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Abstract. Differentiable renderers provide a direct mathematical link
between an object’s 3D representation and images of that object. In
this work, we develop an approximate differentiable renderer for a com-
pact, interpretable representation, which we call Fuzzy Metaballs. Our
approximate renderer focuses on rendering shapes via depth maps and
silhouettes. It sacrifices fidelity for utility, producing fast runtimes and
high-quality gradient information that can be used to solve vision tasks.
Compared to mesh-based differentiable renderers, our method has for-
ward passes that are 5x faster and backwards passes that are 30x faster.
The depth maps and silhouette images generated by our method are
smooth and defined everywhere. In our evaluation of differentiable ren-
derers for pose estimation, we show that our method is the only one
comparable to classic techniques. In shape from silhouette, our method
performs well using only gradient descent and a per-pixel loss, without
any surrogate losses or regularization. These reconstructions work well
even on natural video sequences with segmentation artifacts.
Project page: https://leonidk.github.io/fuzzy-metaballs
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1 Introduction

Rendering can be seen as the inverse of computer vision: turning 3D scene de-
scriptions into plausible images. There are countless classic rendering methods,
spanning from the extremely fast (as used in video games) to the extremely
realistic (as used in film and animation). Common to all of these methods is
that the rendering process for opaque objects is discontinuous; rays that hit no
objects have no relationship to scene geometry and when intersections do occur,
they typically only interact with the front-most component of geometry.

Differentiable Rendering is a recent development, designing techniques (often
sub-gradients) that enable a more direct mathematical relationship between an
image and the scene or camera parameters that generated it. The easy access
to derivatives allows for statistical optimization and natural integration with
gradient-based learning techniques. There exist several recent differentiable ren-
derers which produce images comparable in fidelity to classic, non-differentiable,
photorealistic rendering methods [33,46,49,75].

https://leonidk.github.io/fuzzy-metaballs
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Fig. 1:Our differentiable renderer producing images of Stanford bunny,
using a representation with 400 parameters. From left to right: the 40 compo-
nents at one standard deviation, followed by our differentiable renderer generat-
ing depth, alpha, surface normals and a shaded image.

Our paper presents a different approach: a differentiable renderer focused
on utility for computer vision tasks. We are interested in the quality and com-
putability of gradients, not on matching the exact image formation task. We
willingly sacrifice fidelity for computational simplicity (and hence speed). Our
method focuses on a rendering-like process for shapes which generates good gra-
dients that rapidly lead to viable solutions for classic vision problems. Other
methods may produce more pleasing images, but we care about the quality of
our local minima and our ability to easily find those minima. Our experiments
show how, compared to classic methods, differentiable renderers can be used to
solve classic vision problems using only gradient descent, enabling a high degree
of robustness to noise such as under-segmented masks or depth sensor artifacts.

Our approach is built on a specific 3D representation. Existing represen-
tations often have undesirable properties for rendering or optimization. Point
clouds require splatting or calculating precise point sizes [74]. Meshes explicitly
represent the object surface, making changes of genus difficult. Other repre-
sentations require optimization or numerical estimation of ray-shape intersec-
tions [6,46]. Our proposed method is formulated with independent rays, repre-
sents object surfaces implicitly and computes ray termination in closed form.

Most existing differentiable renders focus on GPU performance. However,
GPUs are not always available. Many robotics platforms do not have a GPU [64]
or find it occupied running object detection [73], optical flow [61] or a SLAM
method [47]. While a single method may claim to be real-time on a dedicated
GPU [62], an autonomous system requires a sharing of resources. To run in paral-
lel with the countless GPU-friendly techniques of today, CPU-friendly methods
are desirable. Thus, while our method is implemented in JAX [8], supporting
CPU and GPU backends, our focus is typically on CPU runtimes.

Lastly, in the era of deep learning, techniques which support gradient-based
optimization are desirable. Since our objects have an explicit algebraic form,
gradients are simple and easy to compute. Importantly, every pixel has a non-zero
(if very slight) relationship with each piece of geometry in the scene (even those
behind the camera!). This allows for gradient flow (up to machine precision),
even when objects start far from their initialization. While this can also true of
large over-parmaterized implicit surfaces (such as NeRF [46]), our representation
is extremely compact and each parameter has approximate geometric meaning.
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2 Related Work

Early work in 3D shape representation focused on building volumes from partial
observations [3] but most modern methods instead focus on surface representa-
tion. Meshes, point clouds and surfels [51] focus on representing the exterior of
an object. In contrast, our method works by representing volumes, and obtaining
surface samples is implicit; similar to recent work on implicit neural surfaces [46].

In using low-fidelity representations, our work is hardly unique. Often learning-
based methods settle for pseudorendering [37] or even treating images as layers
of planar objects [67]. Settling for low fidelity contrasts sharply with a wide
array of differentiable renderers focused on accurate light transport, which are
slower but can simulate subtle phenomena [4,75]. High-quality results can also
be obtained by using learning methods and dense voxel grids [39].

Differentiable Rendering has many recent works. OpenDR [40] demonstrated
pose updates for meshes representing humans. Neural Mesh Renderer [28] devel-
oped approximate gradients and used a differentiable renderer for a wide array
of tasks. SoftRasterizer [38] developed a subgradient function for meshes with
greatly improved gradient quality. Modular Primitives [33] demonstrated fast,
GPU-based differentiable rendering for meshes with texture mapping. Differen-
tiable Surface Splatting [74] developed a differentiable renderer for point clouds
by building upon existing rendering techniques [79]. Conversion of point clouds
to volumes is also differentiable [26]. Pulsar [34] uses spheres as the primary
primitive and focuses on GPU performance. PyTorch3D [52] implements several
of these techniques for mesh and point cloud rendering. Some methods exploit
sampling to be generic across object representation [12]. Many methods integrate
with neural networks for specific tasks, such as obtaining better descriptors [36]
or predicting 3D object shape from a single images [10,63].

The use of an algebraic surface representation, which came to be known as
metaballs can be attributed to Blinn [6]. These algebraic representations were
well studied in the 1980s and 1990s. These include the development of ray-tracing
approximations [22,70,71] and building metaball representations of depth im-
ages [48]. Non-differentiable rendering metaballs has many methods, involving
splatting [2], data structures [20,59] or even a neural network [24].

Metaballs, especially in our treatment of them, are related to the use of
Gaussian Mixture Models (GMMs) for surface representation. Our method could
be considered a differentiable renderer for GMMs. Gaussian Mixture Models as
a shape representation has some appeal to roboticists [50,60]. Methods developed
to render GMMs include search-based methods [57] and projection for occupancy
maps [50]. Projection methods for GMMs have also found application in robot
pose estimation [25]. In the vision community, GMMs have been studied as a
shape representation [16] and used for pose estimation [14,15]. In the visual
learning space, GMMs [23], or their approximations [19] have also been used.

Concurrent work also uses Gaussians for rendering. VoGE [68] uses existing
volume rendering techniques [44,46]. Others use a DGT to build screen-space
Gaussians for point clouds [1]. In contrast, our contribution is the development
of an approximate differentiable renderer that produces fast & robust results.
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3 Fuzzy Metaballs

Our proposed object representation, dubbed Fuzzy Metaballs, is an algebraic,
implicit surface representation. Implicit surfaces are an object representations
where the surface is represented as

F (x, y, z) = 0. (1)

While some methods parameterize F with neural networks [46], Blinn’s al-
gebraic surfaces [6], also known as blobby models or metaballs, are defined by

F (x, y, z) =
∑
i

λiP (x, y, z)− T, (2)

where P (x, y, z) is some geometric component and T is a threshold for sufficient
density. While Blinn used isotropic Gaussians (hence balls), in our case, we use
general multidimensional Gaussians that form ellipsoids:

P (x⃗) = |Σ|− 1
2 exp

(
−1

2
(x⃗− µ)TΣ−1(x⃗− µ)

)
. (3)

To obtain Fuzzy Metaballs, we relax the restriction on T being a hard thresh-
old set by the user and instead develop a ray-tracing formulation for Gaussians.
To achieve this, we develop two components: a way of defining intersections be-
tween Gaussians and rays (Section 4.1), and a way of combining intersections
across all Gaussians (Section 4.2). In our definition, all rays always intersect all
Gaussians, leading to smooth gradients.

Our implementation is in JAX [8], enabling CPU and GPU acceleration as
well as automatic backpropogation. The rendering function that takes camera
pose, camera rays and geometry is 60 lines of code. To enable constraint-free
backpropogation, we parameterize Σ−1 with its Cholesky decomposition: a lower
triangular matrix with positive diagonal components. We ensure that the diag-
onal elements are positive and at least 10−6. The determinant is directly com-
puted from a product of the diagonal of L. When analyzing ray intersections,
one can omit the |Σ|− 1

2 term as maximizing requires only the quadratic form.
For example, x⃗ is replaced with a ray intersection of v⃗t with v⃗ ∈ R3 and t ∈ R:

s(vt) = (vt− µ)TΣ−1(vt− µ), (4)

giving a Mahlanobis distnance [42] that is invariant to object scale and allows us
to use constant hyperparameters, irrespective of object distance. Using proba-
bilities would be scale-sensitive as equivalent Gaussians that are further are also
larger and would have smaller likelihoods at the same points.

To produce an alpha-mask, we simply have two hyperparameters for scale
and offset and use a standard sigmoid function:

α = σ

(
β4

[∑
i

λi exp(−
1

2
s(vt))

]
+ β5

)
. (5)
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4 Approximate Differentiable Rendering

Instead of using existing rendering methods, we develop an approximate renderer
that produces smooth, high-quality gradients. While inexact, our formulation
enables fast and robust differentiable rendering usable in an analysis by synthesis
pipeline [5]. We split the process into two steps: intersecting each component
independently in Section 4.1 and combining those results smoothly in Section 4.2.

4.1 Intersecting Gaussians

What does it mean to have a particular intersection of a ray with a Gaussian?
We propose three methods. The linear method is where the ray intersects the
Gaussian at the point of highest probability. Maximizing Eq. (4) is solved by

t =
µTΣ−1v

vTΣ−1v
. (6)

An alternative view is a volume model, intersecting at the maximum magni-
tude of the gradient of the Gaussian:

||∇p(tv)||2 = P (tv)2 = (tv − µ)TΣ−1Σ−1(tv − µ). (7)

Obtaining the gradient of Eq. (7) and setting it equal to zero leads to a cubic
equation, hence the cubic method. Defining m = Σµ and r = Σv leads to:

0 = −t3(rT r)(vT r)

+t2
[
(mT r + rTm)(vT r) + (rT r)(vTm)

]
−t
[
(mTm)(vT r) + (mT r + rTm)(vTm)− rT r

]
+(mTm)(vTm)− rTm.

While standard formulas exist for the cubic, the higher order polynomial all-
but-ensures that numerical issues will arise. We implement a numerically stable
solver for the cubic [7]. However, even the numerically stable version produces
problematic pixels in 32bit floating point. Errors at a rate of about 1 in 1,000
produce NaNs and make backpropagation impossible.

The quadratic method approximates the cubic by intersecting the Gaussian
at the one standard deviation ellipsoid. Clipping the inside of square roots to be
non-negative leads to reasonable results when the ray misses the ellipsoid.

t2vTΣ−1v − 2tvTΣ−1µ+ µTΣ−1µ = 1

a = vTΣ−1v b = −2vTΣ−1µ c = µTΣ−1µ− 1

Figures 2 and 3 illustrate all three methods. The linear method produces
smooth surfaces and the quadratic surface shows the individual ellipsoids pro-
truding from the surface of the object and the cubic shows artifacts.

In 3D evaluation on objects, for a forward pass, the linear method is the
fastest, the quadratic method takes 50% longer and the cubic method takes
twice as long as the linear method. The quadratic method has the lowest errors
in depth and mask errors. However, due to its stability, in all evaluation outside
this section, we use the linear method.
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Linear Quadratic Cubic

Fig. 2: Two dimensional version of our approximate renderer with camera rays
cast from the center left. Three components are shown by their contour maps
and their intersections with dots. The blended results are shown with red rays.
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Fig. 3: Visual examples of normal maps from different methods of ray intersec-
tion, along with the respective mask and depth errors. See Section 4.1 for details

4.2 Blending intersections

We present a particular solution to the hidden-surface problem [58]. Our method
is related to prior work on Order Independent Transparency (OIT) [17,45] but
extended to 3D objects with opaque surfaces. We combine each pixel’s ray-
Gaussian intersections with a weighted average

tf =
1∑
i wi

∑
i

witi. (8)

The weights are an exponential function with two hyperparameters β1 and
β2 balancing high-quality hits versus hits closer closer to the camera:

wi = exp

(
β1s(vti)h(ti)−

β2

η
ti

)
. (9)

We include a term (η) for the rough scale of the object. This, along with use
of Eq. (4) allows our rendering to be invariant to object scale. We also include
an extra term to down-weight results of intersections behind the camera with a
simple sigmoid function:

h(t) = σ

(
β3

η
t

)
. (10)

Our blending solution requires only O(N) evaluations of Gaussians for each ray.
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Table 1: Runtimes in milliseconds with µ± σ for rendering images and per-
forming gradient updates in pose estimation with comparable fidelity (Section 6).
CPU performance may be a fairer comparison as our method is 60 lines of JAX [8]
code and lacks a custom CUDA kernel. CUDA numbers use 160 x 120 images
on a Quadro P2000, while CPU use 80 x 60 images on an i5-7287U.

Method Forward
CUDA

Backwards
CUDA

Forward
CPU

Backwards
CPU

Point Cloud [52] 12.1± 0.5 23.4± 0.5 18.0± 1.0 23.8± 4.0
Pulsar [34] 7.8± 0.3 11.2± 0.4 16.4± 1.4 63.6± 7.9
SoftRas Mesh [38,52] 17.0± 0.4 27.2± 0.5 21.5± 2.0 384.7± 93.8

Fuzzy Metaballs 3.0 ± 0.2 9.6 ± 0.5 3.0 ± 0.15 13.2 ± 1.4

4.3 Obtaining Fuzzy Metaballs

A representation can be limited in utility by how easily one can convert to
it. We propose that, unlike classic Metaballs, Fuzzy Metaballs have reasonably
straightforward methods for conversion from other formats.

Since we’ve developed a differentiable renderer, one can optimize a Fuzzy
Metaball representation from a set of images. One could use several different
losses, but experiments with silhouettes are described in Section 7.2.

If one has a mesh, the mathematical relationship of Fuzzy Metaballs and
Gaussian Mixture Models can be exploited by fitting a GMM with Expectation-
Maximization [13]. With Fuzzy Metaballs being between a surface and volume
representation, there are two forms of GMM one could fit. The first is a surface
GMM (sGMM) as used by many authors [16,30,60], where a GMM is fit to points
sampled from the surface of the object. The second is to build a volumetric GMM
(vGMM). To build a vGMM, one takes a watertight mesh [29], and samples
points from the interior of the object. Fitting a GMM to these interior points
is what we call a volumetric GMM. Both representations can then further be
optimized using the differentiable renderer. Our experiments show that both
forms of GMM initialization work well, but we use vGMMs in our experiments.

Extraction is also straightforward. Point clouds can easily be sampled from
our proper probability distributions. Extracting a mesh is possible by running
marching cubes [41] with an optimized iso-surface level. The details of these
experiments can be found in the supplementary material.

5 Data

We use ten models for evaluation: five from the Stanford Model Repository [35]
(arma, buddha, dragon, lucy, bunny), three from Thingi10K [78] (gear, eiffel,
rebel) and two from prior rendering literature (yoga, plane). All ten are used for
reconstruction, and seven are used for pose estimation. We selected objects with
different scales, genus, and variety in features. We choose 40 component FMs
based on prior literature suggesting 20 to 60 GMMs for object representation [14].
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Fig. 4: Perturbation sensitivity is the average error in pose when registration
is performed with ground truth pose as initialization. See Section 6 for details.
The underlying ground truth is a decimated mesh, so only the mesh representa-
tion approaches exactly zero error while other asymptote at a higher mark.

6 Comparing Representations

Fairly comparing object representations requires some notion of what to hold
constant. As the parameter counts of each representation increase, so do their
representational ability. It would be unfair to compare a million point point-
cloud against a 100 face triangle mesh. Since our goal is utility in vision tasks,
our definition of fidelity will also be task-centric.

In this case, our metric of fidelity will be a representation’s perturbation
sensitivity. We define this as the pose error obtained when optimizing an object’s
camera pose given a depth map, when the optimization process was initialized
with ground truth camera pose. The given depth map is of the full representation
object, but the methods are evaluated using lower fidelity versions, leading to
perturbations of optimal pose and our fidelity metric. Pose errors are reported
using the geometric mean of rotation error and translation error.

Results of our fidelity experiments can be seen in Fig. 4. We evaluate point
clouds and meshes using a standard Iterative Closest Point (ICP) method [77],
with the point clouds randomly subsampled and the meshes undergoing decima-
tion [18]. We also use PyTorch3D [52], a differential mesh renderer, and obtain its
perturbation curve. These experiments are conditional on an experimental setup
and methods used, and thus these results may change under different conditions.

In our experiments, a 40 component Fuzzy Metaball (the size we throughout
across this paper) produces a pose uncertainty equivalent to a 470 point point
cloud (roughly triple the parameter count of a fuzzy metaball) and 85 vertex,
170 triangle mesh (roughly twice the parameter count). These are the sizes use
throughout the rest of the paper, in our attempt to keep comparisons fair.
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7 Experiments

For comparison against other Differentiable Renderers, we use the methods im-
plemented in PyTorch3D [52], which has a wide variety of techniques with well-
optimized routines. The mesh rendering method is an implementation of the Sof-
tRasterizer [38]. For point clouds, PyTorch3D cites Direct Surface Splatting [74],
while also implementing the recent Pulsar [34].

With the fidelity of different object representations normalized out (Sec-
tion 6), we can compare the runtime performance in a fair way, with times
shown in in Table 1. On the CPU, where comparisons are more equal (due to
lacking a custom CUDA kernel), our renderer is 5 times faster for a forward
pass, and significantly faster (30x) for a backwards pass compared to the mesh
rendering methods. The point cloud renderer is more comparable in runtime to
ours but need a pre-specified point size, often producing images with lots of holes
(when points are too small) or a poor silhouette (when points are too big).

To the demonstrate the ability our differentiable renderer to solve classic
computer vision tasks, we look at pose estimation (Section 7.1) and 3D recon-
struction from silhouettes (Section 7.2). Our renderer is a function that takes
camera pose and geometry, and produces images. It seems natural to take im-
ages and evaluate how well either camera pose or geometry can be reconstructed,
when the other is given. All five hyperparameters for our rendering algorithm
(β1,2,3,4,5) were held constant throughout all experiments.

Since pose estimation and shape from silhouette (SFS) are classic computer
vision problems, there are countless methods for both tasks. We do not claim to
be the best solution to these problems, as there are many methods specifically
designed for these tasks under a variety of conditions. Instead, we seek to demon-
strate how our approximate differentiable renderer is comparable in quality to
typical solutions, using only gradient descent, without any regularization.

Table 2: Pose Estimation Results. Pose Errors are reported with a geometric
mean of rotation and translation error. The reported numbers are mean± IQR.
We report results clean data and data with simulated depth and silhouette noise.

Parameters Noise-Free Error Noisy Error

Initialization 20.2 ± 18 20.2 ± 18

Pulsar [34] 1,200 20.2 ± 18 20.2 ± 18
Point Cloud [52] 1,200 18.5 ± 16 18.4 ± 16
SoftRas Mesh [38] 750 14.9 ± 15 17.0 ± 17

Equal Fidelity ICP (Plane) [77] 1,200 10.8 ± 12 8.2 ± 3.3
Equal Fidelity ICP (Point) [77] 1,200 7.6 ± 9.9 8.7 ± 6.6

High Fidelity ICP (Plane) [77] 120,000 8.2 ± 0.8 8.0 ± 3.6
High Fidelity ICP (Point) [77] 120,000 6.2 ± 3.7 6.8 ± 3.3

Fuzzy Metaballs 400 4.0 ± 1.5 4.2 ± 2.1
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7.1 Pose Estimation

Many differential renderers show qualitative results of pose estimation [38,74].
We instead perform quantitative results over our library of models rendered from
random viewpoints. Methods are given a perturbed camera pose (±45◦ rotation
and a random translation up to 50% of model scale) and the ground truth
depth image from the original pose. The methods are evaluated by their ability
to recover the original pose from minimizing image-based errors. The resulting
pose is evaluated for rotation error and translation error. We quantify the score
for a model as the geometric mean of the two errors. All methods are tested on
the same random viewpoints and with the same random perturbations.

For Fuzzy Metaballs, we establish projective correspondence [54] and opti-
mize silhouette cross-entropy loss averaged over all pixels:

CE(α, α̂) = α log(α̂) + (1− α) log(1− α̂). (11)

Estimated alpha is clipped to [10−6, 1 − 10−6] to avoid infinite error. We also
evaluate with an additional depth loss of MSE(z, ẑ) where |z| normalizes the
errors to be invariant to object scale and comparable in magnitude to CE(α, α̂).

MSE(z, ẑ) =

∣∣∣∣∣∣∣∣ (z − ẑ)

|z|

∣∣∣∣∣∣∣∣
2

(12)

There is a subtle caveat in the gradients of Fuzzy Metaballs. The gradient of
the translation scales by the inverse of model scale.. We correct for this by scaling
the gradients by η2. Alternatively one could scale the input data to always be
of some canonical scale [72]. To maintain scale invariance, we limit our use of
adaptive learning rate methods to SGD with Momentum.

We provide point cloud ICP results for point-to-point and point-to-plane
methods [54] as implemented by Open3D [77]. For the differentiable rendering
experiments, we use PyTorch3D [52] and tune its settings (see supplementary).
All differentiable rendering methods use the same loss, learning rate decay cri-
teria and are run until the loss stops reliably decreasing.

Pose Estimation Results Overall results are found in Table 2 and a more
detailed breakdown in Fig. 5. All methods sometimes struggle to find the correct
local minima in this testing setup. Prior differentiable renderers significantly
under-performed classic baselines like ICP, while our approximate renderer even
outperforms the ICP baselines under realistic settings with synthetic noise.

ICP on noise-free data had bimodal results: it typically either recovered the
correct pose to near machine precision or it fell into the wrong local minima.
Despite having a higher mean error, ICP’s median errors on noise-free data were
1
10 of Fuzzy Metaballs (FMs). With noisy data, this bimodal distribution disap-
pears and Fuzzy Metaballs outperform on all tested statistical measures. FMs
even outperformed ICP with high-fidelity point clouds, suggesting a difference
in method not just fidelity. This may be due to our inclusion of a silhouette loss,
the benefits of projective correspondence over the nearest neighbors used by this
ICP variant [77] or the strengths of visual loss over geometric loss [65].
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Fig. 5:Noisy Pose Estimation Dashed lines are averages for the method, while
the black diamonds show the average for that method and model. Here Fuzzy
Metaballs win in all statistical measures, typically by a factor of ≈ 2.

7.2 3D Reconstruction

Reconstruction experiments are common in the differential rendering litera-
ture [34,74]. However, instead of optimizing with annotations of color [33] or
normals [74], we instead only optimize only over silhouettes, as in the classic
Shape From Silhouette (SFS) [11]. Unlike many prior examples in the litera-
ture, which require fine-tuning of several regularization losses [52,74], we use no
regularization in our experiments and can keep constant settings for all objects.

We initialize with a sphere (isosphere for meshes, an isotropic Gaussian of
points for point clouds and a small blobby sphere for Fuzzy Metaballs). Given
a set of silhouette images and their camera poses, we then optimize silhouette
loss for the object. In our experiments, we use 64 x 64 pixel images and have 32
views. For these experiments, we resize all models to a canonical scale and use
the Adam [32] optimizer. For baseline hyperparameters, we use the PyTorch3D
settings with minimal modification. For SoftRas, we use a twice subdivided ico-
sphere. For NeRF [46], we use a two layer MLP with 30 harmonic function
embedding with 128 hidden dimension and the same early exit strategy as FMs.

Inspired by artifacts seen in real videos (Fig. 9), we produce a noisy silhouette
dataset where training data had 1

8 of each silhouette under-segmented (Fig. 8) in
16 of 32 images by clustering silhouette coordinates [56] and removing a cluster.

Fig. 6: Shape from Silhouette (SFS) reconstructions. On the left is a 40
component Fuzzy Metaball result and the right is the mesh ground-truth of
about 2,500 faces, both colored by depth maps.
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Table 3: Shape from Silhouette reconstruction fidelity as measured by
cross-entropy silhouette loss on 32 novel viewpoints for each of 10 sample models.
Runtimes were the average per model and performed on CPU. Results show µ±σ.

Time (s) Noise-Free Recon.
Error

Noisy Recon.
Error

Voxel Carving [43,77] 82 0.31 ± 0.100 1.119± 0.367
PyTorch3D Point [52] 185 0.075 ± 0.066 0.100± 0.079
PyTorch3D Mesh [38] 3008 0.062 ± 0.049 0.072± 0.051
NeRF [46] 7406 0.032 ± 0.022 0.062 ± 0.063

Fuzzy Metaballs 68 0.040 ± 0.015 0.055 ± 0.016

Shape From Silhouette Results We show qualitative reconstructions from
Fuzzy Metaballs (Fig. 6), along with quantitative results against baselines (Ta-
ble 3) and some example reconstructions from all methods (Fig. 8).

Overall, we found that our method was significantly faster than the other
differentiable renderers, while producing the best results in the case of noisy
reconstructions. Classic voxel carving [43] with a 3843 volume was reasonably
fast, but the 32 views of low resolution images didn’t produce extremely sharp
contours (see supplementary). With under-segmentation noise, voxel carving fails
completely while the differentiable renderers reasonably reconstruct all models.

Among the differentiable renders, we can see how the mesh-based approach
struggles to change genus from a sphere to the Eiffel tower. The point cloud
renderer lacks the correct gradients to successfully pull spurious points into the
model. NeRF [46] performs reasonably well in shape from silhouette, even with
spurious masks. In fact, it was the best performer for noise-free data, and in a
majority of the reconstructions in noisy data (its mean performance was hurt
by results on eiffel and lucy with long thin surfaces). NeRF is a sophisticated
model with many settings, and it may have a configuration where it successfully
reconstructs all the models, but due to its dense volumetric rendering and use
of an MLP, it is 100x slower than our low degree of freedom representation.

Fig. 7: Shape from Silhouette steps Top row shows synthetic data with recon-
structed depth. Bottom row shows reconstructed masks for a CO3D video [53].
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Fig. 8: Shape from Silhouette Results with simulated under-segmentation.

8 Discussion

The focus of our approximate differentiable rendering method has been on shape.
While it is possible to add per-component colors to Fuzzy Metaballs (see sup-
plementary), that has not been the focus of our experiments. Focusing on shape
allows us to circumvent modeling high-frequency color textures, as well as ignor-
ing lighting computations. This shape-based approach can use data from modern
segmentation methods [21] and depth sensors [31]. Low-degree of freedom mod-
els have a natural robustness and implicit regularization that allows for recovery
from significant artifacts present in real systems. For example, Fig. 9 shows
robust recovery from real over/under-segmentation artifacts in video sequences.

Our approximate approach to rendering by using OIT-like methods creates a
trade-off. The downside is that small artifacts can be observed since the method
coarsely approximates correct image formation. The benefits are good gradients,
speed & robustness, all of which produce utility in vision tasks.

Compared to prior work [34,38], our results do not focus on the same areas of
differentiable rendering. Unlike other work, we do not perform GPU-centric op-
timizations [33]. Additionally, prior work focuses on producing high-fidelity color
images (and using them for optimization). Unlike prior work, we benchmark our
method across a family of objects and report quantitative results against classic
baselines. Unlike some popular implicit surface methods such as the NeRF [46]
family, our object representation is low degree of freedom, quick to optimize from
scratch, and all the parameters are interpretable with geometric meaning.

While our experiments focus on classic computer vision tasks such as pose es-
timation or shape from silhouette, the value of efficiently rendering interpretable,
low degree of freedom models may have the biggest impact outside of classic com-
puter vision contexts. For example, in scientific imaging it is often impossible to
obtain high-quality observations since the sensors are limited. For example, in
non-light-of-sight imaging [66], sonar reconstruction [69], lightcurve inversion [27]
and CryoEM [9,76]. In all these contexts, getting good imaging information is
extremely hard and low degree of freedom models could be desirable.
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(a) Depth and silhouette from a shape-from-silhouette reconstruction.

(b) Recovering from undersegmentation in the ground truth masks. While a
50% threshold does a good job recovering the head, better recovery can be shown with
a 10% threshold, also recovering the leg.

(c) Recovering from oversegmentation in ground truth masks. Even the α =
10% threshold only leads to minor over-segmentation in the mask, suggesting a setting
that be appropriate in general.

Fig. 9: Shape from silhouette reconstruction on natural images from
a handheld cell phone video, using COLMAP [55] and Mask RCNN [21] for
automatic camera poses and silhouettes. The low degree of freedom leads to
natural regularization and recovery from errors in ground truth.

9 Conclusion

Approximate differentiable rendering with algebraic surfaces enables fast analysis-
by-synthesis pipelines for vision tasks which focus on shapes, such as pose estima-
tion and shape from silhouette. For both tasks, we show results with realistic,
simulated noise. The robustness of our approach enables it to runs naturally
on silhouettes extracted from real video sequences without any regularization.
Whereas classic methods can struggle once noise is introduced, differentiable ren-
derers naturally recovery by using stochastic optimization techniques. By using
gradient-based optimization, differentiable rendering techniques provide a ro-
bust solution to classic vision problems. Fuzzy Metaballs can enable low-latency
differential rendering on CPUs. Our formulation connects algebraic surfaces [6]
used in graphics with Gaussian Mixture Models [16] used in vision. These provide
a compact, interpretable representation for shape with many uses.
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