering allows us to get the most advantages of synthesizing novel views with
HDR, enabling editing HDR images and video in novel views through freely
controllable rendering.

C.2 Camera Response Function

To verify the ability of our CRF module, we train our HDR-Plenoxels with
images of two different CRF rendering the same scene and transfer each CRF.
After transferring each CRF, the novel view rendering results show distinct ren-
dering style, as shown in Fig. S5. The deliberate comparisons of CRF show the
shape difference between filmic and standard CRF according to each RGB color
channel. The results of transferred CRF rendering imply that HDR-Prenoxels
can learn robustly even in various CRFs. Also we can apply diverse CRF to en-
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S to F F to SStandard (S) Filmic (F)
Fig. S5. Novel view synthesis changing with CRF. The first two plots show
CRF learned from images modified with two different view transforms implemented in
Blender (Standard and Filmic). Just by exchanging learned CRFs, we can render the
same synthetic scene in different styles.

able various rendering styles and more free HDR image and video editing.extreme
case

C.3 Comparison between HDR-Plenoxels and NeRF in the Wild

Table S2. Controllable rendering com-
parison at a classroom image.

Ours NeRF-A

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
33.08 0.951 0.154 23.52 0.907 0.247

In our experiments, we use NeRF-
A (appearance), which means without
transient part. For controllable ren-
dering, NeRF-A interpolates their ap-
pearance between each view, which
has ambiguity in rendering results and
cannot control explicitly. In contrast, HDR-Plenoxels uses a tone-mapping mod-
ule based on explicit functions and can control LDR rendering with quantified
value input. Our synthetic dataset contains three different exposures, and we con-
duct controllable rendering, which reconstructs median exposure given brighter
and darker values or embeddings. In our HDR-Plenoxels, we get minimum and
maximum value of exposure after training and get median value for rendering
median exposure. In NeRF-A, we interpolate between appearances embeddings
which are assigned to brighter and darker images, respectively. We measure
quantitative quality between them with median exposure ground truth images.
As shown in Table S2, ours can control radiometric calibration more accurately
and also get precise geometry.

D Additional Experiments

D.1 Denoising Effects

Fig. S6. Denoising effect of HDR-
Plenoxels.

We build our synthetic datasets
using the Blender [2], which can ren-
der with or without the shot noise. To
verify the robustness of our model un-
der the such noise, we compare the
PSNR performance according to the
presence of the shot noise. Our model
marks 29.53 and 31.58 in PSNR, for kitchen data with and without shot noise,
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respectively. Although shot noise degrades the numerical performance slightly
(middle), it represents similar qualitative results to the model trained on de-
noised images (right), as shown in Fig. S6. The left one is the shot noise input
used to train the middle result. As our model aggregates multi-view information,
it somewhat shows a denoising effect.

D.2 Extreme Camera Conditions

Fig. S7. Sample images of
extreme exposure.

Our original exposure setting has three levels
in the ±3EV range. However, empirically, our
model can robustly learn even under harsher ex-
posure conditions. For more extreme cases, e.g .,
very dark or bright, we train and evaluate on
our kitchen data with five exposure levels in re-
spective ±4EV, ±5EV, and ±6EV ranges. For
±3EV, ±4EV, ±5EV, ±6EV cases, ours obtains
31.58, 30.30, 29.10, 28.48 in PSNR, respectively.
Although PSNR steadily decreases as the expo-
sure gap becomes wider, ours at the most extreme
setting obtains higher PSNR than ADOP in the
original setting (20.13). Even in extreme condi-
tions, our model shows high-quality HDR novel view synthesis (left) result with
+6EV input LDR image (right) as shown in Fig. S6. Our method is robust in
various exposure settings, even in extreme cases.

D.3 Generality of the Tone Mapping Module

Static Varying Varying w/ ours

Fig. S8. NeRF with our tone mapping module.

To verify the gener-
ality of the tone map-
ping module, we apply
our tone mapping mod-
ule to vanilla NeRF [7].
We trained vanilla NeRF
on our kitchen dataset.
Vanilla NeRF trained on
images from varying cam-
eras results in blurry and foggy images (middle). NeRF with our tone-mapping
module (right) shows clear novel view rendering result similar to a model trained
static camera setting (left). Our tone mapping function enabled vanilla NeRF
to learn radiance fields from varying cameras robustly. As tone-mapping mod-
ule is computationally light and easily attachable after the ray-marching; it can
generally be employed in the various volume rendering models.
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5. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A New In-Camera

Imaging Model for Color Computer Vision and Its Application. IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) 34(12) (2012) 6

6. Martin-Brualla, R., Radwan, N., Sajjadi, M.S.M., Barron, J.T., Dosovitskiy, A.,
Duckworth, D.: NeRF in the Wild: Neural Radiance Fields for Unconstrained
Photo Collections. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2021) 3, 4

7. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean Conference on Computer Vision (ECCV) (2020) 8

8. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems (NeurIPS) (2019) 2

9. Quei-An, C.: Nerf pl: a pytorch-lightning implementation of nerf. https://github.
com/kwea123/nerf_pl/ (2020) 3

10. Rückert, D., Franke, L., Stamminger, M.: Adop: Approximate differentiable one-
pixel point rendering. https://github.com/darglein/ADOP (2021) 3

11. Rückert, D., Franke, L., Stamminger, M.: ADOP: Approximate Differentiable One-
Pixel Point Rendering. arXiv:2110.06635 (2021) 3

12. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2016) 3

13. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016) 3

14. Seux, C.: Classroom. https://www.blender.org/download/demo-files/ 2
15. Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-

els: Radiance Fields without Neural Networks. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2022) 2

https://www.blender.org/download/demo-files/
http://www.blender.org
http://www.blender.org
https://www.turbosquid.com/ko/3d-models/cozy-room-3d-model-1641507
https://www.turbosquid.com/ko/3d-models/cozy-room-3d-model-1641507
https://www.blendswap.com/blend/5156
https://github.com/kwea123/nerf_pl/
https://github.com/kwea123/nerf_pl/
https://github.com/darglein/ADOP
https://www.blender.org/download/demo-files/

