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Abstract. Coordinate-based volumetric representations have the po-
tential to generate photo-realistic virtual avatars from images. However,
virtual avatars need to be controllable and be rendered in novel poses
that may not have been observed. Traditional techniques, such as LBS,
provide such a controlling function; yet it usually requires a hand-designed
body template, 3D scan data, and surface-based appearance models. On
the other hand, neural representations have been shown to be power-
ful in representing visual details, but are under-explored in dynamic
and articulated settings. In this paper, we propose TAVA, a method to
create Template-free Animatable V olumetric Actors, based on neural
representations. We rely solely on multi-view data and a tracked skele-
ton to create a volumetric model of an actor, which can be animated
at test time given novel poses. Since TAVA does not require a body
template, it is applicable to humans as well as other creatures such as
animals. Furthermore, TAVA is designed such that it can recover ac-
curate dense correspondences, making it amenable to content-creation
and editing tasks. Through extensive experiments, we demonstrate that
the proposed method generalizes well to novel poses as well as unseen
views and showcase basic editing capabilities. The code is available at
https://github.com/facebookresearch/tava.

1 Introduction

Ever since the first 3D vector graphics games in the 1980s, we are striving to build
better representations of 3D objects and humans. With increasing processing
power, we can afford to capture, reconstruct and encode increasingly realis-
tic representations. This makes exploring neural representations for graphical
objects particularly appealing—it is a representation that has proven power-
ful [27,49,48,19,37], even though still being in its infancy. Recent methods for
neural 3D representations go beyond capturing surfaces and textures by modeling
radiance fields [27,2,3], achieving more realistic results than rasterization-based
approaches [50,23,20,38]. However, it is unclear how their representational power
can be used to not only capture static, but also dynamic scenes that can be
animated in a meaningful way, making the representations useful for capturing
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Fig. 1. Method Overview. Left: TAVA creates a virtual actor from multiple sparse video
views as well as 3D poses. The same skeleton can later be used for animation. Center:
TAVA uses this information to create a canonical shape and a pose-dependent skinning
function and establishes correspondences across poses. The resulting model can be used
for rendering and posing the virtual character as well as editing it. Right: the method
can directly used for other creatures as long as a 3D skeleton can be defined.

actors that can be “driven” post-capture. Also, due to the high-dimensional
nature of pose configurations, it is generally neither possible nor practical to
capture all pose variations in one capture. This poses a new problem absent in
static settings: generalization to out-of-distribution (OOD) poses.

In this paper, we propose TAVA, a novel approach forTemplate-freeAnimatable
Volumetric Avatars (illustrated in Fig. 1). We propose to use coordinate-based
radiance fields to capture appearance, leading to high quality, faithful renderings.
We extend the radiance capture with a carefully designed deformation model:
while it requires solely 3D skeleton information at training time, it captures non-
linear pose-dependent deformations and exhibits stable generalization behavior
to unseen poses thanks to being anchored in an LBS formulation. The radiance
field and deformation model are optimized jointly and end-to-end, leading to a
simple-to-use and powerful representation: creating it requires only a tracked
skeleton and multi-view photometric data, no template mesh or artist-designed
rigging; the appearance and the deformation model can complement each other
for highest quality results. These properties make TAVA suitable for content
creation and editing as well as correspondence-based matching.

In our experiments, we demonstrate that the proposed approach outperforms
state-of-the art approaches for animating and rendering human actors on the
ZJU motion capture dataset [35]. Thanks to being template-free, our approach is
not limited to capturing humans: we present a detailed evaluation and ablation
study on two synthetically rendered animals. This demonstrates the flexibility of
the proposed approach and allows us to show additional applications in content-
creation and editing.

2 Related Work

Deformable Neural Scene Representations: Coordinate-based neural scene
representations produce impressive results in encoding shape [26,8,31] and ap-
pearance [24,27,40]. These methods train a coordinate-based neural network to
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model various properties of a scene, e.g., occupancy [26], distance to the closest
surface [31], or density and color [27]. However, making implicit scene repre-
sentations deformable and animatable remains a challenging research problem.
Nerfies [32] and Neural 3D Video Synthesis [21] handle changes in the scene by
optimizing a deformation field and a latent code for each frame. HyperNeRF [33]
extends this by additionally creating a hyper-space which allows topology changes
of the scene. Non-Rigid Neural Radiance Fields [43] optimize a rigidity model in
addition to a deformation field. While these methods produce impressive results
on dynamic scenes, they are designed to only memorize the scene and cannot
control the scene beyond interpolations.

Animatable Neural Radiance Fields: Recently, many approaches for con-
trollable animatable NeRFs have been proposed. Neural Actor [22] uses a pose-
dependent radiance field by warping rays into the canonical space of a template
body model while using 2D texture maps to model fine detail. NeuralBody [35]
anchors latent codes on the vertices of a deformable mesh controlled by LBS.
The follow-up work Animatable-NeRF [34] establishes a transformation between
view and canonical space through optimizing the inverse deformation field. Other
works like NARF and A-NeRF [29,42] predict the radiance field at a given 3D
location based on its relative coordinates to the bones. Most recently, the con-
current work HumanNeRF [45] produces a free-viewpoint rendering of a human
by modeling the inverse deformation as a mixture of affine fields [24]. Yet many
of these methods [29,42] do not have a 3D canonical space that preserves cor-
respondences across different poses, which is required for content-creation or
editing. Some [22,34,35,45] are built on top of the SMPL [25] body template,
which prohibits them to be applied to creatures beyond humans. Moreover, most
of the aforementioned methods either introduce latent codes to better memorize
the seen poses [42,34,35], or represent the deformation in the inverse direction
from view space to the canonical space [29,42,34,45]. Thus, they do not generalize
well to the unseen poses because the existence of pose-conditioned MLPs. In
contrast, our approach is template-free, enables editing, and is designed to be
robust to unseen poses. We provide an overview of the comparison between our
method and those previous works in Tab. 1.

Animatable Shapes: Non-rigid shape reconstruction often utilizes a canonical
space that is fixed across frames, with a deformation model to create a mapping be-
tween the canonical and the deformed space. Traditionally, this has been achieved
by extracting a low dimensional articulated mesh [4,5,6,41,10,46,17,18,44,9,12,1],
such as SMPL [25], or by extracting a rigged mesh via post-processing. Several
methods [15,13,25,30,13,16,51,47] have been proposed to optimize blend weights
and rigs from data. ARCH [14] deforms an estimated implicit representation to
fit to a clothed human using a single image. Recent approaches model inverse
deformation fields [11,28,32,36,39], which map points from pose-dependent global
space to pose-independent canonical space where the surface is represented. For
example, SCANimate [39] regularizes the inverse skinning by using a cycle con-
sistency loss. The main drawback of these inverse deformation approaches is that
the inverse transformation is pose dependent and may not generalize well to previ-
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Methods Template-free
No Per-frame
Latent Code

3D Canonical
Space

Deformation

NARF [29] ✔ ✔ ✘ Inverse
A-NeRF [42] ✔ ✘ ✘ Inverse
Animatable-NeRF [34] ✘ ✘ ✔ Inverse
HumanNeRF [45] ✘ ✔ ✔ Inverse
NeuralBody [35] ✘ ✘ ✔† Forward

Ours (TAVA) ✔ ✔ ✔ Forward

Table 1. Design differences. TAVA’s use of a forward deformation model without using
per-frame latent codes ensures robustness to out-of-distribution poses. Being template-
free extends its use to creatures beyond humans. TAVA also allows for content-creation
and editing by using a 3D canonical space. †Note that NeuralBody’s canonical space
consists of the body template without clothing.

ously unseen poses. SNARF [7] addresses this by learning a forward deformation
field instead, mapping points from canonical to pose-dependent deformed space.
However, unlike our appraoch, these methods require 3D geometry supervision
and most do not optimize for appearance.

3 Method

Our goal is to create an animatable neural actor from multi-view images with
known 3D skeleton information without requiring a body template. Similar to
a traditional personalized body rig, we want to build a representation that not
only represents the shape and appearance of the actor but also allows to animate
it while maintaining correspondences among different poses and views. TAVA
is designed to achieve the above goals with three components: (1) a canonical
representation of the actor in neutral pose, (2) deformation modeling based
on forward skinning, and (3) volumetric neural rendering with pose-dependent
shading. Fig. 2 illustrates an overview of our method. To employ volumetric
neural rendering in the view space, our method first deforms the samples along
a ray back to the canonical space through inverting the forward skinning via
root-finding, then queries their colors and densities in the canonical space, as
well as the pose-dependent effects. Below, we first establish preliminaries, then
discuss each of the components.

3.1 Preliminary: Rendering Neural Radiance Fields

NeRF [27] is a seminal technique for novel view synthesis of a static scene. It
models the geometry and view-dependent appearance of the scene by using
a multi-layer perceptron (MLP). Given a 3D coordinate x = (x, y, z) and the
corresponding viewing direction (θ, ϕ), NeRF queries the emitted color c = (r, g, b)
and material density σ at that location using the MLP. A pixel color C(r) can
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Fig. 2. TAVA Overview. We use volumetric rendering techniques to create the actor
representation. For each sampled point, we use an LBS-based non-linear deformation
combined with a blending weight model for which we identify the root in the canonical
space. In this space, we use a color, density, and ambient occlusion model to parameterize
the appearance.

then be computed by accumulating the view-dependent colors along the ray r,
weighted by their densities:

C(r) =

N∑
i=1

Ti(1− exp(σiδi))ci, where Ti = exp(−
i−1∑
j=1

σjδj) , (1)

where δi denotes the distances between the sample points along the ray. To
further take the size of the pixels into consideration, Mip-NeRF [2] extends NeRF
to represent each ray r that passes through a pixel as a cone, and the samples x
along the ray as conical frusta, which can be modeled by multivariate Gaussians
(µ,Σ). Thus, the density σ and view-dependent emitted color c for a sample on
the ray are given by FΘ : (µ,Σ, θ, ϕ) → (c, σ), where µ = (x, y, z) is the center
of the Gaussian and Σ ∈ R3×3 is its covariance matrix. The loss for optimizing
the network parameters Θ of the neural radiance field is applied between the
rendered pixel color C(r) and the ground-truth Ĉ(r) :

Lim =
∣∣∣∣C(r)− Ĉ(r)

∣∣∣∣2
2
. (2)

Please refer to the original papers [27,2] for more details.

3.2 Canonical Neural Actor Representation

We represent an articulated subject as a volumetric neural actor in its canonical
space. The representation includes a Lambertian neural radiance field FΘr to
represent the geometry and appearance of this actor, and a neural blend skinning
function FΘs

, which describes how to animate the actor:

FΘr
: (xc,Σ) → (c, σ), FΘs

: xc → w, (3)

where c = (r, g, b) is the material color, σ is the material density, and w are
the skinning weights to blend all bone transformations for animation. Similar to
Mip-NeRF [2], we use a multivariate Gaussian (xc ∈ R3,Σ ∈ R3×3) to estimate
the integral of samples within the volume of the discrete samples. Note that in
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most of the cases, an articulated actor is a Lambertian object, so we exclude
view directions from the input of FΘr

.
Discussion. This formulation not only models the canonical geometry and
appearance of an avatar, but also describes its dynamic attributes through the
skinning weights w. Unlike previous works, such as SNARF [7], which models a
pose-dependent geometry in the canonical space, and NARF [29] and A-NeRF [42],
which entirely skip canonical space modeling, our method is based on a canonical
representation that fully eliminates any effects of pose on the geometry and
appearance. Moreover, the skinning weights learnt in the canonical space remain
valid for a large range of poses, meaning that the actor is ready to be animated
in novel poses outside of the training distribution (see Sec. 4.2 for validation
of its robustness to out-of-distribution novel poses). Last but not least, our
representation eases the correspondence finding problem across different poses
and views, because the matching can be done in the pose-independent canonical
space (see Sec. 4.2 for results).

3.3 Skinning-based Deformation

Forward Skinning. With the skinning weights w = (w1, w2, ..., wB , wbg) ∈
RB+1 defined in the canonical space, and given a pose P = {T1,T2, ...,TB} ∈
RB×4×4, we use forward LBS to define the deformation of a point xc in the
canonical space to xv in the view space:

xv = LBS(w(xc;Θs),P,xc) =

 B∑
j=1

wj(xc;Θs) ·Tj + wbg · Id

xc, (4)

where Id ∈ R4×4 is an identity matrix. Similar to [45], we extend the classic
LBS defined only on the surface geometry of an object to the entire 3D space
by introducing an additional term wbg · Id. This term allows the points in the
background and empty space to not follow the skeleton when it is deformed.
However, LBS is not sufficient for capturing some of the non-linear deformations,
such as muscles and clothing dynamics [25]. Thus, we introduce an additional
term FΘ∆

: (xc,P) → ∆w ∈ R3 on top of the learned LBS to model these
deformations:

xv = LBS(w(xc;Θs),P,xc) +∆w(xc,P;Θ∆). (5)

Inverse Skinning. To render this model, we need to query color and density
in the view space. Hence, it is required to find the the correspondence xc in the
canonical space for each xv in the view space. As our forward skinning in Eq. 5
is defined through neural networks, there is no analytical form for the inverse
skinning. Similar to SNARF [7], we pose this as a root finding problem:

Find x∗
c , s.t. f(x∗

c) = LBS(w(x∗
c ;Θs),P,x∗

c) +∆w(x
∗
c ,P;Θ∆)− xv = 0 (6)
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and solve it numerically using Newton’s method:

x(k+1)
c = x(k)

c − (J(k))−1f(x(k)
c ), (7)

where J(k) ∈ R3×3 is the Jacobian of f(x
(k)
c ) at the k-th step. Since the inverse

skinning might be a one-to-many mapping when there is contact happening
between body parts, we initialize Newton’s method with multiple candidates

using the inverse rigid transformation {x(0)
c,i } = {T−1

i · xv}. However, simply
applying all B + 1 transformations to initialize the Newton’s method would
lead to B + 1 canonical candidates to be processed, making it impractical for
volumetric rendering as the complexity grows linearly in B. As points are less
likely to be affected by bones further away, we only use the transformations of
its K = 5 nearest bones by measuring the Euclidean distance between the point
and the bones in the view space. This dramatically reduces the computational
burden of the root finding process and the following canonical querying, making
the formulation applicable for neural rendering. With that, our inverse skinning
leads to multiple correspondences for a point in the view space through root
finding (r.f.):

xv
r.f.−−→ {x∗

c,1,x
∗
c,2, ...,x

∗
c,K} (8)

The gradients of the network parameters Θs and Θ∆ can be analytically computed
for the inverse skinning [7]:

∂x∗
c,i

∂Θs
= −

[
∂xv

∂x∗
c,i

]−1 [
∂xv

∂Θs

]
.

∂x∗
c,i

∂Θ∆
= −

[
∂xv

∂x∗
c,i

]−1 [
∂xv

∂Θ∆

]
. (9)

Please refer to the supplemental material for the derivations of these terms.

3.4 Deformation-based Neural Rendering

Similar to Mip-NeRF [2], we render the color of a pixel by accumulating the
samples (xv,Σ) along each pixel ray, using Eq. 1. Instead of directly querying
the color and density of xv in the view space, we first find the point’s canonical

correspondence candidates using the inverse skinning xv
r.f.−−→ {x∗

c,1,x
∗
c,2, ...,x

∗
c,K},

and then query the colors and densities for all those candidates in the canonical
space.

FΘr
: (x∗

c,i,Σ) → (c∗i , σ
∗
i ). (10)

However, for a dynamic object, the shading on the surface may change
depending on pose due to self-occlusion. This can lead to colors in the view
space being darker than the colors in the canonical space, providing inconsistent
supervision signals. However, it is non-trivial to accurately model this self-
occlusion without ray tracing (including secondary rays) and known global
illumination. A simple but effective estimator, widely used in modern rendering
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engines like Unreal and Blender is ambient occlusion, in which the shading caused
by occlusion is modeled by a scaling factor multiplied with the color values, where
the value is calculated by the percentage of view directions being occluded around
each point on the surface. Since it is an attribute defined at each coordinate that
depends on the global geometry of the actor, we model this shading effect use a
coordinate based MLP FΘa

conditioned on the pose P of the actor:

FΘr
: (x∗

c,i,Σ) → h → (c∗i , σ
∗
i ), FΘa

: (h,P) → a∗i , (11)

where h is an intermediate activation from FΘr
, and a∗i is the ambient occlusion

at this location under pose P. Note that only the ambient occlusion a∗i is pose-
conditioned, which makes sure the actor (geometry and appearance) is represented
in a canonical space that is pose-independent, as described in Sec. 3.2.

With (c∗i , σ
∗
i , a

∗
i )i=1,...,K queried in the canonical space, we then need to merge

the K candidates to get the final attributes (cv, αv, av) for the sample (xv,Σ)
in the view space. In the case of articulated objects, where multiple canonical
point may originate from the same location, the one with the maximum density
would dominate that location. Similar to previous works [7,11], we choose the
attributes of xv from all canonical candidates based on their density:

cv = c∗c,t σv = σ∗
c,t av = a∗c,t where t = argmax

i
({σ∗

c,i}), (12)

then we use (c = av ∗ cv, σ = σv) as the final emitted color and density in the
view space, for the volumetric rendering in Eq. 1.

Note that in general there is no way to guarantee that the inverse root finding
converges. In practice, root finding fails for 1% to 8% of the points in the view
space, making it impossible to query their attributes. For these points, an option
is to just simply set their densities to zero, which would only be problematic if
the points are close to the surface. A slightly better way is to estimate the color
and density for those points by interpolating the attributes from their nearest
valid neighbors along the ray. We conduct experiments on both strategies in
supplemental material, which results in slightly better performance. We choose
the second strategy in our full model.

3.5 Establishing Correspondences

As our method is endowed with a 3D canonical space, we have the ability to
trace surface correspondences across different views and poses. When rendering
an image using Eq. 1, besides accumulating colors {cm} of the samples {xv,m}
along the ray r, we also accumulate the corresponding canonical coordinates
{xc,m}:

X(r) =

N∑
m=1

Tm(1− exp(σmδm))xc,m, (13)

where X(r) ∈ R3 is the coordinate in the canonical space that corresponds to
the pixel of the ray. With that, for images under different poses / views, we can
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compute their dense pixel-to-pixel correspondences by matching X(r) in the
canonical space using the nearest neighbor algorithm.

3.6 Training loss

Besides the image loss Lim defined in Eq. 2, we also employ two auxiliary losses
that help the training. Due to the fact that all the points along a bone should
have the same transformation, we encourage the skinning weights w of samples
x̄c on the bones to be one-hot vectors ŵ (noted as Lw). We also encourage
the non-linear deformations ∆v of those samples to be zero given any pose
P (noted as L∆). We use MSE to calculate both, Lw = ||w(x̄c) − ŵ)||22 and
L∆ = ||∆w(x̄c,P)− 0)||22. Our final loss is: L = Lim + λLw + βL∆, where λ is
set to 1.0 and β is set to 0.1 in all our experiments.

4 Experiments

4.1 Datasets

We conduct experiments on 1) four human subjects (313, 315, 377, 386) in the
ZJU-Mocap dataset [35], a public multi-view video dataset for human motion,
and 2) two synthetic animal subjects (Hare, Wolf) introduced in this paper,
rendered from multiple views using Blender.
Data Splits. Prior works [34,35] create the train and val sets on the ZJU-Mocap
dataset by simply splitting each video with 500 ∼ 2200 frames into two splits,
where the training set has 60 ∼ 300 frames and the validation set has 300 ∼ 1000
frames. This is not an ideal split to evaluate pose synthesis performance because
1) a training set with 60 consecutive frames in a 30fps video does not sufficiently
cover pose variation to learn from, and 2) due to the repetitive motion of the
actors, quite often similar poses are in both the training and validation sets, which
should be avoided for evaluating a method on pose generalization. Therefore, we
establish a new protocol to split the dataset by clustering the frames based on
pose similarity. Specifically, for each subject, we first randomly withhold a chunk
of consecutive frames to be the test set, for the purpose of the final evaluation.
Then, we use the K-Medoids algorithm on the remaining frames to cluster them
into K = 10 clusters, based on pose similarity measured by the V2V Euclidean
distance using ground-truth mesh. The most different cluster is selected as the
valoodpose set, in which the frames are all considered to contain the out-of-distribution
poses. For the remaining 9 clusters, we randomly split each cluster 2 : 1 to form
train and valindpose sets, where the frames in valindpose still contains new poses which
are considered to be in the distribution of the training set. For the view splits,
we follow the protocol from [34,35] for ZJU-Mocap, where 4 views are used for
training and 17 views for testing. The animal subjects have 10 random views
for training and 10 for testing. We denote valview as our novel-view synthesis
evaluation set, which contains all the training poses but rendered from different
viewpoints. Please see the supplemental material for more details.
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Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ P2P ↓ PSNR ↑ SSIM ↑ P2P ↓

Pose-NeRF 23.40 0.974 21.93 0.941 197.11 16.62 0.925 88.85
A-NeRF [42] 31.26 0.976 31.22 0.977 31.52 25.66 0.967 19.04
NARF [29] 36.55 0.988 36.65 0.988 9.28 30.92 0.982 8.46

Ours 37.30 0.991 37.45 0.991 4.30 35.77 0.990 3.38

Table 2. Comparisons on the animal subjects. P2P is pixel-to-pixel error, for measuring
image correspondences across different poses.

Novel-view Novel-pose (ind) Novel-pose (ood)
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

SMPL-based Methods
Animatable-NeRF [34] 30.75 0.971 29.34 0.966 28.67 0.961
NeuralBody [35] 33.91 0.983 33.43 0.984 30.33 0.969
Template-free Methods

Pose-NeRF 31.88 0.975 32.09 0.976 28.43 0.954
A-NeRF [42] 32.45 0.978 32.65 0.978 30.41 0.967
NARF [29] 32.94 0.980 33.21 0.980 30.60 0.968

Ours 33.11 0.981 33.35 0.981 30.69 0.969

Table 3. Comparisons on the ZJU Mocap subjects. We compare with both, template-free
and template-based methods.

4.2 Evaluation and Comparison

Baselines.We compare our work with two types of previous methods: 1) Template-
free methods, including NARF [29] and A-NeRF [42], as well as 2) SMPL-based
methods, including Animatable-NeRF [34] and NeuralBody [35]. As our baseline,
we use Pose-NeRF: we slightly modify Mip-NeRF [2] to learn the density and
color conditioned on pose. We conduct experiments for all the methods above
on ZJU-Mocap, but exclude Animatable-NeRF and NeuralBody for the animal
subjects (they require a template 3D model). Although code is available for each
method, we noticed that each is using a different set of hyper-parameters for
neural rendering (e.g., number of MLP layers, number of samples, near and far
planes) and different training schedules, all of which are not related to method
design but can greatly affect the performance. To make as-fair-as-possible com-
parisons, we integrated the template-free methods, NARF and A-NeRF, into our
code base, which shares the same set of hyper-parameters∗. For Animatable-NeRF
and NeuralBody, we use the original implementations since their designs are
based on the SMPL body template.
Novel-view Synthesis. In this task, we conduct experiments on both, the ZJU-
Mocap dataset and the two animal subjects Hare and Wolf, using valview set. As

∗For NARF, our re-implementation achieves better performance than it’s official
implementation. Please refer to the supplmental material for further details.



TAVA: Template-free Animatable Volumetric Actors 11

shown in Tab. 2 and Tab. 3, our method outperforms other template-free methods
measured by PSNR and SSIM. On the ZJU-Mocap dataset, our method achieves
comparable performance with two template-based methods, Animatable-NeRF
and NeuralBody, which greatly benefit from the SMPL body template, but do
not work on other creatures like animals. See Fig. 3 for a qualitative comparison.

(a) Novel View

(b) Out-of-distribution Novel Pose

Pose-NeRF A-NeRF OursNARF GTAnimatable-
NeRF NeuralBody

Fig. 3. Rendering quality comparison with all baseline methods on the ZJU-Mocap
Dataset. Note that Animatable-NeRF and NeuralBody rely on the SMPL body model,
and the other approaches do not.

Novel-pose Synthesis. Due to the high interdependency of appearance changes
caused by pose and motion, novel-pose synthesis is a more challenging task than
novel-view synthesis, especially for poses that are out of the training distribution.
To carefully study this problem, we conduct experiments on both, in-distribution
(InD) novel poses, using the valindpose set, and out-of-distribution(OOD) novel poses,

using the valoodpose set. Our experiments reveal that for InD poses, the performance
of nearly all the methods are consistent with their performance on the novel-view
task, as shown in Tabs. 2, 3. However, there is a huge drop in performance from
InD poses to OOD pose (0.67db∼ 2.66db on ZJU-Mocap; 1.68db∼ 5.73db on
animals). This is not surprising if the method contains neural networks that
directly infer appearance information from pose input: generalization to vastly
different pose inputs can not be expected. One of the main goals in this paper is
to reduce this reliance of the neural networks to the pose input, for improving the
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Pose-NeRF A-NeRF

(a) Novel View

(b) Out-of-distribution Novel Pose
OursNARF GT

Fig. 4. Comparison with template-free methods on the Hare and Wolf subjects.

robustness of the method to the OOD poses. Our method benefits from explicitly
incorporating the forward LBS. We observe only an 1.68db performance drop
comparing InD to OOD poses on the animal subjects, whereas other methods
suffer from ∼ 5db performance drops, as shown in Tab. 2. Since these two
synthetic subjects are not rendered with pose-dependent shading, and do not
have “clothing” deformations, we disabled the ambient occlusion a (set to 1.)
and non-linear deformation ∆v (set to 0.) terms in our method during both,
training and inference. These synthetic subjects allows us to study the underlying
formulation of the articulation deformation, and we show here the forward LBS-
based deformation is more reliable than the inverse deformation used in the
baselines which takes pose as input to the MLP. The results on the ZJU-Mocap
dataset in Tab. 3 show that our method outperforms both, the template-free and
template-based methods, on the OOD poses. All the methods are prone to nearly
the same drop in performance on the ZJU-Mocap dataset comparing InD to OOD
poses. This is, because currently all of these methods, including ours, are still
implicitly modeling pose-dependent shading effects (e.g., self-occlusion) as either
a neural network or a latent code during training, which does not generalize
well to OOD poses. Our method, though, provides a possibility to factor out the
shading effects during inference and reveal the albedo color of the actor, which
yields better generalization but is not suitable for evaluation comparing to the
ground-truth, as shown in supplemental material. See Figs. 3, 4 for qualitative
comparisons.

Pixel-to-Pixel Correspondences. We quantitatively evaluate correspondence
on the animal subjects against Pose-NeRF, A-NeRF [42] and NARF [29]. We
show qualitative results on ZJU-Mocap since no ground-truth correspondences are
available (see Fig. 5). Even though neither of the baseline methods demonstrate
that they can establish correspondences, we still tried our best to create a valid
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comparison†. For quantitative evaluation, we randomly sample 2000 image pairs
(A,B) in valoodpose set, and use the ground truth mesh to establish ground-truth
pixel-to-pixel correspondences (χA → χB) for every pair of images (A → B),
where χA and χB are the corresponding image coordinates. Then, we use each
method to render this pair of images, and find the correspondences of χA in B
as χ∗

B . The pixel-to-pixel error (P2P) is then calculated as the average distance
between χB and χ∗

B: P2P = ||χB − χ∗
B ||22. As shown in Tab. 2 and Fig. 6, our

method achieves over 2x more accurate correspondences (3.38px v.s. 8.46px error
in a 800 × 800 image) compared to the baselines. We visualize the extracted
dense correspondences of our method in Fig. 5, which shows that correspondences
across different subjects can be established as long as they share the same
canonical pose (T-pose in ZJU-Mocap). Further more, we demonstrate that
accurate correspondences can be used for content editing in Fig. 7.

Animal: WolfZJU-Mocap

Fig. 5. Rendering with Dense Correspondence. We show results of our novel-view
rendering with dense correspondences. On the ZJU Mocap dataset, correspondences
across different subjects can also be built because they share the same canonical pose.

5 Discussion

In this paper, we proposed a volumetric representation for articulated actors
based on learned skinning, shape, and appearance. We also model pose-dependent
deformation and shading effects. Extensive evaluations demonstrate that our
approach consistently outperforms previous methods when generalizing to out-
of-distribution unseen poses. Our approach can recover much more accurate
dense correspondences across different poses and views than prior works, enabling
content editing applications. Moreover, it does not require any body templates,
enabling applications for creatures beyond humans. While our approach has clear

†Pose-NeRF, A-NeRF and NARF all query the color and density of (xv,P) in a
higher dimensional (> 3) space, where we do the nearest neighbor matching for them
using our approach as described in Sec. 3.5. Please refer to the supp.mat. for further
details.
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Pose-NeRF A-NeRF OursNARF GT

source
pose

target
pose

Fig. 6. Correspondence comparison on Hare. We find the correspondence for the same
set of pixels in the source image in the target image. Both source and target are rendered
in novel poses.

TAVA

User Edits Automatic Propagation

Fig. 7. Rendering & Editing. We show results of our novel-pose rendering with content
editing. We manually attach a logo to the image on the left, then use our pixel-to-pixel
correspondences to automatically propagate the logo to different poses & views.

advantages, there are few limitations. First, our method trains much slower (5
to 8 times) than the baselines, due to the nature of the root finding process
for inverse deformation. A future direction could be to use invertible neural
networks to avoid the root finding process. Second, even though our forward LBS
ensures generalization to unseen poses, pose-dependent non-linear deformation
and shading effects are still challenging to estimate correctly for unseen poses.
Such effects are fundamentally challenging to model, particularly for lighting-
dependent shading. An interesting future direction could be to model these effects
across multiple subjects so that information from all subjects can be used to
improve non-linear deformation model performance.

6 Acknowledgements

Ruilong Li’s work at UC Berkeley is partly supported by the CONIX Research
Center, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA.



TAVA: Template-free Animatable Volumetric Actors 15

References

1. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape:
shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp.
408–416 (2005)

2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan,
P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In: International Conference on Computer Vision (2021)

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. CVPR (2022)

4. Borshukov, G., Piponi, D., Larsen, O., Lewis, J.P., Tempelaar-Lietz, C.: Universal
capture-image-based facial animation for” the matrix reloaded”. In: Siggraph 2005
Courses (2005)

5. Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.P.: Free-viewpoint video of
human actors. Transactions on Graphics (2003)

6. Casas, D., Volino, M., Collomosse, J., Hilton, A.: 4d video textures for interactive
character appearance. In: Computer Graphics Forum (2014)

7. Chen, X., Zheng, Y., Black, M.J., Hilliges, O., Geiger, A.: Snarf: Differentiable
forward skinning for animating non-rigid neural implicit shapes. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. pp. 11594–11604
(2021)

8. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Conference on Computer Vision and Pattern Recognition (2019)

9. Collet, A., Chuang, M., Sweeney, P., Gillett, D., Evseev, D., Calabrese, D., Hoppe,
H., Kirk, A., Sullivan, S.: High-quality streamable free-viewpoint video. Transactions
on Graphics) (2015)

10. De Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.P., Thrun, S.: Perfor-
mance capture from sparse multi-view video. In: ACM SIGGRAPH 2008 papers,
pp. 1–10 (2008)

11. Deng, B., Lewis, J.P., Jeruzalski, T., Pons-Moll, G., Hinton, G., Norouzi, M.,
Tagliasacchi, A.: Nasa neural articulated shape approximation. In: European Con-
ference on Computer Vision. pp. 612–628. Springer (2020)

12. Guo, K., Lincoln, P., Davidson, P., Busch, J., Yu, X., Whalen, M., Harvey, G.,
Orts-Escolano, S., Pandey, R., Dourgarian, J., et al.: The relightables: Volumetric
performance capture of humans with realistic relighting. ACM Transactions on
Graphics (ToG) 38(6), 1–19 (2019)

13. Hasler, N., Thormählen, T., Rosenhahn, B., Seidel, H.P.: Learning skeletons for
shape and pose. In: SIGGRAPH symposium on Interactive 3D Graphics and Games
(2010)

14. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: Animatable reconstruction
of clothed humans. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 3093–3102 (2020)

15. James, D.L., Twigg, C.D.: Skinning mesh animations. Transactions on Graphics
(2005)

16. Jiang, B., Zhang, J., Cai, J., Zheng, J.: Disentangled human body embedding based
on deep hierarchical neural network. Transactions on Visualization and Computer
Graphics (2020)

17. Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., Rusinkiewicz, S.:
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