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A Additional Quantitative Analysis

Alternative 3D Backbone vs 4D Pre-training. Our 4D pre-training can
help to learn objectness priors from dynamic object movement, in contrast to
multiple 3D backbones. To demonstrate this, we pre-trained with an additional
3D backbone (comparable to our 4D backbone in parameters and UNet struc-
ture); this resulted in worse performance than our 4D pre-training which has
+0.5 mIoU and +1.4 mAP@0.5 vs. multiple 3D backbones in the tasks of 3D
semantic and instance segmentation on ScanNet (as shown in Table 8).
Sequence Length Ablation. We study the effect of the sequence length of the
generated dynamic data used for pre-training in Table 9. We consider sequences
of length 3, 4, or 5, and set the batch size (number of sequences) to 16, 12, and
10, respectively, to balance the scene frames in each batch during pre-training.
We find a sequence length of 4 results in more effective feature learning for
downstream tasks.
Comparison of Different Contrastive Frameworks. As analyzed in Sec-
tion 3.1 of the main paper, SimSiam [3] enables contrastive learning without
requiring negative samples or large batch size. We thus verify how these at-
tributes fit our high-dimensional pre-training design by comparing SimSiam and
SimCLR [2] as our contrastive framework. As shown in Figure 7, Ours (Sim-
CLR) removes the 3D and 4D predictors from Ours (SimSiam), and uses a
match average pooling to average 4D features in different frames according to
spatial correspondences. For each pair of frames (Fi, Fj) in a train sequence,
we apply a 3D contrastive loss L̄3D as L3D (Eq. 4 in Section 3.2). Similar to
L3D4D (Eq. 6 in Section 3.2), we use a 3D-4D contrastive loss L̄3D4D to establish

Table 8. Comparisons of alternative 3D backbone and our 4D backbone on ScanNet
fine-tuning.

Task Baseline Two 3D Backbones Ours

Sem.Seg (mIoU) 70.0 71.8 (+1.8) 72.3 (+2.3)

Ins.Seg (mAP@0.5) 53.4 56.2 (+2.8) 57.6 (+4.2)
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Table 9. Effect of sequence length of pre-training dynamic data on ScanNet semantic
segmentation fine-tuning. A sequence length of 4 helps 4DContrast get higher semantic
segmentation mIoU.

Sequence Length 3 4 5

mIoU 71.9 72.3 71.0

Table 10. Comparisons of SimCLR and SimSiam as our contrastive learning framework
on ScanNet semantic segmentation fine-tuning.

Contrastive Framework Baseline Ours (SimCLR) Ours (SimSiam)

mIoU 70.0 71.6 (+1.6) 72.3 (+2.3)

Table 11. 3D object detection on ScanNet with H3DNet.

Method mAP@0.5

H3DNet 43.4
Ours + H3DNet 47.7 (+4.3)

correspondence between 3D features and the averaged 4D features. The Hardest-
Contrastive loss is borrowed from FCGF [5] and PointContrast [7]. Note that
in our implementation, we find that the PointInfoNCE loss [7] is not as stable
as Hardest-Contrastive loss, likely due to different data augmentation methods
between Ours (SimCLR) and PointContrast. As shown in Table 10, 4DContrast
coupled with SimSiam framework more effectively leverages the learned repre-
sentations for improved semantic segmentation performance on ScanNet.

H3DNet Object Detection with 4DContrast. In Table 11, we apply our
pre-trained weights to H3DNet [8] (1 descriptor computation tower of its back-
bone architecture). 4DContrast surpasses training from scratch by 4.3 mAP@0.5
on ScanNet.

Mix3D Semantic Segmentation with 4DContrast. While 4DContrast fo-
cuses on imbuing 4D priors during pre-training to provide effective features for
a variety of downstream tasks, Mix3D [6] tackles a complementary problem of
data augmentation during training. As shown in Table 12, our pre-training can
be used together with Mix3D to further improve semantic segmentation perfor-
mance on ScanNet (geometry only input).

MinkowskiNet 3D Classification with 4DContrast. We evaluate Model-
Net classification accuracy in comparison with MinkowskiNet [4] trained from
scratch for various voxel sizes in Table 13. Our pre-training shows consistent
improvements in both settings.

S3DIS dataset.We finetune our pre-trained weights for S3DIS [1] segmentation
(geometry-only), and consistently improve over training from scratch (as shown
in Table 14): we achieve +2.4 mIoU in semantic segmentation (61.0 ours vs 58.6
scratch) and +7.4 mAP@0.5 in instance segmentation (53.2 vs 45.8).
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Table 12. Semantic segmentation on ScanNet val with Mix3D.

Method mIoU

Mix3D + MinkowskiNet 73.9
Ours + Mix3D + MinkowskiNet 74.6 (+0.7)

Table 13. 3D classification on ModelNet with Mix3D.

Method Voxel Size Acc

MinkowskiNet 0.05 86.1
Ours + MinkowskiNet 0.05 88.5 (+2.4)

MinkowskiNet 0.02 90.7
Ours + MinkowskiNet 0.02 91.8 (+1.1)

Table 14. Semantic and instance segmentation on S3DIS.

Task scratch Ours

Sem.Seg. (mIoU) 58.6 61.0 (+2.4)

Ins.Seg. (mAP@0.5) 45.8 53.2 (+7.4)

B Network Architecture Details

Figure 8 details our network architectures. The backbones are a U-Net architec-
ture with sparse convolutions [4]. We use a 34-layer U-Net as the 3D backbone
and a 14-layer U-Net as the 4D backbone. For the 3D and 4D projectors, we use
a one-layer sparse convolutional layer with kernel size as 1×1×1 and 1×1×1×1,
respectively. For the 3D and 4D predictor, we use two sparse convolutional lay-
ers. We repeat occupancy into 3-dimension to fit the network input dimension
of 3.

C Visualization of the Generated 4D Data

Figure 9 shows the generated 4D data by scene-object augmentation (as de-
scribed in Section 3.3 of the main paper).
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Fig. 7. Network architectures of our method using SimCLR as the contrastive learning
framework. Left: we show 3D-3D and 4D-4D losses across frame and spatio-temporal
correspondence. We only visualize the inter-frame correspondence for Ft−2 and Ft−1,
and only spatio-temporal correspondence for for Ft−2, while those loss are established
across all pairs of frames for L̄3D and all frames for L̄3D4D. Right: we visualize the
contrastive losses between 3D feautres of Ft−2 and Ft−1 and the 4D feature after match
average pooling. The positive pairs is same with Section 3.2 and the negative losses is
only calculated for the hardest negative pairs.
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Fig. 8. Network architectures of 4DContrast for pre-training. For downstream fine-
tuning, only the 3D backbone is kept and fine-tuned.
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Raw Scan Point Cloud Generated Dynamic Point Clouds

Fig. 9. Visualization of generated 4D sequence data. Each row corresponds to a sam-
pled scene. From left to right: raw scan mesh vertices as input cloud, generated dynamic
point clouds with scene augmentation and object motion (in three frames).
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