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1 CoVisPose: Terminology
To clarify terminology, the co-visibility score (%), which measures visual overlap
(2 [0, 100%]) between two panoramas, is derived from the column-wise co-
visibility vectors by taking the mean over the image columns for each panorama
and then averaging over the pair. We stratify our results as a function of the
ground truth (GT) co-visibility score [2] [5] to understand robustness as a function
of visual overlap. We estimate the column-wise co-visibility vector to improve
direct pose regression accuracy and to filter high quality correspondences. We
compute the estimated co-visibility score as a measure of pose confidence (applied
for both CoVisPose-Direct and CoVisPose-RANSAC), with the reasonable assum-
ption that higher visual overlap leads to more accurate poses on average. This
also serves to exclude poses between panoramas that do not share visual overlap.
As direct pose regression methods typically return an estimated pose regardless
of input, in absence of a measure like the co-visibility score, they would need to
rely on a separate retrieval model to determine likelihood of pose validity.

2 ZInD Preprocessing
Extension of our method to predict layout, co-visibility, correspondence and
pose through doorways, requires information on whether or not doors are open
or closed, which is not contained in ZInD. For these cases, we illustrate our
pipeline for data creation in Fig. 1. We first (1.) extract and label door crops
for a subset of the dataset (5K examples). We then (2.) train a classifier as
explained in the main paper. For data creation, we then (3.) deploy the trained
classifier to label doors. When an open door is encountered, we (4.) collect the
adjacent layouts. We represent the open door between the two layouts by carving
the doorway region of the two layout polygons and bridging the gap with two
line segments. From this combined representation, we then compute a visibility
map for each pano, which then support computation of the co-visibility map
between the pair. (5.) The visibility and co-visibility maps are then projected to
image space. We compute the co-visibility mask by binning the co-visibility map
angularly along the horizontal FoV. For co-visible regions, we additionally check
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Fig. 1: CoVisPose data creation through open doors.

the angular line-of-sight of the co-visible points in each image to determine the
correspondence.

Note that in the example shown, the door is open in both panoramas on either
side, but this need not be the case. It is also possible to compute these quantities
for examples in which the door is only open on one side, in one panorama. In
these cases, the co-visible region is entirely on one side of the door; however, our
model is capable of estimating reliable poses nonetheless, albeit with less usable
signal.

On a validation set set aside from the original human-annotated door crops,
the accuracy of the classifier was ⇡ 95%. This means that there are undoubtedly
mistakes made during data creation; however, the doors which matter most,
those with a clear view between spaces that are closer to the pano’s foreground,
are also the easiest to label correctly, which diminishes the impact of this semi-
supervised labeling method on the CoVisPose training data. Another limitation
associated with doorways is the lack of information about doors that are partially
open, or open doors which generally block the panorama’s view. The latter is a
general limitation of ZInD, as noted in the original paper.

3 Test Set Statistics
To demonstrate the difficulty and scope of our dataset, we examine the test set
statistics for co-visibility and baseline distance in Fig. 2 (a) and (b). We see that
our dataset contains a large amount of examples with low visual overlap, and is
biased towards lower visual overlap, as opposed to higher. Further we see that
our dataset has a large fraction of examples with baseline distances of 3 or more
meters. Both of these properties ensure that our dataset serves to demonstrate
the competency of our method under these challenging conditions. In Fig. 2 (c),



CoVisPose 3

(a) (b) (c)

Fig. 2: (a) Test set statistics by GT co-visibility score. (b) Test set baseline distance for

panorama pairs with > 10% GT co-visibility score, in meters. The mean and median

are 3.6 and 3.1 meters, respectively. (c) Box plots of baseline distance (meters) at

different levels of co-visibility.

Table 1: Relative difference between training and validation mean rotation and

translation errors, at epoch 30.

Method
Gap Between Training and Validation Mean Error

Rotation(�#) Translation (m.#)
CoVisPose Boundary 12.03 0.59

CoVisPose Boundary+CoVis 3.01 0.22

CoVisPose Boundary+CoVis+AC 2.61 0.18

we additionally share boxplots of baseline distance by co-visibility band. While
these metrics are highly correlated, we note that even the high co-visibility band
contains examples with extreme baseline distance.

4 Joint Training of Pose and CCF Decoders Improves
Pose Estimation Generalization

As shown in the training and validation error curves in Fig. 3, the addition of the
dense column-wise outputs increases pose decoder generalization, as well as rate
of convergence. With only the column-wise floor-wall boundary output, the gap
between the training and validation curves for mean rotation and translation
error is considerable. For the training curves, we reduce noise by smoothing
with an exponential moving average. We share this gap, the relative difference
between the training and validation error for mean rotation and translation, at
epoch 30 in Table 1. Upon addition of the column-wise co-visibility output, this
gap decreases substantially, in addition to decreases in the errors themselves
(as seen in the ablation study). Additionally adding the angular correspondence
output (AC) further decreases the train-val gap as well as the absolute errors.

5 DirectionNet Training Details

We adapted their released code3 base for our domain, a pair of upright 360
panoramas with small to extreme baselines. We trained the best performing
3 https://github.com/google-research/google-research/tree/master/direction_net

https://github.com/google-research/google-research/tree/master/direction_net
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(a) (b)

Fig. 3: Training and validation curves for mean rotation and translation error

demonstrate the increased generalization in direct pose regression by jointly training

the CCF and pose decoders. (a) Mean rotation error over epochs, in degrees. (b) Mean

translation error over epochs, in meters.

configuration reported in their paper [1], which is the 9D rotation (with SVD
orthogonalization) followed by derotation (that we adapted for the 360 domain)
before the 3D translation network is trained to infer up-to-scale translation
direction. The training process (described below) took around 1 week on two
Quadro RTX 6000 GPUs with 24GB each.

Rotation 9D: We trained the 9D rotation network on the same training set
as our CoVisPose using the same data augmentation (uniform yaw rotation) as
discussed in the main paper. Assuming an upright pair of cameras, the 3 ⇥ 3
rotation matrices, fed into that module, can be represented as a yaw-only 3D
rotations around the y-axes, with an underlying rank of 1. We observed that this
bias is quickly and successfully learned by their underling over-parameterized 9D
representation. We used the same hyper-parameters as proposed in their paper
with panoramas resized to 256 ⇥ 256 and a batch size of 20. We trained the
rotation network for 1M steps, which resulted in around 80 epochs, i.e. passes
of the whole training set of 248725 (positive) pairs.

Derotation: In their paper, they propose to train the rotation and translation
networks separately, so we followed this two-stage training regime from their
code-base. While this step can result in "empty" pixels in their original use-case
(wide-baseline perspective, limited FoV, cameras), it is actually very well suited
for our domain of 360 cameras, where the full 360 FoV allows for complete and
lossless de-rotation of the target image to match the orientation of the source
image.

Translation 3D: We first trained the translation network for around 40 epochs
using GT rotations with noise. This allowed us to train the rotation and translation
networks in parallel. We then fixed the rotation network and fine-tuned the
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Table 2: Relative pose statistics for 1274 kitchen and bathroom pairs. We report

statistics with highlighted performance ranking, as in Table 1 of the main paper.

Method Success (% ") Rotation Translation angle Translation vector

Mn(�#) Med(�#) 2.5�(% ") Mn(�#) Med(�#) 2.5�(% ") Mn(m.#) Med(m.#) .5m.(% ")

SIFT-OpenMVG [3] 65.93% 11.18 0.49 52.98 14.11 1.31 44.27 - - -

LoFTR-OpenMVG [4] 82.26% 13.62 0.75 58.01 16.25 1.98 46.31 - - -

DirectionNet [1] 100.00% 30.05 2.24 52.83 23.69 7.39 20.57 - - -

LayoutLoc [2] 67.03% 30.46 0.00 50.39 29.09 2.70 32.18 1.11 0.15 43.80

CoVisPose-Ransac 99.76% 1.76 0.72 90.19 3.08 1.12 77.94 0.11 0.07 97.96

CoVisPose-Direct 100.00% 1.54 0.69 93.88 2.97 1.38 73.39 0.12 0.09 98.59

translation network with predicted rotation (with noise) for around 40 more
epochs. Similar to the discussion in their supplementary materials, we found the
rotation noise (both with GT as well as predicted rotations) to be the key for
generalization of the translation network. We used the same hyper-parameters
as in their paper.

6 Additional Results and Analysis
We evaluate our method on ZInD, which, to our knowledge, is the only large-scale
public dataset consisting of floor plans with full layout annotations containing
multiple panoramas per space. While ZInD homes are typically unstaged, kitchens
and bathrooms allow us to demonstrate robustness to clutter and occlusion
through fixtures and cabinetry in section 6.1. On the contrary, though empty
rooms to some extent simplify the recovery of layout geometry, the lack of interior
features present highly repetitive textures and indistinct regions, which increases
the difficulty of co-visibility and correspondence estimation. To demonstrate this
challenge, we examine difficult negative examples in section 6.2, and further
explore our model’s false positives in section 6.3.

6.1 Robustness to Occlusion: Kitchens and Bathrooms

To demonstrate our model’s robustness to occlusion, we collect all panorama
pairs from the test set which have bathroom or kitchen labels. With this set
we evaluate our method against the baselines in Table 2. Additionally, we share
qualitative examples from this set in Fig. 4. Despite the significant increase
in objects which occlude the floor-wall boundary, and thus challenge geometry
estimation, our model performance is high, with accuracy numbers similar to
those seen in the general data distribution.

6.2 Difficult Negative Examples

In many cases, differentiating between two highly similar rooms (negative examples)
requires learning global information in order to correctly predict zero visual
overlap. Rooms with similar windows, fixtures, closet doors, ceiling fans, etc.
present stiff challenges. Especially for feature matching-based approaches, these
cases may result in matches that are consistent enough to estimate an erroneous
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essential matrix with high inliers. Here, we define false positives (FP) as those
negative examples for which a pose was successfully estimated for the feature-
matching based approaches, and for which CoVisPose predicts a co-visibility
score of >= 10%. With this definition, out of the 12896 negative examples
in the test set, we compute an overall FP rate of 9.36%, 52.66%, and 2.26%,
for SIFT-OpenMVG, LoFTR-OpenMVG, and CoVisPose, respectively. We note
that the LoFTR-based baseline results in more cases of estimated poses with
a low number of inliers, compared to SIFT. In practice, this FP rate can be
reduced by setting a higher threshold on the number of inliers in order to increase
precision; however, this comes at the cost of recall as seen in our precision/recall
curve. By comparison, CoVisPose is robust to false positives down to very low
visual overlap.

We demonstrate this challenge, as well as our high performance on these
cases, in Fig. 5. Both CoVisPose-Direct and CoVisPose-RANSAC use the same
estimated co-visibility score and thus will have the same performance for negative
examples. In particular, see row 2, where the strong similarities between the
two bathrooms’ vanities and fixtures prompt many erroneous matches which in
turn support estimation of a pose with many inliers. In row three we share a
difficult example of two bedrooms with nearly identical windows, closets and
doors, carpet, and paint. For both of these cases, CoVisPose correctly predicts
zero co-visibility, successfully differentiating the spaces.

6.3 Limitations and Failure Cases

As shown in section 6.2, ZInD contains many challenging examples with extremely
similar looking rooms that give even a human observer pause. We share a
selection of false positive examples for which our model struggled to correctly
estimate zero visual overlap. Additionally, we share false negative examples,
where our model failed to estimate a pose at a co-visibility threshold of >= 10%.
See Fig. 6 for both cases. For false positives, note the first and second example
pairs in the second row. In the first result, the bathrooms are virtually identical
other then the differing lighting fixtures above the vanities. In the second result,
the two garages are also nearly identical, and the model fails to pick up on the
important differences in the rear walls, with one garage containing only partial
storage and a rear door. On false negatives, causes include extreme wide baselines
coupled with low visual overlap, unaccounted for occlusions such as open doors
which block the panorama’s view, and even exposure issues such as that seen on
the left side of the last row.

6.4 Additional Qualitative Results

We present additional examples sorted by baseline distance in Fig 7, 8. For
shorter baselines, the feature matching-based methods have a higher chance
of estimating an accurate pose; however, we find that under large baseline
distances, these methods commonly fail. Conversely, CoVisPose demonstrates
robust performance over the entire range.
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GT Co-Visibility Score: 0.620
Baseline Distance: 1.55m

Rotation, Translation Errors (∘):
SIFT-SfM : 0.96, 4.31
LoFTR-SfM: 0.97, 3.67
DirectionNet: 19.04, 7.78
LayoutLoc: 0.00, 4.80
CoViSPose-Direct: 1.17, 3.12
CoViSPose-RANSAC: 1.89, 4.32

GT Co-Visibility Score: 0.720
Baseline Distance: 3.20m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.29, 0.07
LoFTR-SfM: Failed
DirectionNet: 2.71, 18.93
LayoutLoc: 0.00, 95.33
CoViSPose-Direct: 0.86, 1.46
CoViSPose-RANSAC: 0.52, 1.43

GT Co-Visibility Score: 0.64
Baseline Distance: 2.34m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 0.17, 7.29
LayoutLoc: 0.13, 0.09
CoViSPose-Direct: 1.31, 3.90
CoViSPose-RANSAC: 0.85, 0.92

GT Co-Visibility Score: 0.331
Baseline Distance: 3.59m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 1.58, 1.83
LayoutLoc:90.00, 78.39
CoViSPose-Direct: 0.53, 0.20
CoViSPose-RANSAC: 0.02, 0.64

GT Co-Visibility Score: 0.502
Baseline Distance: 1.05m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 94.156, 131.67
LayoutLoc: 0.95, 16.43
CoViSPose-Direct: 1.23, 1.43
CoViSPose-RANSAC: 1.01, 1.88

GT Co-Visibility Score: 0.175
Baseline Distance: 2.50m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: 125.33, 144.15
DirectionNet: 179.20, 96.77
LayoutLoc: 89.52, 59.89 
CoViSPose-Direct: 0.14, 3.18
CoViSPose-RANSAC: 1.34, 2.19

GT Co-Visibility Score: 0.479
Baseline Distance: 4.61m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: 2.85, 5.75
DirectionNet: 0.11, 4.50
LayoutLoc: 0.00, 2.27
CoViSPose-Direct:1.36, 1.53
CoViSPose-RANSAC: 0.40, 0.34

(a) (b) (c) (d) (e)

Fig. 4: Qualitative results from panorama pairs captured in kitchens and bathrooms.
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GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: False Positive
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: True Negative
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

(a) (b) (c) (d) (e)

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: False Positive
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: False Positive
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: False Positive
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: False Positive
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: True Negative
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: True Negative
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: True Negative
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: False Positive
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: False Positive
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: True Negative
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

GT Co-Visibility Score: 0
Baseline Distance: N/A

Rotation, Translation Errors (∘):
SIFT-SfM: False Positive
LoFTR-SfM: False Positive
DirectionNet: False Positive
LayoutLoc: True Negative
CoViSPose-Direct: True Negative
CoViSPose-RANSAC: True Negative

True Negative

True Negative

True Negative

True Negative

True Negative

True Negative

True Negative

Fig. 5: We show examples of the difficult negative cases contained in our dataset;

rooms which look highly similar, but that CoVisPose has learned to differentiate by

correctly predicting zero co-visibility.
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False 
Positives:

False 
Negatives:

Fig. 6: Example failure cases from CoVisPose direct regression and CoVisPose

RANSAC. Here, false positives are negative panorama pairs with an estimated co-

visibility score of >= 10%. False negatives are positive panorama pairs with an

estimated co-visibility score of < 10%.
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(a) (b) (c) (d) (e)

GT Co-Visibility Score: 0.843
Baseline Distance: 0.94m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.40, 0.85
LoFTR-SfM: 0.49, 1.32
DirectionNet: 0.66, 2.15
LayoutLoc: 0, 1.62
CoViSPose-Direct: 0.20, 0.32
CoViSPose-RANSAC: 1.02, 0.49

GT Co-Visibility Score: 0.640
Baseline Distance: 1.17m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.65, 3.03
LoFTR-SfM: 0.70, 18.64
DirectionNet: 91.47, 51.45
LayoutLoc: Failed
CoViSPose-Direct: 0.58, 2.78
CoViSPose-RANSAC: 0.19, 2.02

GT Co-Visibility Score: 0.637
Baseline Distance: 2.76m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.29, 0.37
LoFTR-SfM: 1.90, 1.17
DirectionNet: 3.37, 1.73
LayoutLoc: 0.00, 0.32
CoViSPose-Direct: 0.14, 1.08
CoViSPose-RANSAC: 0.17, 2.24

GT Co-Visibility Score: 0.781
Baseline Distance: 2.92m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.07, 0.06
LoFTR-SfM: 6.80, 3.45
DirectionNet: 0.03, 7.04
LayoutLoc: 0.00, 0.04
CoViSPose-Direct: 0.55, 2.53
CoViSPose-RANSAC: 0.73, 1.93

GT Co-Visibility Score: 0.510
Baseline Distance: 2.06m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM 0.52, 1.78
DirectionNet: 0.37, 7.66
LayoutLoc: 0.01, 1.41
CoViSPose-Direct: 0.17, 2.43
CoViSPose-RANSAC: 0.52, 2.28

GT Co-Visibility Score: 0.986
Baseline Distance: 2.68m

Rotation, Translation Errors (∘):
SIFT-SfM: 2.47, 2.37
LoFTR-SfM: 0.40, 1.51
DirectionNet: 0.72, 6.19
LayoutLoc: 0.00, 8.10
CoViSPose-Direct: 0.89, 1.76
CoViSPose-RANSAC: 0.48, 0.97

GT Co-Visibility Score: 0.869
Baseline Distance: 1.66m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.39, 2.12
LoFTR-SfM: 0.26, 2.66
DirectionNet: 0.53, 11.57
LayoutLoc: 0.00, 7.99
CoViSPose-Direct: 0.73, 0.85
CoViSPose-RANSAC: 1.83, 2.40

Fig. 7: Qualitative results arranged similar to Fig. 4 of the main paper. The examples

are sorted by baseline distance, with baselines less than 3 meters.
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(a) (b) (c) (d) (e)

GT Co-Visibility Score: 0.734
Baseline Distance: 5.87m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 2.28, 3.95
LayoutLoc: 0.00, 0.14
CoViSPose-Direct: 1.41, 1.55
CoViSPose-RANSAC: 0.18, 0.57

GT Co-Visibility Score: 0.500
Baseline Distance: 7.00m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 1.51, 24.93
LayoutLoc: 90.00, 20.27
CoViSPose-Direct: 0.41, 1.01
CoViSPose-RANSAC: 0.85, 0.65

GT Co-Visibility Score: 0.728
Baseline Distance: 5.22m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 0.08, 0.36
LayoutLoc: 0.13, 22.00
CoViSPose-Direct: 0.74, 0.15
CoViSPose-RANSAC: 0.47, 0.14

GT Co-Visibility Score: 0.293
Baseline Distance: 7.65m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 3.08, 0.82
LayoutLoc: 0.00, 2.51
CoViSPose-Direct: 1.31, 1.76
CoViSPose-RANSAC: 0.28, 0.47

GT Co-Visibility Score: 0.323
Baseline Distance: 8.20m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 1.55, 1.25
LayoutLoc: 90.00, 28.25
CoViSPose-Direct: 1.46, 0.14
CoViSPose-RANSAC: 13.96, 0.67

GT Co-Visibility Score: 0.191
Baseline Distance: 8.55m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 0.97, 8.49
LayoutLoc: 0.00, 88.60
CoViSPose-Direct: 2.82, 0.06
CoViSPose-RANSAC: 2.73, 1.59

GT Co-Visibility Score: 0.232
Baseline Distance: 9.00m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: 12.33, 93.10
DirectionNet: 178.62, 34.21
LayoutLoc: 180.00, 26.42
CoViSPose-Direct: 0.09, 0.22
CoViSPose-RANSAC: 0.44, 0.17

Fig. 8: Qualitative results for panorama pairs with baselines greater than 5 meters.

Examples sorted by baseline distance.
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