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1 Inverse Skinning Gradients.

As described in Sec. 3.3, for each sample xv in the view space, we find its canonical
correspondence xc through root finding:

Find x∗
c , s.t. f(x∗

c) = LBS(w(x∗
c ;Θs),P,x∗

c) +∆w(x
∗
c ,P;Θ∆)− xv = 0 (1)

In order to optimize the skinning deformation defined by (FΘs
, FΘ∆

), we need to
determine the gradients of the overall loss L w.r.t the network parameters (Θs,
Θ∆):
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The first term [∂L/∂x∗
c ] can be easily calculated through back-propagation. The

second terms [∂x∗
c/∂Θs] and [∂x∗

c/∂Θ∆] can be calculated analytically via implicit
differentiation [2]:
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2 Dataset Splits and Pose Clustering.

†Work done partially while Ruilong and Julian were at Meta Reality Labs Research.
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Fig. 1. Pose Similarity Ma-
trix on ZJU Subject 313.

As described in Sec 4.1, to avoid similar poses ap-
pearing in both the training and the validation set,
we split the dataset by clustering the frames based
on pose similarity. Fig. 1 shows an example of the
pose similarity matrix on ZJU-Mocap subject 313.
It clearly shows that this actor moves with a repeti-
tive motion pattern. Thus the previous way [5,6] of
splitting the dataset into two chunks with consec-
utive frames will cover similar poses in both sets,
which is not suitable for evaluating the pose gener-
alization ability. This motivated us to introduce our
new data split protocol based on pose clustering.

Our pose clustering process is as follows: We
first disable the global (root) transformation for all
poses. Then, the difference of two poses is measured by the Euclidian distance of
their corresponding mesh vertices (SMPL mesh for ZJU-Mocap). As we only use
pose clustering to construct the dataset splits, the mesh information is considered
accessible here. Next the K-Medoids algorithm is adopted to cluster the poses
into K = 10 clusters (Examples shown in Fig. 2). Finally we calculate the average
difference between the K medoids to find the most different one, which we regard
as the out-of-distribution poses to form the OOD validation set.

3 Implementation Details.

TAVA employs four MLPs (FΘr
, FΘ∆

, FΘr
, FΘa

) in our method. Both, FΘr

and FΘ∆
, consist of 4 layers with 128 hidden units, with 4-degree positional

encoding [3] on the input coordinates. FΘr is an 8-layer MLP with 256 hidden
units and uses 10-degree integrated positional encoding, similar to Mip-NeRF [1].
FΘa

is a single-layer MLP with 128 hidden units that connects to the 8-th layer of
FΘr

. We follow the hyper-parameters in Mip-NeRF [1] for the volume rendering,
where 64 samples are drawn for each ray at both coarse and fine level.

4 Baseline Implementation Details.

As described in Sec. 4.2, for the template-based baselines Animatable-NeRF [5]
and NeuralBody [6], we use their official implementations. For the template-free
baselines NARF [4] and A-NeRF [7], we re-implemented them in our code base
for fair comparison. We also carefully adapt their official implementations to the
ZJU-Mocap dataset to verify our re-implementation. As shown in Tab. 1, our
re-implementation achieves better performance than the official implementations
on ZJU-Mocap subject 313.



Title Suppressed Due to Excessive Length 3

Fig. 2. Pose Clustering. Here we show the K-Medoids clustering results on ZJU-Mocap
subject 315 and the Wolf subject. The one cluster marked as red is automatically
identified as the most different one thus is selected as the OOD validation set.

Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

A-NeRF(official) 28.36 0.945 28.80 0.947 27.69 0.928
A-NeRF(re-impl.) 32.14 0.976 33.39 0.980 28.53 0.953
NARF(official) 30.65 0.962 32.22 0.969 28.10 0.944
NARF(re-impl.) 33.17 0.979 34.67 0.983 28.05 0.951

Table 1. Re-implementation verification on ZJU-Mocap Subject 313.
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5 Visualizations for Skinning Weights.

Fig. 3 shows results of our learned skinning weights and canonical geometry for
animal subjects and ZJU-Mocap data. The surfaces are extracted with marching
cube algorithm with threshold 5.0 on the density field.

Animal: Wolf Animal: Hare ZJU 313 ZJU 315

Fig. 3. Learned skinning weights and canonical geometry. Color denotes the top-1 bone
from skinning weights.

6 Challenges in ZJU-Mocap Dataset.

The ZJU-Mocap dataset has become an increasingly popular dataset to study
human performance capture, reconstruction, and neural rendeirng [5,6,8]. Yet we
notice that there are a few issues in this dataset that are neither addressed nor
mentioned in the previous works, including imperfect camera calibrations and
various camera exposures (as shown in Fig. 4). We also get acknowledged
from the authors of ZJU-Mocap Dataset on those issues. We discovered
these issues after the submission so they are not considered in our designs. Yet
they greatly affect both our performance and the baselines’. We believe it is
worth to point them out so that they can be considered in the future research.

7 Ablation Studies.

Thanks to our model design, we can train a full model with the non-linear
deformation ∆v and the ambient occlusion AO enabled, then strip them out
at inference time. Fig. 5 shows a qualitative result to visually demonstrate the
impacts on the full model. Notice that without AO, the shading effects are
removed during rendering, which produces overall brighter images than the
ground-truth. This is an expected effect, but prohibits quantitative evaluation.
Furthermore, we ablate these two design decisions during training. For the non-
linear deformation, our ablation is to simply disable it during training to see
if the LBS is enough to model the deformation. For the AO, our ablation is to
compare it with predicting a pose-dependent color by conditioning pose to the
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Imperfect Camera Calibrations Various Camera Exposures

Fig. 4. Challenges in ZJU-Mocap Dataset. Left: We here train a standard NeRF [9] on
a single frame with all the views. Imperfect camera calibrations cause the ghost effects
on some views. Right: We here compare two groundtruth images side by side for the
same subject with different cameras.

color branch of FΘr , and disabling the AO branch FΘa . As shown in Tab. 2, both
design decisions contribute to the final model performance. Lastly, we show the
two different strategies to deal with root finding failures described in the paper
in Tab. 2. Using the interpolation strategy results in slightly better performance.

Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

w/o non-linear ∆v 31.86 0.974 32.19 0.975 30.56 0.965
w/o AO (pose-dep color) 32.94 0.980 33.20 0.980 30.57 0.968
w/o r.f. interplation 33.02 0.980 33.31 0.981 30.72 0.969

Ours 33.11 0.981 33.35 0.981 30.69 0.969

Table 2. Model ablations on the ZJU Mocap subjects.

8 Per-subject Breakdown Comparisons.

We also report a per-subject breakdown of the quantitative metrics against all
baseline methods in Tab. 3 and Tab. 4.
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Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Subject 313

Animatable-NeRF [5] 29.15 0.967 28.67 0.968 28.00 0.952
NeuralBody [6] 33.81 0.982 34.20 0.984 28.33 0.958
Pose-NeRF 31.94 0.974 33.22 0.979 27.03 0.941
A-NeRF [7] 32.14 0.976 33.39 0.980 28.53 0.953
NARF [4] 33.17 0.979 34.67 0.983 28.05 0.951
Ours 33.14 0.979 34.51 0.984 29.28 0.957

Subject 315

Animatable-NeRF [5] 27.62 0.962 26.50 0.956 25.52 0.949
NeuralBody [6] 31.41 0.982 30.35 0.984 25.87 0.957
Pose-NeRF 28.96 0.970 28.81 0.969 24.30 0.930
A-NeRF [7] 29.67 0.974 29.46 0.973 26.82 0.959
NARF [4] 30.18 0.977 29.96 0.976 27.05 0.960
Ours 30.84 0.980 30.61 0.979 26.55 0.960

Subject 377

Animatable-NeRF [5] 32.17 0.979 30.20 0.974 28.95 0.969
NeuralBody [6] 33.86 0.985 32.96 0.983 31.55 0.978
Pose-NeRF 32.34 0.978 32.14 0.978 29.58 0.970
A-NeRF [7] 32.62 0.980 32.53 0.980 31.77 0.978
NARF [4] 32.87 0.982 32.83 0.981 31.83 0.978
Ours 33.08 0.982 33.05 0.982 32.26 0.980

Subject 386

Animatable-NeRF [5] 34.07 0.975 32.00 0.967 32.23 0.974
NeuralBody [6] 36.55 0.985 36.19 0.984 35.57 0.983
Pose-NeRF 34.30 0.977 34.19 0.977 32.81 0.973
A-NeRF [7] 35.37 0.981 35.23 0.980 34.50 0.979
NARF [4] 35.53 0.981 35.39 0.981 35.46 0.982
Ours 35.38 0.981 35.25 0.980 34.68 0.980

Table 3. Per-Subject Comparisons on the ZJU Mocap Dataset.
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Fig. 5. Ablation on the ambient occlusion (AO) and non-linear deformation (∆v) terms.
Due to our designs, we can train our full model with both enabled, then disable them
during inference to ablate their effects.

Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ P2P ↓ PSNR ↑ SSIM ↑ P2P ↓

Subject Hare

Pose-NeRF 23.97 0.949 22.28 0.942 197.01 15.35 0.925 100.72
A-NeRF [7] 31.33 0.974 31.28 0.974 35.44 23.00 0.960 26.53
NARF [4] 36.45 0.986 36.56 0.986 10.90 29.40 0.979 5.64
Ours 37.35 0.990 37.57 0.990 5.04 35.24 0.989 3.91

Subject Wolf

Pose-NeRF 22.83 0.946 21.57 0.941 197.21 17.90 0.925 76.97
A-NeRF [7] 31.20 0.979 31.16 0.979 27.60 28.31 0.974 11.55
NARF [4] 36.64 0.989 36.74 0.990 7.65 32.43 0.985 11.27
Ours 37.26 0.992 37.33 0.992 3.57 36.30 0.992 2.85

Table 4. Per-Subject Comparisons on the animal subjects Hare and Wolf.
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