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Abstract. We explore a new idea for learning based shape reconstruc-
tion from a point cloud, based on the recently popularized implicit neural
shape representations. We cast the problem as a few-shot learning of im-
plicit neural signed distance functions in feature space, that we approach
using gradient based meta-learning. We use a convolutional encoder to
build a feature space given the input point cloud. An implicit decoder
learns to predict signed distance values given points represented in this
feature space. Setting the input point cloud, i.e. samples from the target
shape function’s zero level set, as the support (i.e. context) in few-shot
learning terms, we train the decoder such that it can adapt its weights
to the underlying shape of this context with a few (5) tuning steps. We
thus combine two types of implicit neural network conditioning mech-
anisms simultaneously for the first time, namely feature encoding and
meta-learning. Our numerical and qualitative evaluation shows that in
the context of implicit reconstruction from a sparse point cloud, our pro-
posed strategy, i.e. meta-learning in feature space, outperforms existing
alternatives, namely standard supervised learning in feature space, and
meta-learning in euclidean space, while still providing fast inference.

1 Introduction

One of the driving motives behind the ongoing research in 3D computer vision is
enabling machines to reason about and understand 3D given limited observations
in the same way we humans can evidently do. This ability is in turn crucial
for most downstream 3D based computer vision and machine learning tasks. A
popular instance of this ability is manifested in the problem of full 3D shape
reconstruction from a sparse incomplete point cloud. The prominence of this
problem is additionally due to the ubiquity of such partial inputs, either as
acquired through the increasingly accessible 3D scanning technologies, or being
an intermediate output of numerous classical computer vision algorithms such as
Structure from Motion or Multi-View Stereo. Classical solutions to this problem
such as Poisson surface reconstruction [31] still offer competitive reconstruction
performances from dense point sets. However, as the inputs get sparser and less
complete, learning based approaches become naturally more suitable to the task
by virtue of their capacity to reason about shapes more globally and inpaint
missing information based on previously seen examples.

A class of the these learning based approaches that emerged recently pro-
poses to represent shapes in the form of an implicit function whose zero level
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set coincides with the surface, parameterised by a neural network. Compared to
their traditional alternatives, these representations offer many advantages, most
notably enabling modelling shapes with variable topology unlike point clouds
and meshes, and operating virtually at infinite spatial resolution unlike voxel
grids. In practice, these shape functions are typically multi layer perceptrons
mapping the domain to the co-domain, i.e. 3D euclidean space to occupancies
or signed distances. The zero level set of the inferred field can be rendered
differentiably through e.g. variants of ray marching [27] and tessellated into
explicit meshes with e.g. Marching Cubes [43]. Coupling these implicit neural
functions with a conditioning mechanism allows generalization across multiple
shapes. For instance, combining their inputs with features generated from an
additional encoder network yields single forward pass inference models that can
learn to reconstruct from various input modalities. In particular, recent mod-
els [13,52] obtaining state-of-the-art performances on reconstruction from point
cloud benchmarks [10] use a convolutional encoder that builds a feature em-
bedding for euclidean points given the input point cloud. The implicit neural
shape function learns to map these points from that feature space to their oc-
cupancy or signed distance values. These models are trained using dense points
sampled near the surface with corresponding ground-truth singed distance or
occupancy values. Our aim here is to improve the performance of such models
with negligible additional test-time computational cost.

As obtaining larger training data corpora remains prohibitive in 3D, most
recent advances in this avenue focus on revamping the models, e.g. their ar-
chitectures [58], input representations [64,13,52], training objectives [25,38], and
training procedures [18], while remaining within the standard supervised learning
paradigm. Conversely, we propose here to cast the problem of surface reconstruc-
tion from a point cloud, with an encoder endowed implicit neural function, as a
few-shot learning problem.

Beyond merely using the input point cloud in a single encoding forward
pass for inference, we observe that we can additionally further fine-tune the
conditioned shape function using the point cloud elements as training samples
[25], as they naturally belong to the surface and hence can be used to further
overfit the shape signed distance function with their zero target values. To ensure
this fine-tuning improves the initial result and that it is initialized from optimal
shape function weights, we formalize it in a more principled learning strategy
that is few-shot learning [69,61,21]. Each shape is represented by a support set:
the points of the input point cloud, and a query set: the dense pre-sampled
training points. For a given shape, the objective is to optimize predictions on
the query set, i.e. adapt the shape function to the current shape, using the
support set. We implement this strategy using gradient based meta-learning,
namely the MAML algorithm [21]. At every training step on a given shape, the
adaptation consists in back-propagating the loss on the sparse support at the
surface for a few iterations (5 steps). The main shape function’s parameters are
then updated by back-propagating the loss of the adapted shape function on the
dense query set. Notice that by representing points in feature space during this
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process, we combine two types of implicit shape function conditioning through
both the encoder and meta-learning for the first time.

Using standard test beds we show that our approach outperforms compara-
ble baselines in various 3D shape reconstruction metrics, and we provide qual-
itative results that support this as well. Through our experiments, we show
that using few-shot leaning in feature space improves on both standard super-
vised learning in feature space (IF-Nets [13]) and few-shot learning in euclidean
space (MetaSDF [57]), both in single and multi-class shape setups for shape
reconstruction from a sparse point cloud (less than 3k input points). The per-
formance gap w.r.t. our standard supervised learning baseline increases even
further with coarser inputs. We note that we follow the same experimental data
setup as in our baselines IF-Nets and MetaSDF. We also point that while we
use IF-Nets as our backbone model in this work, this idea could be extended to
any convolutional encoder equipped implicit neural shape network.

2 Related Work

We review in this section work that we deemed most relevant to the context of
our contribution.

Traditional Shape Representations Perhaps an intuitive way to catego-
rize 3D shape representations within deep learning frameworks is into intrinsic
and extrinsic representations. Intrinsic representations are efficient in that they
are discretizations of the shape itself. however when represented explicitly, as in
meshes [70,30] or point clouds [20], they are inherently limited to a fixed topol-
ogy, which is unpractical for generating varying shape objects and classes. Other
forms of intrinsic representations include combining 2D patches [26,73,17], 3D
shape primitives such as cuboids [67,81], planes [39] and Gaussians [24]. However
patches induce discontinuities, and the approximation quality of primitive shapes
remains limited by their simplicity. Extrinsic representations on the other hand
model the 3D space containing the shape of interest. The most adopted one to
date has been voxel grids [76,75], being a natural extension of 2D pixels to 3D.
Nonetheless, the cubic memory cost in voxel grid resolution limits the ability to
represent details. Sparse voxel representations such as octrees [55,65,71] can help
alleviate these memory efficiency issues albeit with complex implementations.

Implicit Neural Shape Representations Recent years have seen a surge
in extrinsic implicit neural shape representations for modelling 3D objects and
scenes. Thanks to their ability to continuously represent detailed shapes with ar-
bitrary topologies in a memory-efficient way, these representations remedy many
of the shortcomings of the aforementioned traditional alternatives, and are cur-
rently drawing increasing attention both in 3D shape and appearance modelling
(e.g. [46,32,78]). Implicit neural shape models are typically parameterized with
MLPs that map 3D space to occupancy [45], signed [50] or unsigned distances
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[14] relative to the shape. Different forms of training supervision have been pro-
posed, the most common one being 3D points pre-sampled around the surface,
with weaker forms of supervision such as 2D segmentation masks through a 2D
based SDF lower bound [37], or color and depth images [48,32,78] through differ-
entiable rendering [29,42,29]. Recent contributions in this area include learning
octree scafolded implicit mooving least squares [41], representing shapes as an
implicit template and an implicit warp [80], and implicit/explicit hybrid repre-
sentations [11,16,79] based on differentiable space partitioning.

Conditioning Implicit Neural Shape Models Implicit shape models re-
quire conditioning mechanisms to represent more than a single shape. The mech-
anisms explored so far include concatenation, batch normalization, hypernet-
works [58,60,59] and meta-learning [57]. Concatenation like conditioning was
first introduced through a single latent code [45,12,50], and subsequently im-
proved through the use of local features [23,66,62,52,13,28].

Current methods that meta-learn implicit 3D neural representations use
gradient based meta-learning (e.g. MAML [21], Reptile [47]) to learn a meta-
radiance field that can be adapted from images [63,22], or a meta-SDF that can
be adapted from both zero level set and random domain samples [57]. In con-
trast to these methods, we propose here to combine encoder-based local feature
concatenation conditioning and meta-learning conditioning in the same model,
performing implicit reconstruction from a sparse point cloud. We note also that
in the work by Sitzmann et al., the meta-learning conditioning requires many
surface samples (10k new points sampled at each of the 5 MAML iterations =
50k pts). Differently, we extend this idea to a true few-shot reconstruction setup
(300 or 3k fixed input points) and multi shape class for the first time, and show
that it can only scale thusly in feature space.

Reconstruction From a Point Cloud Among classical solutions to this
task, combinatorial approaches define shapes with a space partitioning based on
the input points, using e.g. alpha shapes [4] Voronoi diagrams [1] or triangulation
[8,40,54]. Alternatively, implicit function based approaches use the point samples
to define a function whose zero level set approximates the surface, through fitting
e.g. radial basis functions [7], Gaussian kernels [56], piece-wise polynomials [49],
moving least-squares [34,41], or by solving a Poisson equation [31]. Closer to
our scope, recent work proposes to obtain these implicit functions through deep
learning. These include two families of work: supervised and unsupervised ones.

For the latter, a neural network is fitted to the raw input point cloud without
any further supervision. Among contributions in this area, Gropp et al. [25] in-
troduces a regularization on the function’s spatial gradient based on the Eikonal
equation. Atzmon et al. learns a signed distance function from unsigned distance
supervision [2], and further supervises the spatial gradient of the function us-
ing point normals [3]. Ma et al. [44] supervises the training through expressing
the nearest neighbor on the surface as a function of the neural signed distance
and its spatial gradient. All of the aforementioned methods benefit from efficient
gradient computation through back-propagation in the implicit neural function.
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Fig. 1: Overview of our method. Our input is a sparse point cloud (Support Si)
and our output is an implicit neural SDF f . f is a neural network comprised of a
convolutional encoder (top in gray) and an MLP decoder (bottom in gray). The decoder
predicts SDF values for 3D points (red/blue circles) through their spatially sampled
features (squares in shades of red/blue) from the encoder’s activation maps. Following
a gradient-based few-shot learning algorithm (MAML [21]), we learn a meta-decoder
in encoder feature space, parameterized with θ, that can quickly adapt to a new shape,
i.e. new parameters ϕi, given its support. This is achieved by iterating per-shape 5-step
adaptation gradient descent (orange arrow) using the support loss LSi , and one-step
meta gradient-descent (green arrow) by back-propagating the Query set (Qi) loss LQi

evaluated with the specialized parameters ϕi w.r.t. the meta-parameters θ. At test
time, 5 fine-tuning iterations are performed similarly starting from the converged meta-
model to evaluate f .

[58] introduces periodic activations. [74] proposes to learn infinitely wide shallow
ReLU networks as random feature kernels. Lipman [38] formalizes a loss ensur-
ing the function converges to occupancy while its log transform converges to a
distance function.

Supervised methods on the other hand assume a training dataset of shapes
with ground-truth signed distance or occupancy values for dense space samples
i.e. points. Auto-decoding based methods e.g. [50,66,28,9] require test time opti-
mization to fit the implicit function’s features to the observed point cloud, which
can take several seconds for a simple object. Conversely, encoder-decoder based
approaches enable faster single forward pass inference and superior generaliza-
tion. For these approaches, pooling-based set encoders (e.g. PointNet [53]) were
first proposed [45,12,23,19], but they have been shown to underfit for large and
detailed inputs. More recently, convolutional encoders [13,52,41] enable access
to more expressive local point features and incorporate inductive biases such
as translational equivariance, thus enabling fine-grained implicit reconstruction.
We propose here to extend such supervised convolutional encoder-decoder mod-
els to a few-shot setting to further improve their reconstruction abilities from a
sparse point cloud input, while still offering fast inference unlike auto-decoding.
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3 Method

The task at hand is to recover a continuous shape surface S given an input point

could X ⊂ R3×Np representing that underlying shape i.e. X = {xi ∼ S}
Np

i=1. To
this end, we train a deep neural network f to approximate the signed distance
function of the target shape given point cloud X. The inferred shape can then
be obtained as the zero level set of f :

Ŝ = {x ∈ R3 | f(X, x) = 0}. (1)

We can reconstruct an explicit triangle mesh for shape Ŝ using e.g. Marching
Cubes [43]. We assume shapes to be watertight manifolds, and that they are all
normalized into a domain Ω ⊂ R3.

3.1 The Base Model

For our neural network f , we use an encoder-decoder architecture that follows
the model introduced by Chibane et al. [13]. Such models (e.g. [13,52]) combining
local features extracted with convolutional encoders with implicit decoders have
been shown to yield superior performances in the class of single forward pass
prediction methods for surface reconstruction. Differently from [13], we note
that we learn signed distance instead of occupancy functions.

As illustrated in Fig.1, The encoder takes as input point cloud X and pro-
duces spatial feature maps. In order to apply this 3D convolutional network to
the point cloud, the latter is first voxelized into a discrete 3D grid in RN×N×N

(cf. Fig.2), N being the input spatial resolution. It then passes through succes-
sive convolutional down-sampling blocks resulting in n multi-scale deep feature
grids F1, . . . ,Fn, where Fk ∈ RCk×Nk×Nk×Nk . The feature map channels Ck

increase with the encoder’s depth while their resolution decreases Nk = N/2k−1.
The shallow features represent local details while the deeper ones account for
more global shape variation. Given a 3D point x ∈ Ω, we can extract its encoder
generated features using trilinear interpolation. We define this process with a
neural function ΨX : Ω → RC1 × · · · × RCn such that:

ΨX(x) = (F1(x), . . . ,Fn(x)). (2)

The decoder is tasked with predicting the signed distance to the ground-truth
shape S for a given 3D point x. It uses the features obtained with the encoder as
input point representation. It consists of a MLP with ReLU non-linearities and
a final Tanh activation, and we denote it as Φ : RC1 × · · · ×RCn → R. Hence we
can express the approximated signed distance function given a point cloud X as
follows:

f(X, x) = Φ ◦ ΨX(x). (3)

In standard supervised learning, this network is trained by back-propagating
the prediction loss over a set of training points Y ⊂ Ω per training shape using
their respective pre-computed ground-truth signed distance values. These dense
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point sets are typically built by sampling near the ground-truth surface S, i.e.
sampling points on the surface and offsetting them with normally distributed
displacements:

Y = {x+ n : x ∼ S, n ∼ N (0,Σ)}, (4)

where Σ = diag(σ) ∈ R3×3 is a diagonal covariance matrix. An illustrative
example of such a set can be seen in the bottom left of Fig.1.

3.2 Few-shot Learning in Feature Space

We would like to build a model f that can learn to adapt to a new shape S
given limited observations, namely the input point cloud X. While the network
is already conditioned to the input X through the encoder in the standard super-
vised learning regime e.g. [13,52], we seek here to adapt it even further to that
input through meta-learning. Let us recall that for each training shape Si we
have two sets of points available: Xi the sparse input point cloud at the surface,
and Yi the dense point set sampled near the ground-truth surface. Correspond-
ing ground-truth signed distances are available for both of these sets as well.
However at test time, only Xi is available.

Support and Query Sets We position ourselves in a meta-learning based
few-shot learning setup [69,61,21]. Traditionally, a network is trained to adapt
to a new task given limited training samples in this setup. A task is defined with
a loss, a support (or context) set and a query set. These sets are input-target
pairs for the given task. The model is trained to perform tasks on their query
sets, after being adapted to them through e.g. metric learning [69] or gradient
descent [21] on their respective limited support sets. We adopt the same strategy,
where a task consists in learning the signed distance function f for a given shape
Si. We define the support set as the pairs made of the points of the input point
cloud and their corresponding ground-truth signed distances, as such a set is
available at test time:

Si = {(x, s) : x ∈ Xi, s := SDF(x)}. (5)

= {(x, 0) : x ∈ Xi}. (6)

Since Xi contains exclusively points from the surface, i.e. the zero level set of the
shape function, all ground-truth singed distances are null. We define the query
set as the pairs made of the dense points pre-sampled around the surface and
their corresponding ground-truth singed distance values:

Qi = {(x, s) : x ∈ Yi, s := SDF(x)}. (7)

Meta-Learning in Feature Space We apply gradient-based meta-learning
to our supervised few-shot shape function learning, in particular the MAML
algorithm by Finn et al. [21]. For a given shape Si, and assuming a pre-trained
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Algorithm 1 The training procedure of our model.
Input: Dataset fo shapes Si, pre-trained encoder Ψ , meta-decoder learning rate β
Output: meta-decoder weights θ, decoder learning rates α

initialize θ, α
while not done do

sample batch of shapes {Si} := {(Xi,Qi)}
initialize LQ ← 0
for Si in {Si} do

initialize ϕi ← θ
for K times do
LSi

=
∑

x∈Xi
|Φϕi

◦ ΨXi
(x)|

ϕi ← ϕi − α⊙∇ϕi
LSi

end for
LQ ← LQ +

∑
(x,s)∈Qi

|Φϕi
◦ ΨXi

(x)− s|
end for
(θ,α)← (θ,α)− β∇θ,αLQ

end while

encoder Ψ , the signed distance function f is obtained through a specialization
denoted ϕi of the parameters θ of an underlying meta-decoder Φθ operating in
feature space ΨXi

(Ω):
f(Xi, x) = Φϕi

◦ ΨXi
(x). (8)

For lower computational and memory costs and a less noisy meta-learning loss
(cf. Section 4.4), we fix the convolutional encoder Ψ after pre-training it. This
encoder is pre-trained by training the base model f in the standard supervised
learning regime using the training dataset’s query sets {Qi} for supervision (ı.e.
standard supervised learning). As such, the meta-learning of model f consists in
training the meta-decoder Φθ in feature space. Each training step in this process
is two fold: First, a fixed number of inner training steps, i.e. adaptation of the
meta-decoder Φθ into Φϕi

, followed by an outer training step, i.e. update of
the meta-decoder Φθ. Similarly to Sitzmann et al. [57], we build on the Meta-
SGD [35] MAML [21] variant proposed by Li et al., which advocates the use of
per-parameter learning rates in the adaptation stage for improved flexibility.

Given a batch of training shapes {Si}, the inner training step of the decoder
is performed for each shape Si independently. The L1 loss LSi is computed
using the current specialized decoder Φϕi

over the support set Si (i.e. Xi), and
is back-propagated w.r.t. ϕi:

LSi =
∑
x∈Xi

|Φϕi
◦ ΨXi(x)|, (9)

ϕi ← ϕi −α⊙∇ϕi
LSi , (10)

where weights ϕi are initialized with the current meta-decoder weights θ for
all the batch shapes. α contains the per parameter learning rates, which are
learned as part of the outer training loop. ⊙ symbolizes element-wise product.
We note that while the support loss LSi could include additional regularisation
such as the Eikonal constraint [25], we keep it simple to limit the computational
footprint of the meta-learning.

After K such shape specific adaptation steps, one outer training step is per-
formed for the entire batch of shapes. The L1 losses {LQi

} are computed using
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Fig. 2: Visualization of voxelizations at resolutions 323 and 1283 of input point
clouds with 300 and 3000 points.

the specialized decoders {Φϕi
} over their respective query sets {Qi}, and their

average is back-propagated w.r.t. the meta-parameters θ and α accordingly:

LQi =
∑

(x,s)∈Qi

|Φϕi
◦ ΨXi(x)− s|, (11)

(θ,α)← (θ,α)− β∇θ,α

∑
i

LQi , (12)

where β is a scalar learning rate. For ease of understanding, Algorithm 1 provides
a summary of this training procedure.

At test time, given an input X, the inference consists in a forward pass of
the model f after a K-step adaptation of the converged meta-decoder Φθ. To
produce mesh reconstructions, we use the model to predict signed distance values
of a grid of points at a desired resolution, and then apply the Marching Cubes
[43] algorithm on the inferred signed distance grid.

4 Results

We present in this section our experimental setup and showcase our results. We
evaluate our method on both multi-class and single class setups in ShapeNet
[10] on reconstruction from a sparse point cloud, and we also show results on
the FAUST [5] dataset. We follow the noise-free benchmark in our baselines
IF-Nets [13] and MetaSDF [57]. We experiment with two sizes of input point
clouds Np = 3000 and Np = 300 similarly to [13], and two voxelization res-
olutions N = 128 and N = 32 (Fig.2) of these point sets. Let us recall that
inputs require voxelization due to the 3D convolutional encoder of our base
model [13]. We evaluate numerically in terms of Intersection over Union (IoU),
L1 (CD1× 10−1) and L2 (CD2× 10−3) Chamfer distance. We detail the expres-
sions of these metrics in the supplementary material. In summary, our proposed
approach outperforms all baselines including the same base model trained in
standard supervised learning (IF-Nets [13]), and the decoder of the base model
trained through meta-learning (MetaSDF [57]). Results show additionally that
our approach is more resilient to coarser inputs compared to IF-Nets. Besides,
the performance increase brought by our approach comes with minimal addi-
tional computational cost, as inference takes 150 ms for our model, and 60 ms
for IF-Nets, on a RTX A4000.
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Fig. 3: Visualization of reconstructions from 3000 points throughout the K = 5
testing inner-loop iterations in the ShapeNet multi-class setup.

4.1 Implementation Details

The base model follows the architecture in [13], hence we use n = 6 feature
maps with feature dimensions C1 = 1, C2 = 16, C3 = 32, C4 = 64, C5 = 128
and C6 = 128. Regarding the meta-learning, we use K = 5 steps in the inner
training loop and we initialize the per-parameter learning rates α with 10−6. In
the outer loop, we set the meta-decoder learning rate to β = 10−6. We train for
100 epochs with batches of 4 shapes, leveraging the Np training points in the
inner loop, and 50k training points in the outer loop per shape. To train the base
model in the standard supervised learning mode, we perform a maximum of 50
epochs with a learning rate of 10−5, using batches of 8 shapes with 50k training
points per shape. All trainings use the Adam[33] solver on a RTX A4000 in the
PyTorch [51] framework. All Marching Cubes reconstructions are done with a
2563 sized grid.

4.2 Datasets

Similar to prior work we evaluate our method using the ShapeNet benchmark
[10] which consists of various instances of 13 different object classes. Similarly to
[13], we use the pre-processing by [77] to obtain watertight meshes which enables
computing ground-truth signed distances. All meshes are subsequently normal-
ized using their bounding boxes thus fitting inside the domain Ω = [−1, 1]3. We
use the train/test split provided by [13], which is based on the original split of
Choy et al. [15] minus 508 distorted shapes due to pre-processing failures. To
create the input point cloud X for a given shape, Np sized sets of points are
randomly pre-sampled from the processed mesh. For the training points with
ground-truth signed distances, we pre-sample 100k points near the surface with
σ = 0.1 and σ = 0.01 (cf. Equ. 4). At training, 50k points are sampled equally
from these pre-made two sets to make the per shape training points batch Y. We
also use the FAUST dataset [5] for testing. It consists of 100 registered meshes
of 10 human body identities in 10 different poses.

4.3 Multiple Shape Class Evaluation

We evaluate here our work and the competition using the entire ShapeNet
dataset, which counts 26834 training shapes and 7148 testing ones. For the input
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Fig. 4: Qualitative comparison of reconstructions from 3000 points on ShapeNet
with our main baseline, i.e. same base model in standard supervised learning.
(Input / IF-Nets[13] / Ours / Ground-truth).

point cloud size and voxelization resolution of our method, we consider here the
two extreme cases for brevity: i.e. 3000 points at 128³ resolution (Tab.1a), and
300 points at 32³ resolution (Tab.1b). We refer the reader to a more detailed
analysis in the ablative single class evaluation (Section 4.4). We relay the perfor-
mances of OccNet [45], DMC [36], PSGN [20] as they were reported in [13]. We
reproduced the performance of ConvOccNet [52] with 3000 input points in the
noise-free benchmark of IF-Nets [13] and we obtained an IoU of 0.86, which is
also confirmed by the results of other contemporary work [72] (see fig. 9 in that
paper). The authors of ConvOccNet report higher numbers (0.88), where noise
is added to the input point cloud. For fairness, we report ConvOccNet’s higher
numbers (i.e. 0.88 IoU). We train our own IF-Nets [13] model on signed distances
and reproduce the same results in the main paper. MetaSDF here refers to our
implementation of the work in [57] with 3000 input surface points, i.e. our model
without an encoder trained for hundreds of epochs, from which we perform nu-
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IoU↑ CD1↓ CD2↓
OccNet 0.72 – 0.4
DMC 0.65 – 0.1
PSGN – – 0.4

MetaSDF 0.63 0.123 0.458
ConvOccNet 0.88 0.044 –

IF-Nets 0.88 0.032 0.032
Ours 0.91 0.028 0.026

(a)

IoU↑ CD1↓ CD2↓
OccNet 0.73 – 0.3
DMC 0.58 – 0.3
PSGN – – 0.4

MetaSDF (3k pts) 0.63 0.123 0.458
IF-Nets 0.67 0.091 0.232
Ours 0.74 0.070 0.209

(b)

Table 1: Reconstruction on ShapeNet from (a) 3000 points voxelized at resolution
128³, and (b) 300 voxelized at 32³.

IoU↑ CD1↓ CD2↓
IF-Nets 0.82 0.037 0.060
Ours 0.84 0.035 0.051

Table 2: Reconstruction on FAUST with models trained on ShapeNet, from 3000
points voxelized at resolution 128³. Qualitative results from our model.

merous evaluations and pick the best one. We note that original paper [57] only
showed results for 10k input points. This same number is reported in table 1b
under the name MetaSDF (3k pts).

Tables 1a and 1b report the average reconstruction performance from 3000
and 300 input points respectively on the entire multi-class testing set. We ad-
ditionally provide the per-class numbers in the supplementary material. PSGN
generates point sets with competitive distances to the ground-truth but does
not provide any connectivity (Hence the absence of IoU). DMC’s performance
is limited by its voxel grid resolution. OccNet performs strongly and almost
similarly in the 300 and 3000 input cases, which suggests that pooling set en-
coders underfit the context. For both input situations and across all metrics, our
method outperforms the competition, including convolutional encoder equipped
implicit shape models (IF-Nets and ConvOccNet), and our encoder-free meta-
learning baseline MetaSDF. We find the performance of the latter particularly
underwhelming, which suggests that despite the encouraging single class recon-
struction results in [57] from 10k input surface points, such strategy struggles to
scale to more challenging settings with multiple classes of shape, sparser point
clouds, and under relatively limited training time. When decreasing the input
size and voxel resolution in Table 1b, both the encoders of our method and
IF-Nets are exposed to very poor inputs (cf. Fig 2). While the performance of
IF-Nets is heavily affected by these coarser inputs, our method is more resilient
thanks to the meta-learning addition. In fact, our IoU drops by 18% compared
to 23% for the standard supervisedly learned baseline. We additionally show re-
construction results on the FAUST dataset from models trained on ShapeNet in
Table 2, where out method outperforms IF-Nets. Note that neither models have
seen human shapes nor articulated shapes for that matter in training.
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The numerical superiority of our method w.r.t. our closest baseline (IF-Nets)
is supported with qualitative comparisons in Fig.4. We notice that our method
manages to recover more thin structures and fine topological features, such as
cylindrical holes in rifles, wings in planes, thin flat surfaces in tables, benches
and chairs. In addition, we provide examples in Fig.3 showing the evolution of
the reconstruction at various iterations of our inference.

4.4 Single Shape Class Ablation

We show further quantitative evaluations in a single shape class setup on the
largest class of ShapeNet, i.e. table, for ablative purposes and also for a more fair
comparison to MetaSDF [57]. The table class counts 5364 training shapes and
1679 testing ones. We report numbers for MetaSDF and a pooling set encoder
based implicit model (PoinNet enc.) from their paper [57] using 10k input points.
We compare multiple variants of our approach. For our method (Ours), the meta-
decoder is initialized from the weights of a pre-trained base model. For Ours w/o
dec. pret., it is initiated with the standard PyTorch initialization instead. Finally
Ours w/o meta learn. (i.e. IF-Nets) is again our base model trained in standard
supervised learning.

Tables 3 and 4 show reconstruction results from 3000/300 points at 128³ and
32³ input voxel resolution respectively. Even under 10k input points, MetaSDF
[57] can yet barely reach our performance on just 300 input points. Most notably,
our method improves on the standard supervised learning baseline (Ours w/o
meta learn. (i.e. IF-Nets)) across all input sizes and input voxel discretizations
for all metrics. While the input point cloud size affects both our method and IF-
Nets almost equally, decreasing the encoder’s input resolution hinders IF-Nets’s
performance substantially more severely. In fact, when going from 128³ to 32³
resolution inputs, our IoU drops by roughly 14% vs. 20% for IF-Nets for 3000
points, and by 13% vs. 19% for IF-Nets when using 300 points.

Decoder pre-training As witnessed by tables 3 and 4, while initializing the
meta-decoder can improve the performance slightly, it is not crucial for obtain-
ing satisfactory results, which suggests that we learn a proper meta-decoder and
not just a fine-tuned base-model.

Encoder pre-training and tuning As meta-learning both the encoder and
decoder is computationally and memory expensive, we only meta-learn the de-
coder. We found that tuning the encoder during this meta-learning leads to
noisy losses, without a clear improvement in the results. In fact, for reconstruc-
tion from 3000 points at resolution 1283 in class table, whilst fixing the encoder
yields an IoU of 0.87, tuning it gives a comparable performance (0.86) while
requiring more time and memory for training. We found the resulting noisier
loss makes it also harder to decide the convergence epoch in this case. Thus we
fix the encoder after pre-training it. We pre-train the encoder by training the
encoder-decoder in the standard supervised learning setup.
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IoU↑ CD1↓ CD2↓
PointNet enc. (10k pts) 0.66 – 0.69
MetaSDF (10k pts) 0.75 – 0.32

Ours w/o meta learn. (i.e. IF-Nets) 0.82 0.72 0.040 0.057 0.062 0.097
Ours w/o dec. pret. 0.86 0.74 0.035 0.057 0.030 0.203

Ours 0.87 0.76 0.033 0.051 0.030 0.082

Table 3: Reconstruction on class table of ShapeNet from 3000 (left) and 300
(right) points voxelized at resolution 128³.

IoU↑ CD1↓ CD2↓
Ours w/o meta learn. (i.e. IF-Nets) 0.65 0.58 0.071 0.092 0.089 0.169

Ours w/o dec. pret. 0.73 0.61 0.057 0.083 0.082 0.169
Ours 0.74 0.66 0.052 0.076 0.068 0.142

Table 4: Reconstruction on class table of ShapeNet from 3000 (left) and 300
(right) points voxelized at resolution 32³.

5 Limitations

As SDFs can only represent closed surfaces, we will experiment next with other
representations such as points [68,6] and unsigned distances [14]. Point cloud
voxelization (cf. Fig.2) hinders the expressiveness of the input, thus we will
be considering different convolutional encoders subsequently. Furthermore, the
MAML algorithm [21] requires computing second-order gradients which raises
the memory complexity in training. Finally, we follow here the noise-free bench-
marks in our baselines IF-Nets [13] and MetaSDF [57]. Considering noisy and
real inputs (e.g. 2.5D, SFM, etc.) is part of our future work.

6 Conclusion

We proposed to perform 3D shape reconstruction from a sparse point cloud
using a implicit neural model conditioned with both encoder generated local
features and meta-learning simultaneously. Our results demonstrate numerically
and qualitatively that this approach improves on its standard supervised learn-
ing counterpart with minimal additional test time computational cost, and this
performance gap increases for coarser inputs. Future avenues of improvement
include tackling more real world downstream tasks such as partial shape recon-
struction, making use of normals, meta-learning of reconstruction from images
and depth maps through differentiable rendering, and exploring other meta-
learning techniques.
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