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In this supplementary material, we provide results on the Refer[t3D dataset
in Sec. 1. To showcase the effectiveness of our speaker-listener architecture, we
provide additional results on extra ScanNet [6] data in Sec. 2. We also include
details about our PointGroup implementation as well as the detection and seg-
mentation results in Sec. 3 and Sec. 4, respectively.

1 Experiments on ReferIt3D

1.1 Quantitative Results

We conduct additional experiments on the ReferIt3D Nr3D dataset [1]. It con-
tains about 33k free-form object descriptions annotated by human experts for
training and 8k for validation. We report our results on the validation split since
there is no test set.

3D dense captioning We compare our 3D dense captioning and object de-
tection results against the baseline Scan2Cap [3] in Tab. 1. Our method trained
with the speaker MLE loss (marked “Ours (MLE)”) outperforms Scan2Cap by
a big margin, leveraging the improved object detection backbone. After training
with the CIDEr reward (marked “Ours (CIDEr)”), our dense captioning results
are further boosted. Training with the listener loss as the additional reward
(marked “Ours (CIDEr+lis.)”) further improves our results due to the explicit
reinforcement of the discriminability of generated object descriptions. Here, our
object detection mAP is also improved due to the end-to-end joint fine-tuning of
our speaker-listener architecture. We showcase the effectiveness of training with
extra ScanNet data in the last row in Tab. 1, where 3D dense captioning and
object detection results are improved simultaneously.

3D visual grounding We compare our 3D visual grounding results against the
baseline ScanRefer [2] and 3DVG-Transformer [14] in Tab. 2. As the descriptions
in Referlt3D dataset all refer to objects in the scene where multiple similar
objects with the same class label are present, there is no such case that can
be allocated to “Unique” subset where only one object with a specific class
label can be found in the scene. Therefore, we allocate our results to “Multiple”
and “Overall”. Our method trained with the detector loss and the listener loss
(marked “Ours(w/o fine-tuning)”) clearly outperforms the baseline methods.
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Table 1: Quantitative results on 3D dense captioning and object detection on
ReferIt3D Nr3D dataset [1]. We average the conventional captioning evaluation
metrics with the percentage of the predicted bounding boxes whose loU with the
GTs are higher than 0.5. Our method outperforms the baseline Scan2Cap [3]
by a significant margin. We showcase the effectiveness of our speaker-listener
architecture trained with partially annotated ScanNet data, where it achieves
the best performance in all metrics.

|C@0.5I0U B-4@0.5I0U M@0.5I0U R@0.510U|mAP@0.5

Scan2Cap [3] | 22.38 13.87 20.44 47.96 | 33.21
Ours (MLE) 33.85 20.70 23.13 53.38 | 49.71
Ours (CIDEr) 36.79 21.12 23.91 53.83 | 50.89
Ours (CIDErlis.) 37.35 21.40 24.10 54.14 | 51.58
Ours (CIDEr+lis.+extra)| 38.42 22.22 24.74  54.37 | 52.69

Table 2: Quantitative results on 3D visual grounding on Refer[t3D Nr3D
dataset [1]. We adapt the evaluation setting as in Chen et al. [2] to be consistent
with the main paper. We report results on “Multiple” and “Overall”, as there
is no case in ReferIt3D that is “Unique”. Our base visual grounding network
outperforms the baseline methods. Results are further improved after the joint
fine-tuning with the speaker-listener architecture. Speaker-listener fine-tuning
and semi-supervised training with partially annotated ScanNet data provide the
best overall results.

‘ Acc@0.5I0U

‘Unique Multiple Overall
ScanRefer [2] - 1217 12.17
3DVG-Trans [14] - 14.22  14.22
Ours (w/o fine-tuning) - 19.64 19.64
Ours (w/ fine-tuning) - 2441  24.41
Ours (w/ fine-tuning + extra)| - 25.23 25.23

Our results (marked “Ours(w/ fine-tuning)”) are significantly improved after
fine-tuning jointly with the speaker. Our best results are obtained after jointly
training with speaker-listener architecture on partially annotated ScanNet data,
as demonstrated in the last row in Tab. 2.

1.2 Qualitative Analysis

3D dense captioning We compare our results with object captions from
Scan2Cap [3] in Fig. 1. Object captions generated by Scan2Cap include more
inaccurate spatial relationships. Also, those object captions cannot be used to
uniquely localize the associated object. In contrast, our method produces more
accurate and discriminative object captions with more spatial relationship in-
formation.
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Scan2Cap: the couch with the white Scan2Cap: the trash can closest to Scan2Cap: the window that is not Scan2Cap: the long shelf with the

surface the entrance next to the door two monitors

Ours: the couch with the grep pillow  Ours: the trash can is on the side Ours: the door with the white sign Ours: the bookshelf is closest to the
onit with no additional table on it door

GT: the two-seater black couch with GT: find the trash can next to the GT: the door closest to the set of GT: the correct shelf is the one that is
a stripe pillow on top double doors double doors on the wall smaller and not as wide

s

N
Scan2Cap: the chair closest to the Scan2Cap: the chair is closest to the Scan2Cap: the chair next to the table  Scan2Cap: the couch with the grey
window door pillow on it
Ours: the chair between another Ours: the chair in the corner closest  Ours: the chair closest to the door Ours: the couch in the middle of the
chair and the shelf to the whiteboard room
GT: the chair farthest from the bed GT: chair farthest away from the GT: the chair is at the table, in the GT: find the couch closest to the two
door, not next to the table corner closest to the door desks

Fig. 1: Qualitative results in 3D dense captioning task from Scan2Cap [3] and
our method on ReferIt3D Nr3d dataset [1]. We underline the inaccurate words
and mark the spatially discriminative phrases in bold.

Table 3: Comparison of the performance of our implementation of PointGroup
using the Minkowski Engine against the original PointGroup (PG(*)) for in-
stance segmentation. We report the mAP for IoU threshold 0.5 on the ScanNet
v2 validation set. Our re-implementation using color gives comparable perfor-
mance as the original PointGroup implementation. Using multiview features, we
are able to further improve the performance.

Method ‘mAP@O.S‘cab. bed chair sofa tab. door wind. booksh. pic. cntr desk curt. refrige. s. curt. toil. sink batht. other

PG (%) 56.9 [48.1 69.6 87.7 71.5 62.9 42.0 46.2 549 37.7 22.4 41.6 449 372 644 983 61.1 80.5 53.0
PG (Color) 56.6 |47.5 64.1 83.8 75.4 63.7 42.7 45.7 49.6 43.7 17.5 429 47.9 350 65.6 100.0 60.7 81.9 51.5
PG (Multiview)| 62.8 |58.3 83.4 86.9 66.3 68.6 47.3 52.4 64.9 38.3 23.056.9 46.3 64.3 83.0 98.3 57.0 71.4 63.1

3D visual grounding Fig. 2 compares our results with 3DVG-Transformer [14]
on Referlt3D Nr3D dataset [1]. 3DVG-Transformer clearly suffers from overfit-
ting issue, as it tends to predict that same object bounding box given different
queries as inputs (see the third and fourth examples in the first row). Leveraging
the speaker-listener architecture, our method can better distinguish object from
the same class than 3DVG-Transformer.

2 Additional Results on Extra ScanNet Data

Fig. 3 showcase the intermediate dense captioning and visual grounding results
for scans where no GT object captions are provided in the ScanRefer dataset [2].
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Query: choose the couch Query: the larger table Query: the black chair next Query: chair farthest away Query: the chair closest to
nearest to the whiteboard closest to the door to the table, closest to the from the door, not next to the bed
door the table

Fig. 2: 3D visual grounding results using 3DVG-Transformer [14] and our method
on ReferIt3D Nr3D dataset [1].

Those intermediate object captions and the matched object bounding boxes are
used during the semi-supervised training of our speaker-listener architecture. Our
architecture produces plausible object captions with adequate and discriminative
spatial relationships that inherently enables visual grounding.

3 PointGroup Implementation Details

The official implementation of PointGroup uses SpConv [12], a spatially sparse
convolution library devoted to 3D data, to build its SparseConv-based U-Net
architecture to encode point and cluster representation. We migrated the imple-
mentation of PointGroup from SpConv to MinkowskiEngine [5], another auto-
differentiation library for sparse tensors, since it outperformed SpConv by pro-
viding faster computation operations on GPU, user-friendly documentations and
consistent code maintenance at the time the project was initiated.

Following Jiang et al. [3], we use the same hyperparameters for point vox-
elization and clustering. We set the maximum number of points per scene to
250,000 by randomly adding small offsets to the point cloud and cropping out
extra parts exceeding the predefined maximum scale of the scene if necessary.
Limiting the number of points to 250,000 allows us to fit the model on a RTX
3090. We augment each point cloud scene by jittering point coordinates slightly,
mirroring about the YZ-plane, and rotation about the Z axis (up-axis) randomly
from 0 to 360°. We also apply elastic distortion, which was used by Jiang et al.
[8], to the scaled points. We share the same SparseConv-based U-Net architec-
ture as Jiang et al. [3] for both backbone and ScoreNet except that the input
data may contain mutiview features and normals instead of RGB colors. For
each voxel, we encode the color, normal and multiview features extracted using
ENet [7], giving us a total input dimension of 134. To adapt PointGroup as an
object detector, we obtain axis-aligned bounding boxes using predicted instance
clusters by simply calculating their sizes and centers from points assigned to
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Detected object

Speaker: this is a brown desk . it is to  Speaker: this is a white desk . It is Speaker: this is a white pillow . it is Speaker: this is a brown table with a
the right of the bed . between the sink and trash can . on the blue bed . white top . it is next to the couch .

Matched object

Detected object

Speaker: this is a black cabinet . itis ~ Speaker: this is a blue ottoman . Itis  Speaker: this is a round table . itis to  Speaker: this is a black suitcase . it is
in the corner of the room . in front of a couch . the right of an armchair . in the corner of the room .

Matched object

(b) Scan scene0002-01

Fig.3: Intermediate dense captioning and visual grounding results in the
Speaker-listener architecture for RGB-D scans where no GT object descriptions
are provided in ScanRefer dataset [2]

them. We set the thresholds of cluster scores as 0.09 and the minimum cluster
point number as 100 to filter out bad cluster proposals. We train the PointGroup
detector using Adam [9] with a learning rate of 2e-3, on the ScanNet train split
with batch size 4 for 140k iterations until convergence.

4 Detection and Segmentation Results

4.1 Quantitative results

Instance segmentation. Tab. 3 compares the instance segmentation results of our
PointGroup implementation against the original PointGroup (first row). With
positions and colors as input, our implementation of PointGroup (second row)
gives a similar performance as original PointGroup. When replacing colors with
multiview features and normals (last row), our PointGroup implementation sig-
nificantly outperforms the original one. Our multiview-based PointGroup gives
mAPQOQ.5 of 62.8, which is close to the performance of the current state-of-the-
art model HAIS [4], which achieves 64.1 on the validation set of ScanNet v2.
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Table 4: Comparison of object detection performance of PointGroup (PG) and
VoteNet. We report mAP with ToU threshold 0.5 on the ScanNet v2 validation
set. PointGroup produces more accurate bounding boxes than VoteNet, and
using multiview features further improves performance over incorporating color
as input directly.

Method ‘mAP@Oﬁ‘cab. bed chair sofa tab. door wind. booksh. pic. cntr desk curt. refrige. s. curt. toil. sink batht. other

8.1 76.1 67.2 68.8 42.4 153 64 28.0 1.3 95 375 11.6 278 10.0 86.5 16.8 78.9 11.7
25.2 69.1 77.1 67.3 53.3 32.7 32.2 36.8 26.9 30.0 52.1 33.5 26.7 374 87.8 32.3 69.6 13.6
36.4 77.6 80.9 66.1 59.2 40.2 33.1 37.0 27.7 32.056.5 32.2 62.1 70.0 91.133.8 60.2 16.0

33.5
44.6
50.7

VoteNet
PG (Color)
PG (Multiview)

Our implementation also surpasses the original PointGroup in training speed:
given point coordinates and colors as input, it takes less than two days to train
the model in our implementation, while the original one could take up to three
days until convergence.

Object Detection. We compare our object detection results before fine-tuning
with the speaker-listener architecture against the VoteNet [11] in Tab. 4. Given
positions and colors as input, our PointGroup detector (second row) clearly
outperforms VoteNet. Using multiview features and normals instead of RGB
colors, our PointGroup based detector gives improved detection results of 50.7
mAP@Q.5, which outperforms the current state-of-the-art detectors [10, 13] on
the validation set of ScanNet v2 with gains of 3.7 and 2.6 respectively. Also, our
PointGroup generates notably better detections for small and thin objects than
VoteNet, such as picture (“pic.”) and counter (“cntr”).

4.2 Qualitative results

Instance segmentation. We present our instance segmentation results in Fig. 4.
Our PointGroup trained with multiview features and normals clearly generates
better instance segmentation masks than our model with raw point colors as
input, as it better segments out tiny objects leveraging the higher resolution of
the multiview images.

Object Detection. Fig. 5 showcases the effectiveness of our PointGroup in object
detection over VoteNet. Our PointGroup implementation produces much more
accurate object bounding boxes due to the fine-grained per-point segmentation.
Also, training with multiview normal features can further improve the quality
of the generated bounding boxes in comparison with PointGroup trained with
the raw point colors (the third column vs. the first column).
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Input GT PG (Color) PG (Multiview)

scene0011_00

scene0025_00

scene0046_00

scene0050_00

scene0064_00

scene0144_00

scene0329_00

scene0427_00

Fig.4: Qualitative results in instance segmentation task on the ScanNet v2 val-
idation set.
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VoteNet PG (Color)

scene0011_00

scene0025_00

scene0046_00

scene0050_00

scene0064_00

scene0144_00

scene0329_00

scene0427_00

Fig. 5: Qualitative results in object detection task on the ScanNet v2 validation
set.
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