
Supplementary: Approximate Differentiable
Rendering with Algebraic Surfaces

Leonid Keselman and Martial Hebert

Carnegie Mellon University, Pittsburgh PA, USA
{lkeselma,hebert}@cs.cmu.edu

1 Video Results

Here we describe additional details about the experiment shown in Fig. 9 of
the main paper. Concerning the differentiable renderer: the method, settings
and hyperparameters are identical to those in Fig. 7 and 8 and Section 5.3. We
simply run the method on different input.

We collected a 14 second video with a Samsung S9 cell phone at 1280 x 720
resolution at 30 Hz. The video contains motion blur, auto-exposure, and clearly
visible video compression artifacts, making it unsuitable for some reconstruc-
tion methods. We sub-sampled the video down to 6Hz and ran Mask RCNN [3]
from Detectron2 [15] with the pre-trained weights COCO-InstanceSegmentation
/mask rcnn R 50 FPN 3x.yaml to detect objects. In our case, the object was de-
tected as part of the teddy bear class, with about 55 viable frames. We ran
COLMAP [12] to obtain camera poses for those frames, where COLMAP suc-
cessfully returned 36 frames with valid camera poses. We ran our SFS pipeline
at 160 x 90 resolution to obtain the results shown. Visual examples from this
pipeline are shown in Fig. 1. All the methods used their default settings; there
was no parameter tuning involved.

1.1 Video Result Analysis

The trajectory shown here only covers about half of the object from a roughly
constant elevation. Complicating the reconstruction is that the camera poses
are imperfect due to estimation and unmodeled camera distortion. Much more
significant is that the Mask RCNN silhouettes used for reconstruction are often
extremely under or over segmented.

Despite these issues in the ”ground truth” used for optimization, the low
degree of freedom of Fuzzy Metaballs allows the model to reasonably recover
from the massive artifacts. While the result in the main paper shows the default
50% threshold, to recover some areas, we have to lower our α threshold to 10%.

2 Leonid Keselman and Martial Hebert

(a) Mask RCNN output for valid frame (b) COLMAP estimate of camera poses

(c) All 36 frames used for SFS (d) SFS initialization

(e) Mask RCNN Silhouettes (f) SFS Mask Results

Fig. 1: Video-based SFS reconstruction

Title Suppressed Due to Excessive Length 3

2 Hyper-parameters

Our proposed method has 5 hyper-parameters described in the paper. Briefly,
β1 prioritizes close hits, β2 prioritizes hits closer to the camera, β3 prioritizes
hits in front of the camera, and β4 and β5 serve as a scale and offset to generate
alpha masks. Since our system is fully algebraic, it is possible to perform gradient
descent into these hyper-parameters (and the functional form of JAX naturally
returns their gradients), but this was not done.

Instead, we optimized them for depth and alpha mask accuracy over a small
simulated dataset of the Stanford bunny using standard black-box optimization
techniques [1,2,10] before running most of our experiments. We found that the
ray-based renderer led to similar optimal hyperparameters across multiple tested
resolutions, across a wide range of mixture components, and across our linear,
quadratic and cubic methods of intersection computation.

true pose 0.07

final pose 0.06init pose 0.56

ground truth

Fig. 2: Gear Results with Fuzzy Metaballs Final pose describes the final
pose after gradient-based pose optimization, while true pose is rendered view
from the ground truth pose. Ground truth is the Blender-generated depth map
of the full-fidelity model. The final pose shown here has a rotational error of 23.9
degrees. However, the gear has 15 teeth and hence a 24.0 degree symmetry.

4 Leonid Keselman and Martial Hebert

3 Exclusion of gear model

The gearmodel was selected because of its interesting geometry from Thingi10k [17].
However, for pose estimation, we exclude its results from the overall average due
to symmetry. Our poses are generated with rotations of uniform axis and an-
gle uniformly between -45 and 45 degrees (uniform-axis random spin [13]). The
gear model however has 15 teeth and a rotational symmetry of 24 degrees when
viewed from one side, as seen in Fig. 2. This can sometimes produce pose errors
with no real geometric error.

The model itself is not symmetric, with 15 gears and a back face with 180
degree symmetry. But with a single view, our testing conditions can generate
poses which are geometrically correct but produce pose errors. The other model
with symmetry, eiffel, only has 90 degree symmetry and our testing conditions
place all random poses in the same local minima.

We don’t use the yoga or plane models for pose estimation as we only latter
added them for the reconstruction experiments. Both models originate from prior
differentiable rendering uses in reconstruction [8,16].

4 Pose Estimation Details

We include noise-free results the same seed as the noisy results in the main
paper. Summary plots are shown in Fig. 3 and Fig. 4. In the noise-free case,
we find that Point-to-Point ICP works better. With noise, Point-to-Plane ICP
methods perform better.

4.1 Noise Free

As described in the paper, when ICP methods perform well, they perform ex-
tremely well, an order of magnitude better than the differentiable renderers
(see the log-scale plot), to fractions of a degree since they have high resolution
samples. However, sometimes ICP finds poor local minima and on average our
method performs better, even when ICP has a dense point cloud. Despite having
a better mean, Fuzzy Metaballs (FM) have a median error that is 8 times higher
and a 25th percentile error that is 10 times higher. The increase in robustness
from FM is demonstrated in lower 75th percentile errors.

4.2 Noisy Depth Images

With synthetic noise, both differentiable renderer methods are barely affected,
while the ICP results see a large degradation in peak performance. Under this
experimental condition, Fuzzy Metaballs have the lowest mean, median, 25th
and 75th percentile errors (typically by a factor of 2 compared to ICP).

Interestingly, some of the worst case performance of the ICP methods disap-
pears (lower q3 measurements) when noise is added. We hypothesize that this
occurs due to a form of symmetry breaking that helps avoid singularities and
bad correspondences. Fuzzy Metaballs, being a low fidelity model, experience
nearly no degradation in performance when noise is added to depth images.

Title Suppressed Due to Excessive Length 5

Initialization PyTorch 3D Plane ICP Point ICP Plane 40k ICP Point 40k ICP Fuzzy Metaballs
0

5

10

15

20

25
Po

se
 E

rro
r

mean = 20.2
median = 19.8

q1 = 10.9
q3 = 28.9

mean = 14.9
median = 11.9

q1 = 6.1
q3 = 21.1

mean = 10.8
median = 0.6

q1 = 0.3
q3 = 11.8

mean = 7.6
median = 0.9

q1 = 0.5
q3 = 10.4

mean = 8.2
median = 0.1

q1 = 0.1
q3 = 0.9

mean = 6.2
median = 0.2

q1 = 0.1
q3 = 3.8

mean = 4.0
median = 1.6

q1 = 1.0
q3 = 2.5

arma
happy
lucy
bunny
dragon
eiffel
rebel

Initialization PyTorch 3D Plane ICP Point ICP Plane 40k ICP Point 40k ICP Fuzzy Metaballs

10 1

100

101

102

Po
se

 E
rro

r arma
happy
lucy
bunny
dragon
eiffel
rebel

Fig. 3: Noise Free Pose Estimation Linear scale plot above and log-scale
below. Dashed lines are averages for the method, while the black diamonds show
the average for that method and model. Statistics for each method are listed.
gear model is excluded from statistics.

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs
0

5

10

15

20

25

Po
se

 E
rro

r

mean = 20.2
median = 19.8

q1 = 10.9
q3 = 28.9

mean = 17.0
median = 15.4

q1 = 8.4
q3 = 25.1

mean = 8.2
median = 3.9

q1 = 2.6
q3 = 7.0

mean = 8.0
median = 4.2

q1 = 3.0
q3 = 8.0

mean = 7.6
median = 3.8

q1 = 2.7
q3 = 6.4

mean = 7.0
median = 3.7

q1 = 2.7
q3 = 6.1

mean = 4.0
median = 1.6

q1 = 1.0
q3 = 2.7

arma
happy
lucy
bunny
dragon
eiffel
rebel

Initialization PyTorch3D Plane ICP Pt ICP Plane 40k ICP Pt 40k ICP Fuzzy Metaballs

10 1

100

101

102

Po
se

 E
rro

r arma
happy
lucy
bunny
dragon
eiffel
rebel

Fig. 4: Noisy Pose Estimation Identical visualization to Fig. 3. Linear scale
figure is identical to that in the main paper.

6 Leonid Keselman and Martial Hebert

0 100 200 300
Iterations

1000

2000

3000

4000

5000

6000

7000
Lo

ss
original
longer waiting
10x higher LR
10x more blur
tuned

Fig. 5: PyTorch3D baseline convergence curves using different hyperparam-
eters for pose estimation. All curves produce roughly equivalent pose errors,
significantly worse than FM or ICP.

5 SoftRasterizer performance

One might wonder about why our baseline of PyTorch3D, implementing Sof-
tRas [8], performs so poorly in the pose estimation experiments. Prior work
on differentiable rendering [8,7,16] demonstrates their pose optimization exper-
iments with mostly single, visual examples. These often use color images, and
provide no baselines results from standard methods. Quantitative results in Sof-
tRas [8] examined solving for rotation uncertainty in images of a colored cube
and their resulting rotation errors averaged over 60 degrees. It is perhaps not
surprising that our pose estimation experiments, featuring a family of models,
simultaneous rotation and translation, while optimizing only depth and silhou-
ettes, might challenging these methods.

We used the hyperparameters from the current PyTorch 3D [11] Camera
position optimization sample. We tuned learning rates to behave well with our
depth + silhouette loss function, and followed an automatic learning rate sched-
ule [5]. As can be seen in Fig. 6, the pose optimization performs reasonably well
in reducing image errors. However, the optimized pose still demonstrates visual
errors compared to the ground truth pose. Even worse, the optimization per-
turbs the pose in such a way that the pose error at the end of optimization (16
degrees and 15%) is worse than the pose errors at the perturbed initialization
(12 degrees and 8%), despite the significant reduction in loss.

Title Suppressed Due to Excessive Length 7

si
lh

ou
et

te

initial 14.4% final 5.3% true 4.3%

de
pt

h

initial 42.2% final 18.6% true 12.3%

Fig. 6: PyTorch3D baseline Visualization of errors seen with pose optimiza-
tion. Initial is an example pose perturbation of the arma model. Final is the
result after pose optimization, and true is the result of the ground truth pose.
Silhouette error is in percent of pixels that are wrong, while depth error is in av-
erage relative depth error. Optimization leads to a reasonable decrease in both.

To check if the hyper-parameters from the PyTorch3D sample was a poor fit,
we searched for settings which produced good pose estimation for a single frame.
We used CMA-ES [1,2], a fairly common black box method [10]. This type of
task-specific hyper-parameter optimization was never performed for our Fuzzy
Metaballs experiments. We only performed these experiments on an existing
baseline to examine how good it might perform in the best case. Convergence
curves can be seen in Fig. 5.

All our manual tweaking of PyTorch3D hyper-parameters produced compa-
rable configurations (17-18 degrees of rotation, 15-16 percent translation). The
automated optimization found a setting which produced 16 degrees of rotation
error and 9 percent of translation error, still worse than the perturbed initializa-
tion. However, these settings used a very high learning rate that proved unstable
with other frames. Lowering to learning rate resulted in settings with a negligible
improvement (2%) to our initial settings. These tests suggest our initial hyper-
parameter choices were a reasonably good setting for the baseline method.

Further parameter search with a constraint on learning rate failed to find
parameters significantly improved from the defaults. Optimization was over 8
parameters: σ, γ, blurring radius for both depth and silhouette, faces per pixel,
learning rate, and multipliers for depth and silhouette loss.

Both the Fuzzy Metaballs and PyTorch3D optimization use an axis-angle,
3 parameter rotation estimation. These is some evidence suggesting PyTorch
Autograd for SO(3) might be unstable at times in its native form [14].

8 Leonid Keselman and Martial Hebert

5.1 Pulsar performance

Our attempts to test a recent differentiable renderer, Pulsar, found it performed
very poorly. Not only are there software bugs with the latest PyTorch3D at the
time of writing (0.6.1) where the code clobbers camera data-structures and
requires re-creating them with every call to the render function, but the pose
estimation results were very poor.

We used the same settings as the Point Cloud Differentiable Renderer base-
line we tested, which provided fair results and produced visually similar outputs.
Compared to our base learning rate, reducing it by a factor of two led to flat
loss. Increasing it by a factor of two led to divergence and NaNs.

50 100 150
Number of components

10
1

10
0

10
1

m
as

k
+

de
pt

h
er

ro
r Before optimization

50 100 150
Number of components

10
1

10
0

10
1 After optimization

50 100 150
Number of components

10
0

3 × 10
1

4 × 10
1

6 × 10
1

After optimization

Surface Sphere Volume Sphere Surface GMM Volume GMM

Fig. 7: Optimizing Fuzzy Metaballs from different initializations.

6 Exporting Fuzzy Metaballs

We experiment with exporting fuzzy metaballs as a mesh by running marching
cubes [9]. To find an ideal isosurface level, we run optimization to ensure that
the centroids of the voxels match the silhouettes over a sample set of views. This
leads to results like those in Fig. 8.

Fig. 8: Mesh extracted from a 40 mixture fuzzy metaball using marching cubes

Title Suppressed Due to Excessive Length 9

(a) 40 component Fuzzy
Metaballs (400 params)

(b) 170 face, 85 vertex
Mesh (810 params)

(c) 430 Points recon-
structed [4] (1290 params)

Fig. 9: Equivalent representations visualized, per the experiments in the paper.

7 Fuzzy Metaballs as Surface or Volume GMMs

To understand what classical formulation best matches Fuzzy Metaballs, we try
optimizing models with different initializations. We start with both sphere and
EM-fit GMM initializations, with surface and volume versions of both. Quan-
titative results averaged across all 10 models are shown in Fig. 7. Qualitative
results for the Yoga model are shown in Fig. 14.

At low mixture numbers, Fuzzy Metaballs perform more like a volume GMM,
while at high mixture numbers, surface GMMs work better. Often using a GMM
as a FMmodel will produce reasonable results. We use constant hyperparameters
from our 40 mixture tuning, and perhaps the out-of-the-box vGMM rendering
could improve by adding proper scaling with component number. Finally, all
initializations respond very well to optimization, and optimized sphere-initialized
models always outperform the models fit with solely with EM.

The Fuzzy Metaballs improve with more components across our entire range
of testing. This suggests the asymptotic behavior seen in the Comparing Rep-
resentations section is due to experimental factors of those experiments, and
not the representation itself. This is somewhat expected as those experiments
use the mesh representation as ground truth and all other formats are sampled.

Lastly, we can see that the fitting process produces no over-fitting as novel
and training frames have identical behavior in Fig. 13.

10 Leonid Keselman and Martial Hebert

(a) Visualizing normal maps while sweeping β1 and β2 demonstrates smoothing.

(b) Sweeping β4 and β5 controls the sharpness and extent of the alpha masks.

Fig. 10: Hyperparameter visualization

Title Suppressed Due to Excessive Length 11

Probability blend Intersection blend Reference

Fig. 11: Rendering Fuzzy Metaball color images of a snakeboard [6] with two
forms of blending: one behaves more like a volume where the wheels of the
object can be seen, while the other behaves more like a surface with proper
occlusion. Shown is a 40 component vGMM with a single color per component.
Cartoon-like appearance is from exclusively using ambient lighting.

Original =5% noise Masked Pixels Noisy Image

Fig. 12: Synthetic noise generation. Gaussian noise is combined with per-
turbed silhouettes (red pixels are added, blue are removed).

0 50 100 150

er
ro

r

arma
6540 996

0 50 100 150

happy
5613 386

0 50 100 150

lucy
6073 853

0 50 100 150

bunny
3516 498

0 50 100 150
epoch

er
ro

r

gear
5437 553

0 20 40 60
epoch

dragon
5245 625

0 50 100 150
epoch

eiffel
7331 480

0 50 100 150
epoch

rebel
7785 915

training view novel view

Fig. 13: Optimizing Fuzzy Metaballs from a sphere to a shape. Losses are given
for training frames and novel viewpoints, showing no significant difference.

12 Leonid Keselman and Martial Hebert

(a) Sphere Initialization

(b) GMM Initializations

Fig. 14: Visual examples of Fuzzy Metaballs at different component numbers,
for different initializations, before and after optimization. All images are 60 by
80 pixels and show depth with color coding. Here, unlike the rest of the paper,
colors are scaled for maximum contrast, not consistency between images. GT is
the ground truth depth map from the mesh rendered by Blender.

Title Suppressed Due to Excessive Length 13

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Ground Truth Voxel Carve PyT3D Points SoftRas Mesh NeRF Fuzzy Metaballs

Fig. 15: Shape from Silhouette Results. The mesh-based representation can-
not change genus from a deformed sphere into the eiffel tower. The point cloud
method leaves spurious points. The classic Voxel Carving method is not that
precise with 3843 volume but only 32 views of low resolution 64 x 64 images.
NeRF does a good job but might improve with parameter tuning.

14 Leonid Keselman and Martial Hebert

References

1. Hansen, N.: The cma evolution strategy: A tutorial (2016)
2. Hansen, N., Akimoto, Y., Baudis, P.: CMA-ES/pycma on

Github. Zenodo, DOI:10.5281/zenodo.2559634 (Feb 2019).
https://doi.org/10.5281/zenodo.2559634, https://doi.org/10.5281/zenodo.

2559634

3. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask r-cnn. 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV) pp. 2980–2988 (2017)

4. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson Surface Reconstruction. In: Sheffer,
A., Polthier, K. (eds.) Symposium on Geometry Processing. The Eurographics
Association (2006). https://doi.org/10.2312/SGP/SGP06/061-070

5. King, D.: Automatic learning rate scheduling that really works (Feb 2018), http:
//blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html

6. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and
control of vehicles. ACM Trans. Graph. 28 (May 2009)

7. Lassner, C., Zollhöfer, M.: Pulsar: Efficient sphere-based neural rendering.
arXiv:2004.07484 (2020)

8. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) (October 2019)

9. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface con-
struction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

10. Loshchilov, I., Hutter, F.: Cma-es for hyperparameter optimization of deep neural
networks (2016)

11. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501 (2020)

12. Schönberger, J.L., Zheng, E., Pollefeys, M., Frahm, J.M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision
(ECCV) (2016)

13. Stanfill, B.: Statistical methods for random rotations. Ph.D. thesis, Iowa State
University (2014)

14. Teed, Z., Deng, J.: Tangent space backpropagation for 3d transformation groups
(2021)

15. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://
github.com/facebookresearch/detectron2 (2019)

16. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable sur-
face splatting for point-based geometry processing. ACM Transactions on Graphics
38(6), 1–14 (Nov 2019). https://doi.org/10.1145/3355089.3356513

17. Zhou, Q., Jacobson, A.: Thingi10k: A dataset of 10, 000 3d-printing models. CoRR
abs/1605.04797 (2016), http://arxiv.org/abs/1605.04797

https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.2312/SGP/SGP06/061-070
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://doi.org/10.1145/3355089.3356513
http://arxiv.org/abs/1605.04797

	Supplementary: Approximate Differentiable Rendering with Algebraic Surfaces

