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Abstract. Standard frame-based cameras have shortcomings of low dy-
namic range and motion blur in real applications. On the other hand,
event cameras, which are bio-inspired sensors, asynchronously output
the polarity values of pixel-level log intensity changes and report con-
tinuous stream data even under fast motion with a high dynamic range.
Therefore, event cameras are effective in stereo depth estimation under
challenging illumination conditions and/or fast motion. To estimate the
disparity map with events, existing state-of-the-art event-based stereo
models use the image together with past events that occurred up to
the current image acquisition time. However, not all events equally con-
tribute to the disparity estimation of the current frame since past events
occur at different times under different movements with different dispar-
ity values. Therefore, events need to be carefully selected for accurate
event-guided disparity estimation. In this paper, we aim to effectively
deal with events that continuously occur with different disparity values
in the scene depending on the camera’s movement. To this end, we first
propose the differentiable event selection network to select the most rel-
evant events for current depth estimation. Furthermore, we effectively
use feature-like events triggered around the boundary of objects, lead-
ing them to serve as ideal guides in disparity estimation. To this end,
we propose a neighbor cross similarity feature (NCSF) that considers
the similarity between different modalities. Finally, our experiments on
various datasets demonstrate the superiority of our method to estimate
the depth using images and event data together. Our project code is
available at: https://github.com/Chohoonhee/SCSNet.
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1 Introduction

Estimating depth from a stereo image pair has been an important problem in the
field of computer vision [17,28]. Stereo-based depth estimation methods generally
find correspondences for all pixels in the stereo pair image (i.e., stereo matching)
and estimate the depth through triangulation using camera parameters. It plays
an important role in autonomous driving and augmented reality, which require
3D information of the scene.
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Fig. 1. Visualization of real-world events and images of indoor flying 1 in MVSEC
datasets for stereo. For the disparity estimation of an image, the most recent events
from the time that the image was acquired are used. (b) is a schematic diagram of the
camera motion corresponding to (a). Here, i is the index of the frame, and t corresponds
to 0.01 seconds in (a). Therefore, the time interval between the two frames corresponds
to 5t.

Most of recent stereo matching algorithms are learning-based and perform
well on various large-scale public benchmarks [6,32,34,13,12,7]. However, there
still exist some challenges in stereo matching because of the limitations of frame-
based RGB sensors (e.g., difficulty in operation in blurred or low dynamic range)
and algorithmic incompletion [28] (e.g., edge-fattening at depth discontinuities).

The event camera [4,19], a novel bio-inspired sensor, has provided a satis-
factory solution to the limitations of frame-based RGB sensors in poor lighting
or motion conditions. The event cameras asynchronously report the per-pixel
changes of intensity in the form of a stream, called events. Event cameras have
very low latency and cover a high dynamic range, making them intrinsically
immune to motion blur and suitable for extreme lighting scenes. Therefore, the
event camera can enrich the missing information as a complementary source for
the shortcomings of the RGB sensor.

However, although event cameras can be a breakthrough to overcome the
shortcoming of frame-based cameras, they require a significant transition in ap-
proach for real applications. Besides the new stereo matching algorithms for
events, it is also essential to find optimal ways to represent the event data and
put it into a depth estimation network, which has been a trend in event stereo
research. In general, to estimate the depth map at a specific time using event
cameras, the most recent events are used (see (a) of Fig. 1). Recently some
stereo methods accumulate all events between two frames [29,2] or specify the
number of recent events to stack [22]. However, these methods should make an
assumption that the events corresponding to the same 3D scene point have the
same disparity in the stack, which is not true in dynamic situations. In fact, the
depth or disparity values of events can vary with time based on the movement
of the camera and the scene. Therefore, depending on the motion of the camera
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or the scene, events from different camera pose or object motion, which have
inconsistent depth or disparity values, can be accumulated and used as input.
To enable the network to extract relevant events for stereo in an end-to-end
manner, we propose a differentiable event selection network. The differentiable
event selection network extracts only relevant events among the all events accu-
mulated between two frames with time information by using the image captured
at a specific time as a condition to obtain accurate disparity. In addition, we
regard the event data fired at the edge of the object or depth discontinuity as
a feature, and propose the neighbor cross similarity feature that transfers in-
formation about the boundary of the object to the model from the event data
refined through the selection network. We evaluate our method on the indoor
event stereo dataset of MVSEC [39], and the outdoor public benchmark dataset
of DSEC [10]. Furthermore, we present qualitative and quantitative comparisons
for comparing with the state-of-the-art event stereo methods.

2 Related Works

2.1 Stereo depth estimation using images

The most successful methods of early studies using conventional RGB images
have adopted end-to-end deep learning networks [32,37,18,35,34,12,6,33,30]. The
networks generally comprise embedding, matching, and regularization modules.
They outperform traditional methods by a large margin on public benchmarks
(e.g., Scene Flow [20] and KITTI [21]). However, the effects of motion blur and
lightning on depth estimation remains a problem in terms of application.

2.2 Stereo depth estimation using events

With the rising of event cameras, attempts have been made to perform stereo
depth estimation using temporally dense events. Using an event camera in the
algorithm can solve the limitations of the RGB sensor, but finding a match be-
tween event pairs in the form of asynchronous streams is a remained issue. Early
attempts utilized the hand-crafted method to determine corresponding events
[15,5,41,42,24,27,38,25,26,8]. Their primary approach used window- or patch-
based method defining the neighborhoods, and they succeeded in generating a
depth map using spatial-temporal sparse event cameras. However, the character-
istics of the event that do not follow the predefined pattern led to the inability
to extract detailed and dense depth, and the performance was inferior to that
of the learning-based method.

Recent methods improved the accuracy by adopting a learning-based ap-
proach capable of estimating dense depth with a sparse event. A new embedding
of a 4D queue including both temporal and spatial information of event data
for deep learning was proposed in [29], and the later study [2] improved the ac-
curacy using various techniques. The state-of-the-art event stereo network [22]
complemented spatially sparse events by using images together. They integrate
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Fig. 2. Sample images and events from the MVSEC dataset [39]. The relevant event
is generated by semantically related motion to the scene and is sufficient to estimate
disparity. On the other hand, the irrelevant event corresponds to a view far from the
scene of disparity to be obtained or contains insufficient information comprising real-
world noise.

events and images through a recycling structure. Their method shows better per-
formance than the setting that uses only an event or image data. However, they
followed the existing event representation [31,9] used in the image reconstruc-
tion, and embedding for event-image disparity network has been less studied.
Unlike high frame-rate image reconstruction, which requires only the most re-
cent accumulated events for a short-time, in stereo matching, different threshold
sensitivities between event camera pairs must be considered, and an event at
an appropriate point in time according to motion and scene is required. In this
paper, to tackle this problem, we explore a novel event embedding method for
stereo depth estimation using events with images together.

3 Motivation

Existing event representation techniques that transform stream form of events
to a machine-interpretable representation can be broadly classified into two
categories: number- and time-based stacking. Number-based stacking methods
[22,31,9] accumulate a certain number of events predefined by the user and put
them into the network in the form of images. If a conservative amount of events
is specified, insufficient events lead to ambiguity for matching, and conversely,
too much amount gets rid of details and sharp edges. Also, even in the same
dataset, the number of fired events varies depending on the scene. Because the
number to be specified varies according to the distribution of the dataset, it is
necessary to be able to access the dataset in advance, which may limit the appli-
cation. The time-based stacking method [29,40,2] generally discretizes the event
between two frames of an image along the time axis. Then, it converts it into a
3D or 4D image tensor for input to neural network architecture. The strength
of this approach is that it is independent of the number of events triggered de-
pending on the scene or motion. However, all events between two frames are not
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Fig. 3. The overview of architecture. In differential selection , we select the most rel-
evant event series from a voxelized event stack using a selection network (Sec. 4.1). We
transform two inputs (events and images) of different modalities into a unified fused
feature by using feature extraction that considers cross similarity features (Sec. 4.2).
By utilizing correlation and aggregation (Sec. 4.3), we generate the final dense dis-
parity output.

informative to obtain the disparity synchronized with the image. As depicted in
Fig. 2., spatial–temporally sparse events cannot be preprocessed with a statically
unified pattern.

The proposed event-image deep stereo algorithm is motivated by observa-
tions. First, all events between two frames are not required to estimate the
time-synchronized depth with the image. Second, each pair of stereo event cam-
eras has different threshold sensitivity. Even the stereo camera seeing the same
view, the aspect of the event in each camera is other depending on the mo-
tion. Therefore, we propose a differentiable event selection network that selects
relevant events to deal with a scene and motion variant issue.

4 Proposed Methods

Event Preparation We represent the stream format of events in the voxel
grid format, considering both spatial and temporal coordinates. First, we collect
events between two consecutive images. Then, following [40], we scale the times-
tamps to the range [0, B − 1] for inserting events into the discretized volume
with the size of w×h×B using a linearly weighted accumulation. Then, we can
use the convolutional layer for the event data.

The overall framework of the proposed end-to-end depth estimation network
is illustrated in Fig. 3. It consists of four sub-networks: differentiable event se-
lection network, neighbor cross similarity feature extraction, correlation, and
aggregation. Given a rectified image pair Il, Ir and voxelized events El, Er from
stereo pairs of event cameras, using the differentiable event selection network,
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Fig. 4. Structures of the differentiable event selection network. Given a pair of images
and events, the score network creates a score map to extract relevant events using
images as conditions. Then, the selected event is inserted into the image reconstruction
sub-network to restore the image and used for disparity estimation.

we extract the selected events Sl, Sr that are most relevant to the scene of dis-
parity to be estimated. Next, the image and selected event are unified as a fused
feature Fl, Fr through feature extraction. Then, 3D cost volume is constructed
by correlating left fused feature Fl and right fused feature Fr. Finally, through
the 3D aggregation network, we can obtain the dense disparity map.

4.1 Differentiable Event Selection Network

For the unity of denotation, we describe the left camera El, Il as an example.
The score network predicts a relevance score for each time region of the vox-
elized events concerning the image as the condition. The score map M is a grid
with a size of 1×1×B as M ∈ RB , and each grid has a degree of relevance with
the image. Given score map, we select the K most relevant event grids by cre-
ating a one-hot matrix H ∈ {0, 1}B×K . The one-hot matrix H consists of K
number of one-hot vectors with a B dimension as H = [h1, h2, · · · , hK]. Then,
selected events can be extracted using a matrix multiplication as Sl = ElH. Al-
though these selected events can be directly used for depth estimation, we utilize
an image reconstruction network to encourage the selection network to extract
higher-quality events (see Fig. 4). The image reconstruction network is solely
used during training to save computation time in inference without significantly
increasing the memory footprint. The optimization of event selection network
can be represented as a linear program of the form

argmax
y∈C

⟨y,M1⊤⟩, (1)

where M1⊤ ∈ RB×K is score matrix obtained by multiplication, y is optimiza-
tion variable, and C is a convex polytope set. However, one-hot operations from
Top-K algorithms is non-differentiable, so we adopt the perturbed maximum
method [3].
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To define the gradients, add to input M a sampled random noise vector εZ,
where ε > 0 is a hyper-parameter and Z has differentiable density dµ(z) ∝
exp(−ν(z))dz. Given the random perturbed inputs, expectations of results for
each of n independent samples leads to smoothed versions as:

yε = E[argmax
y∈C

⟨y,M1⊤ + εZ⟩]. (2)

In our experiment, we set n = 200 and ε = 0.05. From [1], for noise Z with
dµ(z) ∝ exp(−ν(z))dz and any twice differentiable ν, the Jacobian matrix of yε

at M can be obtained as follows:

JMyε = E[argmax
y∈C

⟨y,M1⊤ + εZ⟩∇zν(Z)⊤/ε]. (3)

Being able to compute the perturbed maximizer and its Jacobian allows
optimizing functions that depend on M through yε. Other distributions can
be used in Z, but we use the Gumbel distribution [11] which is well-known in
machine learning tasks. More details of the implementation for score network
and image reconstruction network are provided in the supplementary material.
This selection module applies equally to the right camera.

4.2 Neighbor Cross Similarity Feature Extraction

For the finding correspondences between left and right feature map, we should
integrate the selected event Sl and image Il into one feature Fl (For the right
camera, this corresponds to Sr, Ir and Fr). Early study using events and images
together for estimating depth in stereo setup [22] utilize the recycling network ,
which recurrently stacks events and images. Their method shows better perfor-
mance than the settings when using only events or images. However, because of
the difference in modality between events and images, it is not practical to sim-
ply concatenate on the channel dimension or add in the entire feature dimension.
Instead, we focus on the characteristic of events mainly fired at object edges as
intensity changes usually happen. This characteristic can make the events ideal
guidance to allow sharp depth values in boundaries, which is a challenging issue
in image data. On the other hand, images have spatially dense characteristics,
which can hand over the information about the entire scene to sparse and noisy
events. According to this intuition, events and images can complement each
other. To this end, we design feature extraction, including the Neighbor Cross
Similarity Feature (NCSF) module, to extract representations that effectively
include these correlations.

Our proposed feature extraction is demonstrated in details in Fig. 5. Fea-
ture extraction consists of cascaded Neighbor Cross Similarity Feature (NCSF)
modules that contains the similarity between the two modalities. The NCSF
module computes a similarity map using the cosine similarity between events
and image features. Even if the image and the event are pixel-wise aligned, since
the event changes temporally, unlike a static image, we consider the surround-
ing neighborhood together. Assuming that the size of the kernel considering
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Fig. 5. The detailed structure of feature extraction. Feature extraction extracts the
fused feature from an event and image pair from the identical camera. For correlating
between two modalities, feature extraction consists of several cascaded Neighbor Cross
Similarity Feature (NCSF) modules. NCSF modules generate cross similarity features
by computing a similarity map between event and image features.

the neighborhood is specified as w × h, the event feature in the kernel is rep-
resented as {e1, e2, · · · , ew×h} and the image feature corresponding to the pair
is represented as {i1, i2, · · · , iw×h}. Then, similarity map can be represented as
{s1, s2, · · · , sw×h} and element of similarity map sk can be obtained as follows:

sk
k∈{1,··· ,w×h}

=

(
ek

∥ek∥2

)T

·
(

ik
∥ik∥2

)
(4)

Then, sk is used as k-th channnel element in the cross similarity feature. In
practice, we compute the cross similarity feature of every pair of pixels in the
image and the event feature. To combine cross similarity features and event (or
image) features, we design a fusion module for each modality consisting of a
1×1 convolution layer followed by BatchNorm and ReLU layers. In addition, we
utilize this fusion module to extract the final fused features Fl. We concatenate
all image and event features generated in the intermediate stage and apply the
fusion module. In our experiments, we set the w = h = 3.

4.3 Correlation and Aggregation Network

For depth estimation, we need to correlate between the fused features pair Fl and
Fr. By our proposed feature extraction, fused features contain much information,
such as structure, boundary, and texture-less region. We adopt the group-wise
correlation proposed in [12] to reduce information loss when obtaining the corre-
lation between these two fused features. We set the number of groups Ng as 40.
Besides, we utilize the stacked hourglass architecture proposed in [12]. They mod-
ified the stacked hourglass architecture proposed in [6]. There are four output
modules for training, and only the last output module is adopted for inference.
In each output module, the probability volume with a size of Dmax×H×W × 1
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is generated using two 3D convolutions with upsampling and softmax function.
The estimated disparity D̃ of each pixel can be obtained as follows:

D̃ =

Dmax−1∑
d=0

d · pd, (5)

where d and pd denote the possible disparity value and corresponding probability,
respectively.

4.4 Objective Functions

We train our network in an end-to-end manner with three loss functions. Among
them, two are for image reconstruction, and one is for disparity estimation.
Image reconstruction loss. In addition to the disparity estimation loss, we
use the learned perceptual similarity loss (LPIPS) [36] and the L1 loss as image
reconstruction losses to train the differentiable event selection network more ro-
bustly. Through back-propagation in supervised learning with disparity ground-
truth, although the selection network can be trained to some extent, we also
utilize the image reconstruction, which has a much higher degree of relation
to events than disparity estimation. As demonstrated in [36], the combination
of these two losses encourage the sharp structural details. For LPIPS, we use
variants of AlexNet [16]. We use the conv1-conv5 layers from [36].
Disparity estimation loss. We adopt the smooth L1 loss function to train
the proposed model. Smooth L1 can be obtained as:

smoothL1(x) =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(6)

The predicted disparity maps from the four output modules are denoted as D̃0,
D̃1, D̃2, D̃3. Then,

Ldisp =

i=3∑
i=0

Λi · smoothL1

(
D̃i −D∗

)
, (7)

where D∗ denotes the ground-truth for the dense disparity map.
Our final loss (L) is obtained by combining the image reconstruction losses

(LL1 ,LLPIPS) and the disparity estimation loss (Ldisp) as

L = Ldisp + λ1LL1
+ λ2LLPIPS . (8)

5 Experiment

5.1 Datasets

We use two publicly available stereo real event camera datasets, the Multi-
Vehicle Stereo Event Camera Dataset (MVSEC) [39] for indoor environments



10 Cho and Yoon.

and the stereo event camera dataset for driving scenarios (DSEC) [10] for out-
door environments.

MVSEC has a stereo setup with two DAVIS [4] cameras that can provide
the images and pixel-wise aligned events with a resolution of 346 × 260 pixels.
Following [22,29,2], we also use the Indoor Flying dataset from MVSEC, which
is captured from a drone flying in a room with various objects, and partition
them into three splits. We also do not evaluate the split 2 quantitatively due to
the difference in dynamic characteristics in the training and testing events, as
mentioned in [29,2]. For a fair comparison, we use the mean depth error, mean
disparity error and one-pixel-accuracy used in [22,29,2] as the metrics.

DSEC provides high-resolution stereo event cameras captured in large-scale
outdoor driving scenes. It contains 53 driving scenarios taken in various lighting
conditions. However, DSEC does not provide an event aligned with the image;
the event and the image are captured by different devices and have different
resolutions and baselines. The image cameras with resolutions of 1440 × 1080
have a baseline of 4.5 cm with the event cameras with resolutions of 640× 480,
which leads to a disparity between pixels of events and images. Therefore, we ap-
proximately warp the image to the event location, which is not precisely aligned
but can be used for evaluation. Since the ground-truth of the disparity map for
the DSEC test set has not been publicly available, we evaluate the performance
on the benchmark website. We use the one-pixel error (1PE), two-pixel error
(2PE), mean absolute error (MAE), and root-mean-square error (RMSE) as the
metrics.

5.2 Experimental Setup

We set the coefficients of Eq. 7 as Λ0 = 0.5, Λ1 = 0.5, Λ2 = 0.7, and Λ3 = 1.0,
and the coefficients of Eq. 8 as λ1 = 1 and λ2 = 1. Our network is implemented
with PyTorch [23]. We use the Adam [14] optimizer with β1 = 0.9, β2 = 0.999.
We set the voxelized event capacity B as 5 and the number of selections K as 3
in all experiments.

For MVSEC datasets, we train the our network for 30 epochs with a batch
size of 2. The initial learning rate is set to 0.0001 without down-scale.

For DSEC datasets, we train the stereo networks for 120 epochs with a batch
size of 8. The learning rate is set to 0.001 and down-scaled by 10 at 20, 40,
and 60 epochs. The input voxelized event is randomly cropped with a size of
384× 256 and vertical flip is applied for data augmentation. The input image is
also cropped in proportion to the voxelized event size.

5.3 Quantitative Results

For quantitative analysis, we compare the results of our proposed model with the
state-of-the-art method. There was no case of comparing with the frame-based
methods on the MVSEC indoor flying dataset. Therefore, we train the frame-
based model [12,6] using intensity images (APS) from the MVSEC dataset and
select the models with the best performance in the validation until convergence.
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Table 1. Results obtained for disparity estimation on MVSEC datasets. I indicates
that the intensity image is adopted as the model modality, and E implies that the event
data are adopted as the input. E + I means both conditions are adopted. The best and
the second best scores are highlighted and underlined.

Model
Using

Modality

Mean disparity
error[pix] ↓

One-pixel
accuracy [%] ↑

Mean depth
error [cm] ↓

Split 1 Split 3 Split 1 Split 3 Split 1 Split 3

PSMNet [6] I 0.57 0.68 88.6 83.1 15.9 18.3

GwcNet-gc [12] I 0.53 0.64 89.9 85.8 15.0 17.4

PSN [29] E 0.59 0.94 89.8 82.5 16.6 23.5

Ahmed et al. [2] E 0.55 0.75 92.1 89.6 14.2 19.4

EIS [22] E+I − − 89.0 88.1 13.7 22.4

Ours E+I 0.38 0.39 94.7 94.0 11.4 13.5

Table 2. Results obtained for disparity estimation on DSEC datasets. (E) implies that
the event data are adopted as the input, and (E+I) means both event and image are
adopted. We report the results for each sequence in three different areas (Interlaken,
Thun, and Zurich City) as well as the results of all sequences averages. The best and
the second best scores are highlighted and underlined.

Model
1PE ↓ 2PE ↓ MAE ↓ RMSE ↓

Inter Thun City All Inter Thun City All Inter Thun City All Inter Thun City All

PSN (E) [29] 10.67 10.85 11.18 10.92 3.13 3.23 2.59 2.91 0.57 0.63 0.56 0.58 1.36 1.63 1.33 1.38

EIS (E+I) [22] 4.77 5.15 7.07 5.81 0.91 1.31 1.14 1.06 0.36 0.40 0.43 0.40 0.83 1.08 0.94 0.91

Ours (E+I) 4.86 5.30 6.62 5.67 0.87 1.24 1.05 0.99 0.36 0.40 0.41 0.39 0.79 1.02 0.87 0.85

Table 1 presents a comparison of the proposed method with previous single
modality methods (only-events [29,2] or only-images [12,6]) and events-images
fusion methods [22]. Our proposed modality fusion stereo network outperforms
the earlier approaches by large margins in all evaluation metrics.

Furthermore, we also evaluate the proposed model on the DSEC dataset.
Since DSEC’s test dataset is not publicly accessible for the ground-truth dispar-
ity, we evaluate the network performance through the benchmark website. As
presented in Table 2, we report the results for each sequence in different areas
and the total average as well. Analytically, our method shows better performance
on the overall sequence average than both the existing DSEC event-only baseline
[29] and the state-of-the-arts [22] that use image and event fusion. Furthermore,
especially in the Zurich City sequences that contain a lot of challenging illumina-
tion, such as Fig. 7, we show quantitatively better performance than the existing
method through cross-modality similarity features between relevant events and
images.

5.4 Qualitative Results

As shown in in Fig. 6, we qualitatively compare our results with previous works
on MVSEC dataset. For comparison, we borrow the results of event-based ap-
proach [29] and event-image fusion method [22] from the original papers, respec-
tively. In addition, we try our best to match the different color codings to those
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Fig. 6. Qualitative comparison of the proposed method with the previous methods
from the MVSEC dataset. For comparison, we select frames similar to the ones used
in [29] and [22]. Note that the results of DDES [29] and EIS [22] are borrowed from
the original papers, respectively.

papers. As can be seen in the top row of Fig. 6 showing the comparison with
the event-only method, our method using both modalities together allows for
less noisy depth estimation. In addition, the bottom row shows the comparison
with the event-image fusion method. Both our method and EIS use the same
input of two types, different modalities. Still, our approach uses the event re-
fined by the selection network and considers the correlation between modalities,
estimating the artifact-free and much sharper results. In addition, we show the
results of driving scene in challenging illumination conditions, which remains an
open problem in stereo depth estimation, samples from the DSEC dataset. As
can be seen in the highlighted region of Fig. 7, event data can capture an object
with a high range covering an area that cannot be seen in the image. However,
the event data also becomes noisier in situations such as night than in a general
scene, and for this part, we supplement the context information from the image.
Our strategy uses both event and image modalities to detect the depth of objects
even under challenging illumination, which can be a breakthrough of direction
that can solve the issues that remain in the conventional stereo matching from
an application perspective.
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Table 3. Ablation studies of the proposed components on the depth estimation.

Ablation Settings

Mean disparity
error[pix] ↓

One-pixel
accuracy [%] ↑

Mean depth
error [cm] ↓

Split 1 Split 3 Split 1 Split 3 Split 1 Split 3

Baseline (GwcNet-g [12]) 0.4020 0.4358 93.8809 91.7874 12.8391 16.5391

+ Differentiable Event Selection (DES) 0.4111 0.4153 94.1659 93.7863 12.3184 14.3000

+ Neighbor Cross Similarity Feature (NCSF) 0.3909 0.4095 94.1027 93.0166 11.6721 13.7153

Proposed (+ DES + NCSF) 0.3776 0.3895 94.7201 94.0321 11.3645 13.4750

(a) Proposed Method (b) Overlay the event on the image (c) Event (d) Image

Fig. 7. Qualitative results of our proposed method from the challenging illumination
scene on the DSEC dataset.

5.5 Ablation Studies

We perform ablation studies to confirm the effectiveness of the proposed methods
using MVSEC dataset. Starting from the baseline, we add each sub-network
to evaluate the performance. Since we adopt the 3D correlation network and
aggregation network from [12], we use GwcNet-g as the baseline. In baseline, to
combine the two modalities, event and image, we use a concatenation operation
followed by a convolution layer. In Table 3, all of the proposed methods effectively
improve the performance significantly.

5.6 Impact of the differentiable event selection

Results for the selection module are shown in Fig. 8. Unlike the method that fully
accumulates between two frames, our method extracts the event most related
to the boundary in the scene. Events refined by our differential event selection
network, which is properly matched to object edges, can resolve discontinuous
boundaries and be an ideal tool for estimating the sharp depth value. As men-
tioned in [29], in stereo depth estimation, spatial context is more reliable than
temporal information, so our method that considers spatial correlation with im-
ages in continuous events leads to better depth results.

Furthermore, we analyze the effectiveness of the number of selection K and
the voxel capacity B on the results of depth estimation in Table 4. When B =
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Table 4. Impact of the voxelized event capacity B and the number of selection K on
performance. The table shows the one-pixel-accuracy for split 1 test set in MVSEC
dataset.

The number of selection K

voxel capacity B 1 2 3 4 5

5 91.6541 93.2581 94.7201 94.2207 94.1027

voxel capacity B 2 4 6 8

10 92.6156 92.8351 94.2313 93.8791

Fig. 8. The example of overlapping selected events and images. Selected events are
shown in red. Except for the noise, most events are aligned to the object’s boundary.
Red: the selected events, green: the ignored events.

K = 5, it means using the entire voxel, and we analyze while reducing the K event
select value. As the number of select decreases, the performance tends to improve,
but when less than 3, the performance decreases. The reason for decreasing is
that the amount of events is not sufficient to represent the overall scene, so it is
challenging to obtain correspondence. In addition, when we increase the voxel
capacity B to 10 and increase the number of selections K in proportion to B,
the number of permutation cases increases significantly, and overall performance
decreases. Still, it performs better than using the entire discritized voxel.

6 Conclusions

In this paper, we present the novel stereo depth estimation network using both
modalities of events and images together. Specifically, we propose the differ-
entiable event selection (DES) network to extract the events relevant to the
scenes. Furthermore, we also propose a neighbor cross similarity feature (NCSF)
that considers the similarity between different modalities. Finally, we evaluate
our method with two real-world datasets, DSEC and MVSEC, and show the
superiorness of our method in both quantitative and qualitative analyses. Our
approach is effective for networks that use events and images together and can
be generalized to other tasks.
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