
CIRCLE: Convolutional Implicit Reconstruction
and Completion for Large-scale Indoor Scene

Hao-Xiang Chen , Jiahui Huang , Tai-Jiang Mu⋆ , and Shi-Min Hu

BNRist, Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

{chx20,huang-jh18}@mails.tsinghua.edu.cn
{taijiang,shimin}@tsinghua.edu.cn

Abstract. We present CIRCLE, a framework for large-scale scene com-
pletion and geometric refinement based on local implicit signed distance
functions. It is based on an end-to-end sparse convolutional network, Cir-
cNet, which jointly models local geometric details and global scene struc-
tural contexts, allowing it to preserve fine-grained object detail while re-
covering missing regions commonly arising in traditional 3D scene data.
A novel differentiable rendering module further enables a test-time refine-
ment for better reconstruction quality. Extensive experiments on both
real-world and synthetic datasets show that our concise framework is ef-
fective, achieving better reconstruction quality while being significantly
faster.

Keywords: Scene Reconstruction, Scene Completion, Differentiable ren-
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1 Introduction

In recent years, 3D reconstruction from RGB-D camera data has been widely
explored thanks to its ease of acquisition with many applications in robotic per-
ception, virtual reality, games, etc. It is well-accepted that an ideal reconstruction
algorithm should be capable of simultaneously (i) restoring fine-grained geomet-
ric details in the target scene, (ii) handling with large scenes efficiently, and (iii)
completing the missing regions. Additionally, the underlying 3D representation
should be flexible enough to allow further optimization of geometric quality.

However, traditional algorithms along with their accompanying representa-
tions fail to effectively fulfil the above requirements. For instance, methods using
the truncated signed distance function (TSDF) [10,34] are hampered by limited
voxel resolution and lack robustness to noisy data. Surfels [52] offer more flexi-
bility by treating the 3D scene as unstructured points, but maintaining correct
topology is challenging. Furthermore, these methods cannot fill in missing ge-
ometry in the scene, which is common in practice due to the sensor limitations,
incomplete coverage of the scanning trajectory, or unreachable areas.
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Fig. 1: CIRCLE efficiently reconstructs and completes 3D scene from a given
a sequence of posed depth images, commonly corrupted by noise and missing
data: the inference time for this scene takes only 17s, 10× faster than [39].

The recent introduction of deep implicit representations [7,32,38] has enabled
a plethora of research directions for 2D and 3D data processing. Parameterized
by a neural network, implicit functions are inherently continuous and differen-
tiable. Notably, in the field of 3D reconstruction, various works [8,9,16,17,36,44]
have already demonstrate their ability to learn object-level geometric priors from
the shape repositories. However, when applied to large-scale scenes, the above
methods are typically impractical. The reasons are three-fold. Firstly, the struc-
ture of a scene is substantially more complicated than that of a single object.
A typical end-to-end, optimization-free, framework is weak at capturing the en-
tangled geometric priors of cluttered regions. Secondly, though there exist other
work [1,5,23,43,48] that overfits the scene geometry, to avoid the necessity of
prior learning, it usually involves costly optimization procedures. Thirdly, some
efforts [22,39,46,47] have been made to reconstruct scenes in real-time with deep
implicit functions, but performed at a cost of low reconstruction quality.

To tackle these issues, we introduce the CIRCLE framework, as shown in
Fig. 1. It employs a novel CircNet, short for fully-convolutional implicit network
for reconstruction and completion of large-scale indoor 3D scenes from partial
point clouds. It is capable of both preserving scene geometric details and complet-
ing missing regions of the scene in a semantically-meaningful way. Specifically,
we adopt a local implicit grid to represent the local details of the whole scene,
and learn the global contextual information for scene completion via a sparse
U-Net. Our network is also efficient, in that it encodes and decodes the sparsity
pattern of the scene geometry by learning, and only non-empty portions need
to be evaluated. Furthermore, we provide a fast and novel differentiable render-
ing approach tailored for refining our output representation, which can greatly
improve the geometric quality during inference to provide resilience to the er-
rors in the raw input. Extensive experiments on various datasets demonstrate
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the effectiveness of our framework, which sets a new state-of-the-art for scene
reconstruction and completion.

2 Related Work

Scene Reconstruction. Building a high-quality and coherent scene-level re-
construction is challenging due to noise, occlusion and missing data inherent in
3D data acquisition sensors. While traditional methods [4,13,30,34,37,41,52,53]
incrementally fuse input depth observations using a moving average [10], learning
methods [50,51] can further reduce the noise using data-driven geometric biases.
The recent trend of using implicit neural representations, such as DI-Fusion [22]
and its successors [3,46], either uses localized priors or the continuous nature of
a globally-supported network function. In comparison, our method can not only
accurately recover detailed scene geometry, but also rebuild missing parts via a
global structural reasoning based on learning. We refer readers to [26] for a more
comprehensive understanding on scene reconstruction.

Scene Completion. The main challenge in scene completion is to fill miss-
ing regions with data that are semantically coherent with the existing content.
[45] casts the problem in terms of panoramic image completion but important
geometric details are significantly missing. [14] first brings the aid of semantic
segmentation to the completion problem in the 3D domain. Subsequent lines of
work [12,15] tackle the problems of geometric sparsity and color generation. We
note that many end-to-end frameworks [1,39] using implicit representations also
provide decent scene extrapolation due to the continuous nature of networks,
even though they are not specifically designed for this task.

Differentiable Rendering. The technique of differentiating the rendering pro-
cess bridges the gap between 3D geometry and 2D observations of it by allowing
for end-to-end optimization directly from the captured raw sensor data, which
was first applied to triangular meshes [25,29] and later to implicit fields [24,28,35].
The prevalence of NeRF [33] motivates many studies to improve rendering effi-
ciency and fitting speed, either through localized structures [27], level-of-detail
rendering [48], caching [55], or multi-view stereo [42,54]. In conjunction with
our novel local implicit representation, we devise a new differentiable rendering
approach which can rapidly and effectively refine the geometric details of the
reconstructed scene during inference.

3 CIRCLE: Convolutional Implicit Scene Reconstruction
and Completion

Problem Formulation. The input to our method is a sequence of posed depth
frames {Dt,Tt}Tt=1, with Dt ∈ RW×H and Tt ∈ SE(3) being the depth image
and the 6-DoF camera pose, respectively. Our goal is to build a high-quality
and complete 3D reconstruction of the scene, represented usingM a local sparse
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Fig. 2: Pipeline. We first voxelize the accumulated unprojected points from the
input posed depth frames into a sparse grid. The feature volume is then fed to
CircNet, which comprises 3 neural networks: ϕE, ϕU, and ϕD, and outputs an
implicit completed surface. Inference-time refinement is enabled by our differen-
tiable rendering, aiming at better and more complete reconstruction.

implicit voxel grid V = {(cm, lm)}Mm=1 that contain the surface of the scene
geometry. Here, cm ∈ R3 is the voxel coordinate and lm ∈ RL is the latent
vector describing the local voxel grid’s geometry, from which we can decode the
signed distance values of the full scene and finally extract the mesh. The size of
each voxel is b× b× b.

Overview. As Fig. 2 shows, we first unproject all the depths Dt under the given
poses Tt to obtain an accumulated point cloud P = {(pi,ni)}Ni=1, where pi ∈ R3

and ni ∈ R3 are the point position and its estimated normal, using [34]. P is
then voxelized into initial sparse 3D grid and processed by CircNet (see Sec. 3.1).
Being aware of both global scene structure and local geometric details, CircNet
simultaneously refines the voxelized points and adds additional points using a
point encoder ϕE and a U-Net ϕU, and produces V defining the latent vector
of local implicit geometry, which is then decoded to TSDF values by a multi-
layer perceptron (MLP) ϕD. One can later extract the mesh using marching
cubes [31] from these TSDF values. Moreover, the reconstructed geometry can
be further optimized during inference-time via a novel differentiable rendering
scheme described in Sec. 3.2, to refine both the scene geometry and the camera
pose. Detailed loss functions for the training procedure and the inference-time
refinement are discussed in Sec. 3.3.

3.1 CircNet Architecture

Given the unprojected point cloud P from the input views, CircNet sequentially
applies three trainable components: a point encoder network ϕE, a U-Net ϕU,
and an SDF decoder ϕD to produce an implicit representation of the underlying
scene. We now describe these components in turn.

Point Encoder. We first split the input point cloud into voxels. For a point
pi, the index of its belonging voxel mi is determined by the m satisfying pi ∈
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[cm, cm + b). We define the local coordinate of pi within its belonging voxel as
pl
i = (pi−cm)/b ∈ [0, 1]3. Next, for each voxelm, we feed all the local coordinates

of points contained in the voxel, along with their normals: {(pl
i,ni) ∈ R6 |mi =

m} into a point encoder ϕE. ϕE adopts a basic PointNet [40] structure by first
mapping all the input features into L-dimensions with a shared MLP and then
aggregating the features via mean pooling. The resulting sparse feature voxel
grid is denoted by V0.

U-Net. The goal of the U-Net ϕU in this step is to complete and refine the recon-
struction from V0 into V. This is achieved by propagating contextual features in
the hierarchical U-Net structure with a large receptive field. A trivial implemen-
tation falls back to a dense convolution that generates a dense feature grid even
if many voxels are actually empty. Due to the sparse nature of the geometry, we
instead use submanifold sparse convolution [18] for our convolution layer. For the
decoder branch, inspired by [49], we append a sparsity prediction module to each
layer of the decoder. This module is instantiated with a shared MLP applied to
each voxel and predicts the confidence of the current voxel containing the true
surfaces; voxels with scores lower than 0.5 are pruned. Accordingly, usual skip
connections are replaced by sparsity-guided skip connections: connections are
only added for voxels predicted to be non-empty. Apart from the efficiency gain,
this design also eases network training by obviating the need to model the full
geometry of empty regions.

SDF Decoder. To recover the final scene geometry, we traverse all points p
in the non-empty regions of V and learn the signed distance values using an
implicit decoder instantiated with an MLP ϕD : (pl, l̂) ∈ R3+L 7→ [−1, 1], where

pl is the local coordinate of p and l̂ is the interpolated feature taken from V.
To smooth the geometric interpolation across voxel boundaries, we apply an
additional 2 × 2 × 2 convolution over V to propagate the features stored at
voxel centers to voxel corners, obtaining {l′m}. The input feature l̂ can then
be trilinearly interpolated ψ(·) from the features stored at its 8 nearest voxel

corners: l̂ = ψ(pl, {l′(1), . . . , l
′
(8)}).

3.2 Differentiable Local Implicit Rendering

Despite the good-quality, end-to-end reconstruction provided by CircNet, some
desired geometric details can be lost. The reasons are two-fold. Firstly, the real-
world depth acquisition usually suffers from noisy pose and sensor limitations,
resulting in erroneous reconstruction and severe missing regions. Secondly, a sim-
ple feed-forward network trained on large-scale datasets can underfit geometric
features or generate excessive contents [32,38]. Being aware of these issues, we
propose a novel differentiable renderer for our implicit representation, allowing
for effective differentiation through both geometry and camera pose. Specifically,
for each pixel to be rendered, we emit a ray with an origin o and a unit direction
d, and compute the depth of the intersection z so that the intersection point is
p = o+ zd. The forward and backward passes are defined as follows:
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Fig. 3: Rendering strategies. Rendering a globally-supported implicit repre-
sentation with (a) uniform query points [33] and (b) differentiable sphere trac-
ing [28]. (c,d) Our approach with both sphere tracing and implicit differentiation,
only computes gradients for on-surface points, thus being highly efficient.

Forward Pass. The forward pass is composed of two steps as shown in Fig. 3
(c–d):
1. Voxel-level Intersection. As the sparsity prediction modules from the dif-

ferent layers of our U-Net decoder naturally form an octree structure thanks
to the upsampling operator, we can use any existing ray-octree intersection
algorithm for this step. In our implementation, we choose the fast algorithm
in [48] that generates a list of intersection pairs {(zv,mv)}, where zv is the
depth and mv is the voxel index of the intersection.

2. Geometry-level Intersection. The sphere tracing algorithm [20] is applied
for each intersecting voxel mv, starting from o + zvd and ending at pg =
o + zgd that hits the surface. Note that only the smallest zg among all the
voxels is returned as the final depth z due to occlusion.

Backward Pass. For clarity, we abstract our full CircNet as an implicit network
f(p; θ) whose inputs are the position p and the intermediate features or network
parameters θ, and the output is the signed distance value. We wish to compute
the first-order derivative of the depth z w.r.t.θ as well as the camera ray o and
d for optimization. Inspired by [54], we employ the fact that f(o + zd; θ) ≡ 0
and use implicit differentiation to obtain:

∂z

∂θ
= −γ ∂f

∂θ
,

∂z

∂o
= −γ ∂f

∂p
,

∂z

∂d
= −γz ∂f

∂p
, (1)

where γ = ⟨d, ∂f/∂p⟩−1 is a scalar, ⟨·, ·⟩ denotes the vector inner product, and
other derivatives related to f can be efficiently evaluated using reverse-mode
back-propagation. Empirically, we observe that full gradient-based optimization
over all network parameters fails to converge. Hence we choose to only optimize
the latent vectors in V: θ = {lm}, and fix all other parts of the networks.

Discussion. A comparison between our method and previous approaches is
shown in Fig. 3. Methods similar to, e.g., NeRF [33] exhaustively query all points
along the ray; most of the unnecessary computations far away from the surface
can be saved with sphere tracing [20,28]. Our use of localized grid further speed
up the process thanks to the explicit ray-voxel intersection step that greatly



CIRCLE 7

reduces the number of steps in tracing. Nevertheless, a naive implementation
of the backward pass requires unrolling the tracing steps, leading to inaccurate
gradients. We for the first time marry the merits of implicit differentiation, origi-
nally designed for global representations [54], with our local feature grid, so that
only the intersection points need to be stored in the computation graph, lead-
ing to a fast, stable, accurate and memory-efficient method for both forward and
backward passes. Experiments verifying our design choices are shown in Sec. 4.3.

3.3 Loss Functions

CircNet Loss Function. The three networks ϕE, ϕU and ϕD are jointly trained
in an end-to-end manner, using the following loss function:

L = Lsdf + αLnorm + βLstruct + δ

M∑
m=1

∥lm∥, (2)

where ∥·∥ is the vector norm. Lsdf is the data term defined as the L1 distance

between the predicted signed distance from the decoder ϕD(p
l, l̂) and the ground-

truth values sgt(p):

Lsdf =

∫
Ωu∪Ωn

|ϕD(pl, l̂)− sgt(p)| dp. (3)

Here Ωu denotes the occupied region of the voxels V while Ωn is a narrow
band region near the surface. The normal of the predicted geometry, computed
as ∇pϕD, is constrained by the normal loss:

Lnorm =

∫
Ωu∪Ωn

∣∣∥∇pϕD∥ − 1
∣∣ dp +

∫
Ωn

(
1− ⟨∇pϕD,n

gt(p)⟩
)
dp, (4)

where the first term enforces the eikonal equation of the signed distance field
while the second term minimizes the angle between predicted normal and ground-
truth normal ngt.

Lstruct uses cross-entropy loss to supervise the sparsity prediction module for
each layer in the decoder branch of ϕU. Specifically, we obtain the ground-truth
sparsity pattern of the target geometry at multiple resolutions in accordance with
the output sparsity map from the U-Net, and directly supervise the predicted
confidence score. During training, we use the ground-truth sparsity map instead
of the predicted one for the skip-connections and pruning of the next layer.

Inference-time Refinement. During inference, our differentiable rendering
module is applied to refine the predicted geometry and the camera poses. For
each depth image Dt and its pose Tt, we can render a depth image as D′

t(Tt, θ) ∈
RW×H , whose values are the depths {z} from Sec. 3.2. By minimizing the error
between the rendered depth and the observed depth, we can jointly optimize the
quality of geometry and input poses:

min
θ,{δTt}

T∑
t=1

∣∣Dt −D′
t(δTtTt, θ))

∣∣, (5)
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where we optimize an increment to pose δTt instead of Tt itself, for better
convergence.

4 Experiments

4.1 Datasets and Settings

Datasets. The main dataset used to evaluate our framework is N-Matterport3D.
Adapted from [6], this dataset contains 1,788 and 394 scans of rooms from 90
buildings for training/validation and testing, respectively, captured by a Mat-
terport Pro Camera. We follow the self-supervised setting from [12] by randomly
sampling 50% of the frames to generate an incomplete version of each room and
supervise our method with a complete version reconstructed from all frames.
To test the robustness of our model, we follow [50] and add synthetic noise
to each individual depth frame (denoted by the prefix ‘N-’), because raw Mat-
terPort3D dataset have little noise. We additionally used the well-known ICL-
NUIM [19] public benchmark containing 4 scan trajectories for testing only, to
demonstrate the generalizability of our method. We also show qualitative results
on ScanNetv2 [11] dataset to demonstrate how our network works under real-
world noise. Due to the incomplete ground-truth meshes and inaccurate poses
in ScanNetv2, it is not ideal for training. We hence directly apply our model
trained on N-Matterport3D to this dataset.

Parameter Settings. Our CircNet was trained and tested on a single Nvidia
GeForce RTX 2080Ti GPU. The weights of the loss terms are empirically set to
α = 0.1, β = 1 and δ = 0.001. We used the Adam optimizer with a learning rate
of 0.001. For efficient training, we uniformly split the input point cloud P into
patches of size 3.2m×3.2m×3.2m, although as a fully convolutional architecture,
our pipeline could easily scale to the full scene during inference. ϕE, ϕU and ϕD
have 4, 5, and 3 layers respectively. With the scale of indoor scenes, the voxel
size b is set to 0.05m and the width of Ωn is set to 2.5mm. Further details of our
network structure are given in the supplementary material.

Baseline. Our method is compared to a full spectrum of methods, including
those providing reconstruction from sequential depth frames, i.e., RoutedFu-
sion [50] (denoted as “R-Fusion”) and DI-Fusion [22] using representations of ei-
ther local implicit grid or a neural signed-distance volume. We further consider
methods operating on fully-fused geometry, i.e., the convolutional occupancy
network [39] (denoted as “ConvON”) is the state-of-art local implicit network
for surface reconstruction considering global information, while SPSG [15] is the
up-to-date scene completion approach that takes TSDF volumes as input. For
methods that are cannot be trained on large-scale scenes, we used pre-trained
weights obtained from synthetic datasets.

Metrics. We use root mean square error (RMSE), chamfer distance (CD), sur-
face precision, recall, and F-score during evaluation. RMSE, CD, and surface pre-
cision mainly measure the accuracy of the reconstruction, surface recall mainly
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Table 1: Quantitative results using the N-Matterport3D dataset.

RMSE ↓
(×10−3)

CD ↓
(×10−3)

F-Score ↑
(%)

Precision ↑
(%)

Recall ↑
(%)

SPSG [15] 27.1 1.05 80.12 76.03 85.21
ConvON [39] 31.4 1.85 62.34 52.32 78.45
R-Fusion [50] 24.6 0.98 65.64 64.10 67.54
DI-Fusion [22] 20.9 1.14 82.36 82.31 82.68

Ours (w/o optim.) 16.5 0.47 89.11 88.93 89.11
Ours 16.2 0.47 89.23 89.23 89.24

↓ / ↑: Lower / higher is better. Bold numbers indicate the best
and underlined numbers indicate the second best.

assesses the degree of completeness, and F-score reflects both accuracy and com-
pleteness. All reconstruction results from different methods are converted to
point clouds for fair comparisons. RMSE and CD are measured in meters, and
for precision and recall, a predicted or ground truth point is accepted if its dis-
tance to the closest ground truth or predicted point is smaller than 0.02 m.

4.2 Comparisons to Other Methods

Tab. 1 shows that our proposed method performs the best in terms of all metrics,
for the N-Matterport3D dataset. Qualitative results are presented in Fig. 4. The
dense structure of ConvON makes it difficult to simultaneously capture the local
and global information from real-world datasets. R-Fusion and DI-Fusion only
learn local geometric priors from the synthetic datasets. Specifically, although
DI-Fusion fits local details with local implicit functions and achieves competitive
performance, its lack of global information prevents it from completing missing
regions. SPSG shows a capability for scene completion; however, limited by the
discrete TSDF representation, the precision of the reconstructed surface is un-
satisfactory. Our method learns global contextual information from local implicit
grid by the convolutional neural network ϕU, and thus can faithfully reconstruct
local geometric details as well as recovering many missing regions. As highlighted
with the red boxes in Fig. 4, our network effectively fills in the holes in the pla-
nar regions (e.g., walls, floors, and ceilings). Some of the objects such as beds,
tables, pillows, etc., can also be completed in a semantically meaningful way.

We further evaluate the generalizability of all approaches using the ICL-
NUIM dataset; quantitative results are given in Tab. 2. Remarkably, although
our method is trained using panoramic scans as in [6], thanks to our effective
learning scheme in 3D space, it generalizes well to hand-held trajectories whose
geometric distributions are drastically different.



10 H.X. Chen et al.

Point Cloud ConvON DI-Fusion R-Fusion SPSG Ours

Error:      0cm 15cm

Fig. 4: Visual comparison using N-Matterport3D. Results show both
global views (part 1, top three rows) and close-up views (part 2, bottom four
rows). The last row in each part shows each method’s per-point error, the dis-
tance between each reconstructed vertex and the corresponding closest ground
truth point.
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Table 2: Quantitative results tested on the ICL-NUIM dataset.

RMSE ↓
(×10−3)

CD ↓
(×10−3)

F-Score ↑
(%)

Precision ↑
(%)

Recall ↑
(%)

SPSG [15] 36.6 2.07 20.29 29.70 15.62
ConvON [39] 42.3 3.55 13.81 18.46 11.15
R-Fusion [50] 40.9 2.75 14.56 22.20 11.07
DI-Fusion [22] 19.5 1.32 22.14 51.21 14.23

Ours (w/o optim.) 22.7 1.54 23.89 51.02 15.78
Ours 22.1 1.46 25.54 53.55 16.99

Noisy Point 
Cloud

Ours (w/o optim.) Ours-AD Ours Groundtruth

Fig. 5: Inference-time refinement with differentiable rendering. Our pro-
posed method (Ours) effectively fixes the initial pose error (Ours w/o optim.)
and produces a better reconstruction than the baseline (Ours-AD).

4.3 Ablation Study

Differentiable Rendering. To demonstrate the capability of our differentiable
renderer, we introduce a challenging scenario by adding zero-mean Gaussian
noise to the poses of frames from the N-Matterport3D dataset with a standard
deviation of 3cm and 2◦ for the translation and rotation, respectively. Apart from
direct comparisons with the version without differentiable rendering (referring
to as “w/o optim.”), we verify the effectiveness of our implicit-differentiation-
based gradient by replacing it by unrolled iterations obtained through automatic-
differentiation [2], denoted by Ours-AD. As Fig. 5 shows, our renderer is able
to denoise the input poses, reaching a higher reconstruction quality than its
counterparts, the refinements of which are non-trivial due to the discrete TSDF
representation used. Moreover, compared to Ours-AD, our full gradient opti-
mization is also more effective, thanks to the accuracy and stability provided by
the closed-form derivative computation. Our method also saves a considerable
amount of optimization time and memory by avoiding propagating gradients
through all points along the ray. A detailed time and memory analysis of our
differentiable rendering is given in the supplementary material.
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𝛼 = 0 𝛼 = 0.1 𝛼 = 0.7 𝛼 = 0.9

Fig. 6: Effect of normal loss. Reconstructions obtained by training with vary-
ing weights for Lnorm, i.e., α. Red boxes highlight the differences.

TSDF-Fusion Ours(w/o optim.) Ours

Fig. 7: Qualitative results using the ScanNetv2 dataset. Our method gen-
eralizes well in presence of real-world noise and occlusions.

Weight of Lnorm. After fixing the gauge freedom of the weights for Lsdf and
Lstruct to 1, we show the effect of changing Lnorm in Fig. 6 by varying its weight
α ∈ [0, 1]. The addition of normal loss can effectively improve the precision of the
reconstruction. However it only works when α is small, showing the importance
of carefully choosing the weight parameter, especially in our setting with a small
localized voxel size.

Depth Noise. We demonstrate results on the ScanNetv2 dataset in Fig. 7. Al-
though our method is trained using synthetic depth noise, it generalizes well to
real-world noise. Compared to the traditional TSDF fusion approach, our differ-
entiable renderer fixes inaccurate poses and significantly sharpens the geometric
features. The effect of synthetic noise level on reconstruction results is given in
the supplementary material.

Voxel Size. Fig. 8 shows how the reconstruction quality varies when trained and
tested with the same voxel size b (using 5cm, 7.5cm and 10cm). A smaller voxel
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size captures more details from the input and models the surface more accurately.
It also improves recall by avoiding mis-predicting large regions. Furthermore,
we empirically find our method generalizes well across different training voxel
sizes: the test error with b = 7.5cm is stable (RMSE ≈ 0.019) even if trained
using a different voxel size, e.g., 5cm and 10cm. Nevertheless, we recommend a
larger voxel size during training to learn more complicated geometries for better
generalization.

4.4 Timing and Memory

Due to the differences in scene representation used by each approach, it is hard
to fairly compare the timing and memory consumption of the whole pipeline of
each method. So we only compare the time to generate the discrete TSDF vol-
ume for fairness. In other words, we exclude the time of inference-time refinement
and marching cubes, because none of the baselines performs post-optimization
and the implementation of marching cubes varies a lot from each other. Because
the time comparison between online methods and offline methods is meaning-
less, we extend DI-Fusion to an offline version and do not consider R-Fusion in
following experiment. Fig. 9 compares the inference time and memory footprint
of the baselines for different scene sizes. Thanks to the sparse feature volume,
our method runs 10–50× faster than ConvON and SPSG, and is comparable in
speed to DI-Fusion. However, as the scene gets larger, the time taken by DI-
Fusion increases more rapidly than our method due to the difference in voxel
interpolation strategy. As for memory cost, ConvON stays constant due to its
sliding window inference scheme. SPSG maintains a dense discrete TSDF vol-
ume, so memory requirements grow drastically with scene size. Our method is
memory-efficient due to its sparse representation and uses only marginally more
memory than DI-Fusion while providing better reconstruction accuracy.

As for the time of inference-time refinement, our differentiable renderer could
reach an average speed of 1M rays/second (the speed is illustrated in our sup-
plementary material). In our experiments, we render 512 × 640 pixels for each
room. Each room has an average of 44 frames, and we optimize for 20 epochs.
In total, it takes ∼440 seconds to optimize one room using PyTorch. This opti-
mizing process can be further speeded up using Jittor [21], a new deep learning
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framework which is efficient for training neural networks, and we will also release
code using Jittor.

4.5 Limitations and Discussion

Our approach has three main limitations. Firstly, our network makes no use of
object-level priors, resulting in partially reconstructed objects even after comple-
tion. Training with semantic supervision may improve completion performance.
Secondly, reconstruction quality relies on a small voxel size that limits further
improvements in efficiency. This can be overcome with local implicit grid [23],
which can learn local geometric priors from CAD models using large voxels with
further optimization for real-world scenes. Thirdly, textures are not recovered
by our method. Inspired by NeRF [33], training a neural radiance field together
with SDF using differentiable rendering can incorporate texture information into
our pipeline.

5 Conclusions

This paper has introduced CIRCLE, a framework for large-scale scene recon-
struction and completion using local implicit signed distance functions. The key
part of our method is a convolutional neural network that can learn global con-
textual information from local implicit grid, contributing to the completion of
missing regions. Together with our novel differentiable rendering strategy, we
are able to generate an accurate and detailed reconstruction, while being fast
and memory-efficient. In the future, we hope to bridge the gap between large-
scale geometric reconstruction and the use of object shape priors, as well as
to incorporate color information into our pipeline, for better completion and
reconstruction.
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