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Abstract. We propose high dynamic range radiance (HDR) fields, HDR~
Plenoxels, that learns a plenoptic function of 3D HDR radiance fields,
geometry information, and varying camera settings inherent in 2D low
dynamic range (LDR) images. Our voxel-based volume rendering pipeline
reconstructs HDR radiance fields with only multi-view LDR images taken
from varying camera settings in an end-to-end manner and has a fast
convergence speed. To deal with various cameras in real-world scenario,
we introduce a tone mapping module that models the digital in-camera
imaging pipeline (ISP) and disentangles radiometric settings. Our tone
mapping module allows us to render by controlling the radiometric settings
of each novel view. Finally, we build a multi-view dataset with varying
camera conditions, which fits our problem setting. Our experiments show
that HDR-Plenoxels can express detail and high-quality HDR novel views
from only LDR images with various cameras.

Keywords: high dynamic range (HDR), novel view synthesis, plenoptic
function, voxel-based volume rendering, neural rendering

1 Introduction

The human eyes can respond to a wide range of brightness in the real-world
scene, from very bright to very dark, i.e., high dynamic range (HDR). Human
can see an object with its color and texture even in dark and dim conditions.
However, standard digital cameras capture a limited range of scenes due to
the low dynamic range (LDR) limits of the sensors. HDR imaging and display
techniques have been developed to overcome the sensors’ limits and to share the
beauty of the world as humans see.

Existing studies on HDR recovery [5,20,32,36] have been mainly focused on
a static view HDR from a monocular perspective or HDR video recovery. HDR
images are typically reconstructed by merging multi-exposure LDR images in a
fixed camera pose. To recover an HDR image from LDR images taken from various
viewpoints, the prior work [3,37] suggests accumulating images after alignment.
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Fig. 1. Qualitative results of static and varying camera settings. The static
and varying mean camera conditions include exposure, white balance, and CRF. The
static camera condition is a controlled environmental setting, i.e., all views of the scene
have the same components of exposure, white balance, and CRF. The varying camera
condition is alternated environmental settings, i.e., all views of the scene have different
components. Each row represents camera conditions, and each column represents the
class of synthetic datasets.

However, the HDR reconstruction results of the prior work are still limited to a
given view. To overcome the limitations, we propose a method of restoring HDR,
radiance fields with only multi-view LDR images. The LDR images taken from
varying cameras are used, where various radiometric conditions exist, including
different exposure, white balance, and camera response functions (CRFs).

The novel view synthesis requires additional information to reconstruct and
synthesize unseen views, given a sparse set of images. Previous arts inject prior
knowledge by voxel-based [14,47,48], mesh-based [2,4,40,45], multi-plane [43], and
volume rendering [16,23] to cope with the problem. Recently, Plenoxels [47] have
shown outstanding efficiency of the voxel-based method by assigning spherical
harmonics to each voxel corners. While maintaining comparable qualitative
results, the Plenoxels achieve two orders of magnitude faster rendering speed
than the Neural Radiance Fields (NeRF) [23], which utilizes the implicit neural
functions to conduct volume rendering.

In this work, we extend Plenoxels by proposing HDR-Plenoxels that can
restore HDR radiance fields with LDR images under diverse camera conditions in
an end-to-end manner. Although many saturated regions are appeared due to a
wide dynamic range of a scene during training, our HDR-Plenoxels are robust to
saturated regions and represents accurate geometry and color at rendering. This
is achieved by proposing a tone mapping module that approximates the in-camera
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pipeline (i.e., camera ISP) from HDR radiance to LDR intensity, allowing flexible
modeling of various radiometric and non-linear camera conditions. The tone
mapping parameters are spontaneously learned during training. In addition, once
3D HDR radiance fields and the CRF's are fitted, our tone-mapping module can
be freely controlled to synthesize different radiometric conditions of rendering
in any view. Our tone mapping module can easily be attached to most volume
rendering model variants as well.

Our HDR-Plenoxels mainly consist of two parts: 1) HDR radiance fields
modeled by Plenoxels followed by 2) the tone mapping module. The differentiable
tone mapping module renders HDR radiance values composited from Plenoxels
into LDR intensity, which allows to back-propagate gradients to the voxel grid
so that spherical harmonics (SH) coefficients and opacity are learned to span
the HDR radiance with the scene geometry. The tone mapping module explicitly
models CRFs, which enables to self-calibrate CRF's of each view during training.
In addition, thereby, we can easily edit the rendering property by just controlling
the radiometric curves of each novel view by virtue of the disentangled parameter-
ization of the module. Our experiments show that our method achieves preferable
performance on novel view synthesis with varying radiometric conditions of input.
Our main contributions are summarized as follows:

— We propose an end-to-end HDR radiance field learning method, HDR-Plenoxels,
that allow learning 3D HDR radiance fields from only multi-view and varying
radiometric conditioned LDR images as input.

— We model the tone mapping module based on a physical camera imaging
pipeline that maps HDR to LDR with explicit radiometric functions.

— We build a multi-view dataset containing varying camera conditions. The
dataset includes synthetic and real scenes with various camera settings such
as white balance, exposure, and CRF.

2 Related Work

The scope of our work contains HDR imaging, voxel-based volume rendering,
and its calibration. We overview the prior work in each perspective in this section.

HDR Imaging. A standard HDR recovery [5] directly accumulates multi-
exposure LDR images taken from a fixed camera pose, which are prone to ghosting
artifacts in dynamic scenes. To cope with the limitation, several studies [3,36]
suggest a method to recover an HDR image from LDR images taken from moving
cameras by using image alignment methods, such as image warping or optical
flows. However, they still suffer from large camera motion and occlusion due
to the imperfect warping model in the alignment step. In contrast, our work
exploits multi-view geometric information, which enables to obtain radiometrically
calibrated HDR radiance of an entire 3D scene and to be robust even with large
camera motion and occlusion.

Typical digital cameras can only deal with LDR due to the limited dynamic
range and the inherent nonlinear components, which represent the real-world scene
irradiance inferiorly in pixel values and cause discrepancy to the real scene during
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the image processing [4]. To obtain an accurate HDR, we have to understand
an inherent nonlinear relationship of the camera, i.e., the radiometric properties
of camera ISPs. Traditional radiometric calibration models the components of
physical pipelines of cameras, including white balance and CRF, and optimizes to
reconstruct HDR from only given LDR images [5] or HDR-LDR image pairs [12].
The latest learning-based approaches [6,7,18] suggest an implicit model-based
method but require ground truth HDR images paired with LDR images for
training. Liu et al. [15] replace an implicit function with an explicit physical
camera model, enhancing the HDR image reconstruction quality. Our method
shares the same advantages by adopting the explicit tone-mapping module. Note
that our HDR-Plenoxels learn HDR radiances up to scale, given only LDR images
but without ground truth HDR images and camera parameters.

Volume Rendering. Volume rendering is the method of understanding the
3D information inherited in two-dimensional images to render images at unseen
views, called novel views. Existing methods [23, 38] show high performance in
complex geometric shapes but require high memory for high expressiveness.

The recent volume rendering methods utilize multi-layer perceptron (MLP)
based implicit neural function to predict the signed distance fields [8, 26, 46]
and occupancy [21,28,34], and demonstrate the high expressiveness with high
compression power. In particular, Neural Radiance Fields (NeRF) [24] shows
fine-detailed rendering performance unprecedently. However, the NeRF-related
studies [19, 27,29, 42] have a limitation of high training and rendering time
complexity due to the forward process in every sampling point. Several studies [9,
25,31,39] try to modify the neural network to reduce the computation at each
sampling point to reduce the time cost.

Octree structure-based methods [14,47,48] are efficient methods that reduce
rendering time by virtue of their structure. Plenoxels [47] optimize the octree
structure with spherical harmonics instantaneously, requiring only tens of minutes
of training time to achieve detailed rendering results comparable to NeRF. Our
method uses Plenoxels as a volume rendering backbone for efficient rendering,
and further expands the expression power of Plenoxels to 3D HDR radiance fields
with negligible computational cost.

Calibrated Volume Rendering. Several methods [10,19,22,33] are proposed
for better performance with relaxed assumptions in volume rendering. NeRF in
the Wild (NeRF-W) [19] uses web images in the wild setting for reconstruction,
which deals with varying camera conditions and occluded objects by introducing
a handling mechanism by appearance and transient embeddings.

ADOP [33] is a point-based HDR neural rendering pipeline that consists of
a differentiable and physically-based tone mapping. Due to the differentiable
property, all the varying camera conditions can be optimized. However, ADOP
requires dense COLMAP structure-from-motion package [35] results as input,
which have expensive time costs. Also, the method itself has expensive time and
memory costs during training due to the point-based method. Distinctive from
ADOP, our method is cost efficient by utilizing an octree-based structure and
camera poses without dense COLMAP.
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Fig. 2. Overall pipeline of HDR-Plenoxels. 1) Plenoxels synthesizes an HDR image
from HDR radiance by ray-marching, then 2) the differentiable tone-mapping function
maps from HDR to LDR in an end-to-end manner. The self-calibration is done by
minimizing the residual between the synthesized LDR image and the captured one with
regularizations.

Recently, HDR-NeRF [10] tackles a similar HDR radiance field problem with
ours by NeRF, which is concurrent work with us. The work requires known
exposure information, and does not take into account white balance parameters,
in contrast to ours.

3 HDR Radiance Fields from Multi-view LDR Images

Our work aims to reconstruct HDR radiance fields of a visual scene from
multi-view LDR input images. In this section, we first present the overall pipeline
of our method, which is composed of two parts, 1) volume-aware HDR image
rendering (Sec. 3.1), and 2) synthesis of LDR images through the tone mapping
module (Sec. 3.2). We then explain the details of optimization (Sec. 3.3).

3.1 Volume-aware Rendering to HDR Images

To reconstruct the HDR irradiance fields from the multi-view LDR images,
we parameterize HDR radiance fields by voxel grid with spherical harmonics
(SH) called Plenoxels [47]. A bounded three-dimensional space of interest is
represented as a sparse voxel grid, each of which has opacity and SH coefficients.
The volume rendering method adopts a coarse-to-fine training scheme similar
to NSVF [14]. The learning process starts with a broad and uniformly divided
sparse voxel grid, and the voxels are upsampled to make a denser grid as learning
progresses. The voxels are pruned according to the occupancy threshold to reduce
the computational cost, as training iterations go. Upsampling and pruning are
applied simultaneously during training and repeated several times.

As SH can compactly represent any functions on a sphere well with a few
SH bases [1,48], it has been vastly used in graphics for HDR environmental
lighting [30] and glossy representation [17], which motivates our HDR radiance
representation. Furthermore, recent work has adopted SH in volume contents and
has demonstrated its effectiveness in implicitly expressing the non-Lambertian
effects [13,44]. Our HDR irradiance field modeling by SH based volume-aware
rendering exploits these advantages.
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The SH in each voxel grid is used for view representation. All the colors over
every direction of a sphere are spanned by a weighted sum of pre-defined spherical
basis functions and coefficients corresponding to each function. Therefore, the
corresponding color can be defined for each specific angle. Each vertex of the
voxel grid stores 28-dimensional vectors: 27 for SH coefficients (9 coefficients
per color channels) and 1 for voxel opacity o. Empirically, the values of the
SH coefficients change significantly during training which makes the training
unstable. To mitigate this, we initialize the color to grey by adding offset color
0.5 and the voxel opacity value to 0.1.

The HDR volume rendering part determines the color of a rendered HDR
image pixel C (r) by ray-marching the color and opacity of points sampled along
aray in a bounded three-dimensional voxel grid volume. At any 3D point (x,y,z)
and normalized viewing angle (v, Vy, v,) inside the voxel grid of Plenoxels, the
color and opacity of the point are trilinearly-interpolated from eight nearby voxel
vertices. For a camera center o and given an image pixel grid, we can define the
ray r = o + td starting from o to each pixel in the camera along the direction
d. After that, N sampling points are sampled over the ray at regular intervals
0; = t;11 — t;. The color and opacity of each sampled point are denoted as c;
and o, respectively, and T; the accumulated transmittance value up to the i-th
point. The ray-marching proceeds as follows:

N i—1
C(r) = Z’E (1 —exp(—0;d;)) c;, where T; =exp | — Zajéj .
j=1

i=1

The ray sampling randomly selects rays among the set of rays toward all pixels
of an image for efficient training.

3.2 Tone Mapping

The tone mapping stage converts an HDR image into a LDR image. We denote
a pixel value of an HDR image and a LDR image as as I;, and I;, respectively. The
output of volume rendering is HDR radiance fields, and we obtain I, as output
by ray marching HDR radiance fields. We represent our explicit tone mapping
module as a function 7 with radiometric parameters 6, i.e., I; = T (I, ).

The tone mapping function T consists of two stages. Each stage is parame-
terized by the physical property of its components and represented as separate
functions: white balance function w and camera response function (CRF) g.
Note that we regard the white balance scale parameters are merged with the
exposure value and learn at once. Two sub functions are applied sequentially as
I} = T(Ip) = g o (w(Iy)) which follows the image acquisition process of common
digital cameras.

Specifically, first, for a specific ray r, the pixel color of an HDR image C(r)
is calculated through ray-marching. The white balance function w(-) is applied
to Cy(r) with 6, = [w,,wy,wp]" € R3, and the function output is a pixel of
white balance calibrated image I,,. That is, given each channel components of
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Ch(r) = [}, ch.cp] € R,

cpy Wy wyCh,
Ly = w(Ch(r),0,) = Ch(r) © 0y, = | ) | © |wy| = |wyei |, (2)
CZ Wy ’LUbCl;l

where the operator ® stands for an element-wise product. To make white balance
physically proper, we regularize 6,, to be a positive value.

The CRF g is applied to I,,. We paramterize non-linear CRFs with an
approximated discrete piece-wise linear function. The function g(-) is divided
into 256 intervals which are allocated for uniformly sampled points in [0,1], and
parameterized by 256 control points. The pixel value of white balance corrected
image I,, is mapped to I; by interpolating corresponding CRF values of nearby
control points in domain. To make the CRF g(-) differentiable, we adapt 1D
grid-sampling used in [11]. According to Debevec et al. [4], the CRF is enforced
to follow the following boundary condition: I; = g (1,,;6,), g(0) =0, g(1) = 1.
A range beyond the dynamic range [0,1] is thresholded when applying the CRF
g. To propagate a loss on the saturation region of the rendered images during
training HDR radiance fields, we apply the leaky-thresholding method:

arx, z <0

gleaky(x) = g(x)a 0<z<1 (3)
-—F+a+l, 1<z,

where « is the thresholding coefficient.

3.3 Optimization

Leaky Saturation Mask. When taking

a scene with a wide dynamic range, the 1=y
LDR image may contain over- and under- /
saturation. In the saturated region, no cue 0.25 N
exists to guess correct geometric and photo- dow | low hieh 1
metric information due to missing texture.
This acts as outliers when taking into account it in the loss computation during
optimization. To suppress the impact of saturation regions and prevent our
recovery from being biased, we use saturation masking in the loss computation.
We define our leaky saturation mask as follows:

Fig. 3. Leaky saturation mask.

(‘2"[('):,‘”)2 x < low,
mask(x) = 1, low < 2 < hlgh7 (4)

(ﬁf z > high,

We empirically set low = 0.15 and high = 0.9 for the experiment.

White Balance Initialization. There exists inherent ambiguity in the camera
imaging pipeline, which occurs due to the inherent entangled relationship across
model components in the pipeline, e.g., for an image of a view, if we increase its
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exposure time twice while reducing the white balance of the view by half, the
resulting image appears same with the original setting of exposure time; i.e.,
there are multiple solutions that can produce the same LDR images.

We avoid such cumbersome ambiguity between exposure and white balance in
our method. We use only the white balance module w to express both exposure as
a scale and white balance ratio following the study [12] to workaround the scale
ambiguity between exposure and white balance. However, with this representation,
the overall scale of the white balance is trained extremely small or large. Therefore,
we calculate the averaged color of all inputs (74, ga,ba) € R3, select a reference
image which has the closest value of (74, g4, bs), and fix the white balance of the
reference image (rref, gref, bref) € R3. This acts as regularization. This helps
white balance be learned on the proper scale, which also means we have a suitable
exposure value.

However, still there exists a similar ambiguity between SH coefficients and
white balance. We observe that when the exposure differences are significantly
dynamic among neighborhood views, observed LDR intensity differences by
exposure times are misunderstood as the cause of the high-frequency reflectance*
of the scene and different white balances. This tends to produce wrong geometry
as the rays have reached different parts of the scene. We also found that the more
abrupt the intensity changes among neighborhood views are, the more dominant
the coefficients corresponding to high-frequency SH components become.

As a simple workaround, we use white balance information for each camera
as a prior to resolve the ambiguity in the SH side. We introduce white balance
initialization for each camera that guides initial solutions to physically plausible
solutions; thereby, the optimization process becomes more stable and faster to
converge to desirable solutions, and robust to such harsh input conditions. We
estimate a reference color ratio by comparing per-image averaged pixel values to
averaging each rgb value from the entire image set S. Thenb the initial white

balances wb,; for each camera, where ¢ € {r, g, b} of each image I; are initialized
as wh, ; = meankezi(Ck).
> mean;jecs(c;)

Spherical Harmonics Regularization. In the harsh input condition case,
where LDR images obtained from neighborhood views have significantly dynamic
exposure differences, the above initialization stabilizes early optimization steps.
If the optimization speed of the white balance does not match that of the SH
coeflicients, the ambiguity may arise again in later optimization steps. In order
to regularize this, we introduce SH coefficient masking that allows scheduling to
learn from diffuse reflectance property (view direction invariant radiance) first to
view direction sensitive ones, i.e., low frequency order SH to high frequency ones.
We apply SH masking to the coefficient of SH of degrees 2 and 3. We decrease
the rate of SH masking by 1/5 per epoch during the early five epochs for gradual
learning. After the early five epochs, we update SH of all degrees with full rate,

*The high-frequency reflectance refers to the case that a subtle view direction change
results in drastic reflectance ratio changes, such as glossy materials.
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i.e., no SH masking. This scheduling notably stabilizes the optimization for the
harsh condition input case.

Loss Functions. We optimize our pipeline w.r.t. voxel opacity, SH coefficients,
white balance and CRF, given multi-view LDR images as input, with the following
objective function:

L= Erecon + /\TV‘CTV + /\smoothﬁsmoothy (5)

where each term is defined as follows. The LDR reconstruction loss for i-th image
is defined as:

1 e 2
Lrecon = [ Dy MO (0()) = T (€0 ) I, (6)

where II;(-) denotes the camera projection operator from a ray to the 2D pixel
coordinate of the i-th LDR image, and M;(r) = mask(I; (II;(r))) denotes the
saturation mask computed from input LDR images. We randomly sample rays
rsampled @mong the possible set of rays R from N images. The loss is calculated
through a color difference between the rendered results and the ground truth
LDR values along each ray rsgmpieq considering the saturation masking M;(r).
The total loss is applied by normalizing the number of ray sampled. The other
two terms are for regularization. The total variation loss is defined as:

1
— E 2 2 2
frv = [V| £=vev,de[p] \/AI(V’d) +AG(v.d) + AZ(v,d) +, (7)

where the differences A. are calculated between successive voxels along each
respective (z,y, z)-axis, e.g., the d-th voxel value at (z,y, z) and the d-th voxel
value at (x 4+ 1,y, 2) for x-axis. The total variation loss is applied for opacity o
and SH coefficients separately. This encourages spatial and color consistency in
the voxel space. In implementation, we use different weighting for SH coefficients
Arv,su and opacity Aty q.

The smoothness loss is for obtaining a physically appropriate CRF [4] such
that CRFs increase smoothly, which is defined as:

_ N " 2
L:smooth - Zi:l Zee[o,l] 9; (6) ) (8)

where ¢g’(e) denotes the second order derivative of CRFs w.r.t. the domain of
CRFs. We set )\TV,O' =5 10_4, )\TV,SH =1-10"2 and Asmooth = 1+ 1073,

4 Experiments

We compare the qualitative and quantitative results of our HDR-Plenoxels
from three perspectives: LDR image rendering accuracy, HDR, irradiance image,
and 3D structure reconstruction quality. We also conduct an ablation study on
our tone-mapping components to demonstrate that our tone mapping components
efficiently understand camera settings.
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Fig. 4. Qualitative novel view results in real scenes with various camera
conditions. Each row represents different real scenes, and the column represents HDR
novel view rendering, LDR novel view rendering, LDR GT (i.e., inputs of training),
and RGB histograms of LDR novel view and LDR GT in order. Histograms of RGB
are clipped from 0 to 150 at RGB radiance and from 0 to 10* at the number of RGB
radiance for visual better visibility.

4.1 Experimental Settings

Due to the lack of open datasets proper to our experiment setting, ¢.e., images
under varying camera conditions, we collect synthetic and real data that fits
our experimental settings: images with various exposure, white balance, and
vignetting taken from the same camera poses. The details of the synthetic and
real datasets are explained in the supplementary material.

Baselines. We compare our proposed method against the following three models:
original Plenoxels [47], NeRF-A [19], and Approximate Differentiable One-Pixel
Point Rendering (ADOP) [33]. We conduct experiments for two environmental
settings: the varying camera, which has various environments that are exposure,
white balance, and CRF, and the static camera, which has controlled environments.
Plenoxels with inputs of the static camera are assumed to be an upper bound of
the task performance. We perform experiments with two environmental settings
at baselines.

Evaluation. HDR-Plenoxels can learn the 3D HDR radiance fields and freely
control the appearance of a novel view, i.e., unseen viewpoint, according to camera
conditions. We compute the similarity between the LDR image synthesized in
the novel view and the ground truth LDR image to measure the performance for
the novel view synthesis tasks. For quantitative evaluation, we use three metrics,
PSNR, SSIM [41], and LPIPS [49]. Our method and NeRF-A need to learn tone
mapping function and appearance embedding parameters separately at each
image. We cannot predict the tone mapping parameters at novel views; thus, we
use the left half of the test image (i.e., unseen view) at training and evaluate the
performance of the right half with learned parameters.
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Table 1. Quatitative results of novel view synthesis on synthetic data. Values
are average of the results for the test data of each scene. For evaluation, ADOP exploits
all the input images as it needs dense reconstruction. For the other models, the left half
of the image was included in the learning data and learned, and tested on the unseen
right half of the image. Our model shows overall high performance compared to other
models. S denote the static and V is the varying datasets. The blue and red color stand
for the best and the second best, respectively.

hod Book Classroom Monk Room Kitchen
Type Metho:
P PSNRt SSIMtT LPIPS| PSNRT SSIM{ LPIPS| PSNRT SSIMT LPIPS| PSNRt SSIM*T LPIPS| PSNR1 SSIMt LPIPS|
S Baseline 2253 0.796 0.293 2871 0.902 0.261 27.15  0.848  0.281 30.70 0912  0.183 3343 0957 0.138
Baseline 11.92  0.454  0.597 12.83  0.542  0.660 15.81  0.535  0.542 1328 0.599  0.643 1824 0.718  0.496
v ADOP 2215 0.824 0.291 21.04  0.800 0.345 21.92  0.764 0.392 19.25  0.834  0.329 20.13  0.827  0.280
NeRF-A 28.44 0.873 0.310 29.30 0.895 0.295 27.33 0.793 0.398 30.32 0.891 0.234 31.30 0.928 0.233
Ours 27.49 0.837 0.292 29.87 0.908 0.284 28.27 0.852 0.297 28.70 0.900 0.291 31.53 0.936 0.156

4.2 High Dynamic Range Radiance Fields

We evaluate the effectiveness of our HDR-Plenoxels by comparison against
the counterpart models, which handle images with varying appearances.

Comparison. Our HDR-Plenoxels learn HDR radiance fields from LDR input
images with various camera conditions at real scenes. The results in Fig. 4
represent the novel view synthesis of HDR images and tone mapping from HDR
to LDR images in real datasets. Compared to previous work focusing on single
perspective HDR [5], our method can reconstruct HDR radiance fields from
varying camera LDR images with several multi-view. We can render novel LDR
views from reconstructed HDR radiance fields with an explicitly controllable tone
mapping module.
Quantitative results are summa-

rized in Table 1. NeRF-A [19] shows  >°| UFaster |
comparable novel view synthesis results. 28
However, it cannot explicitly decom-

26

pose each camera condition, such as £
. (%]

exposure, white balance, and CRF, be- 2 24

cause those information is implicitly

. . . 22 HDR-Plenoxels
entangled in the embedding; thus, it NeRE-A
cannot predict radiance in contrast to S S s A s e s 5 1011
ours. NeRF-A also needs considerable Time (hours)

training time compared to our neural Fig. 5. Computation time.
networks free method as shown in Fig. 5. To reach PSNR 29, our method takes
30 minutes, but nerf-a takes 6 hours and 30 minutes, which is 13 times larger.
We use RTX 3090 for training.

The qualitative results of rendered novel LDR views on our synthetic dataset
are shown in Fig. 6 and Fig. 7. ADOP tends to incorrectly estimate the
camera components such as white balance, vignetting, and CRF, leading to
inaccurate color-mapped rendering results. The rendering result of NeRF-A
shows comparable quality to ours overall, but the details tend to be deficient. On
the contrary, our HDR-Plenoxels can render relatively accurate LDR images in
both aspects of color and geometry.
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LDR o “Ours B NeRE-A - "~ ADOP
Fig. 6. Comparison in synthetic scenes with varying camera conditions. The
left half of an image is used for training the tone mapping module 7, and the right half
is for the test. By applying the trained 7 at left half, we can synthesize the novel view
images. MSE maps of each result are on the right of the corresponding render results.

LDR GT Ours NeRF-A ADOP

Fig. 7. Qualitative results from the experiments between other baselines.
Our result represents fine-grained and proper color rendering results. All experiments
are trained with various radiometric conditions. The left half of an image is used in
training, and the right half is only used to measure quantitative results.

ADOP [33] shows deficient novel view rendering results compared to our
method. In the Fig. 7, they cannot reconstruct fine-grained geometry structure
compared to ours, and color information is also ambiguous. The error map
results of ours also show better than ADOP results as shown in Fig. 6. Therefore
the visual quality of the novel view results of ADOP is not satisfying, and we
outperform quantitative results with PSNR metrics at Table 1.

To verify that our model can restore HDR radiance field robust to under- or
over- saturated points, we qualitatively compared HDR details on saturation
points as shown in Fig. 8. There are severe dark or bright points, so some regions
are saturated and cannot distinguish color or geometry. We train with these
saturated LDR input images at our HDR-Plenoxels. They can render high-quality
HDR novel views, which means we can handle wide dynamic ranges and render
non-saturated novel HDR views.
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LDR GT HDR novel view HDR GT
Fig. 8. High dynamic range radiance rendering at saturation points. Our novel
view rendering results show robustness to under-saturation (1°* row) and over-saturation
(2°¢ row) points because we train the HDR radiance fields.

We also compare our HDR-Plenoxels and original Plenoxels [47] with images of
different camera settings in Fig. 1. The novel view synthesis results of the Plenoxels
with static camera condition are considered as our upper bound performance
and represent fine-detailed rendering results with clear color estimation. With
the varying camera setting, the Plenoxels fail to reconstruct proper 3D geometry,
especially in the right-half of images unseen view during training. These results
imply that previous volume rendering methods such as Plenoxels are prone to
degrade at varying camera conditions due to their static photometric assumption,
which needs to be compensated with additional regularization. With our tone
mapping module, the quality of novel view synthesis improves considerably by
showing comparable details to original Plenoxels trained with static LDR images.
This demonstrates that our tone mapping module precisely disentangles varying
cameras and properly reconstructs informative HDR radiance fields.

Ablation Studies. To verify the ef- Table 2. Effect of tone mapping
fectiveness of our tone mapping mod- components on novel view synthesis.
ule components, we conduct an abla- WB stands for white balance, VIG for vi-
tion study by removing each compo- gnetting, and CRF for camera response
nent as in Table 2. We report the aver- function. (A) is the baseline.

aged results of five synthetic datasets. WB VIG CRF PSNRf SSIM? LPIPS|
Comparing (A) with (B), the consider- ;3-33 82(15“1) 822;
able performance improvement by the v 2112 0799  0.352
white balance module means that dis- v 29.34 0.876 0.294
entanglement of exposure and white v Y2673 0878 0.264
balance helps to learn accurate geome-

try and color. The performance degradation from (B) to (C) and from (D) to (E)
implies that decomposing the vignetting effect of images is inconducive. According
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to the characteristics of our tone mapping module, which trains quickly according
to the learning speed of SH, the vignetting function significantly increases the
complexity of the model and hinders training. The result in (D) demonstrates
that all components of our tone mapping module are essential.

To confirm whether the CRF expression is

suitable for defining camera non-linearity we
proceed an ablation study by replacing CRF
function. Our method adopt a piece-wise linear
CRF model that considers the mapping rela-
tionship of the pixel value. NeRF-W and HDR-
NeRF [10] suggest that an implicit function can
represent CRF. We compare the performance
between our explicit piece-wise linear function Fig. 9. Implicit CRF. GT (1efti
and implicit function such as multi-layer percep- MLP (middle), and ours (right).
trons (MLPs). Following the concurrent work,
HDR-NeRF, we replace our CRF with three MLPs to predict each color channel.
As shown in Fig. 9, rendering results are degraded with MLP-based CRF. The
averaged PSNR of all synthetic datasets with ours is 28.18, and the MLP-based
method is 26.11. We verify that our physically-based explicit tone mapping
module outperforms than MLP-based method since our CRF satisfies real-world
physical conditions and can disentangle non-linear components correctly.

5 Conclusion

We present an HDR-Plenoxels, which learns to synthesize 3D HDR radiance
field from multi-view LDR images of the varying camera by self-calibrating
radiometric characteristics. Distinctive from conventional HDR reconstruction
methods, ours can get a novel view, depth, and 3D HDR radiance fields simul-
taneously in an end-to-end manner. We investigate that the white balance and
CRF functions are critical factors among the in-camera components and find an
effective representation of the CRF function. With these observations, we present
a simple and straightforward physical-based tone-mapping module, which can
be easily attached to various volume rendering models extending one’s usability.
Using the tone mapping module, we can take fine-grained HDR, rendering results
as well as LDR images of varying cameras, e.g., exposure, white balance, and
CRF. The HDR radiance fields represent real-world scenes more realistically with
a wide dynamic range similar to the way human sees. Our work could improve
the experiences of many HDR-based applications, such as movie post-production.
Since we focus on covering HDR radiance fields of static scenes, it has room to
improve in dealing with dynamic objects as future work.
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