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Abstract. We present CoVisPose, a new end-to-end supervised learning
method for relative camera pose estimation in wide baseline 360◦ indoor
panoramas. To address the challenges of occlusion, perspective changes,
and textureless or repetitive regions, we generate rich representations
for direct pose regression by jointly learning dense bidirectional visual
overlap, correspondence, and layout geometry. We estimate three image
column-wise quantities: co-visibility (the probability that a given column’s
image content is seen in the other panorama), angular correspondence
(angular matching of columns across panoramas), and floor layout (the
vertical floor-wall boundary angle). We learn these dense outputs by
applying a transformer over the image-column feature sequences, which
cover the full 360◦ field-of-view (FoV) from both panoramas. The resultant
rich representation supports learning robust relative poses with an efficient
1D convolutional decoder. In addition to learned direct pose regression
with scale, our network also supports pose estimation through a RANSAC-
based rigid registration of the predicted corresponding layout boundary
points. Our method is robust to extremely wide baselines with very low
visual overlap, as well as significant occlusions. We improve upon the
SOTA by a large margin, as demonstrated on a large-scale dataset of
real homes, ZInD.

Keywords: Indoor, 360◦ panorama, indoor, pose estimation, camera
localization, structure-from-motion, layout

1 Introduction
With the increasing affordability of 360◦ capture devices, omnidirectional imagery
has become an important capture modality for indoor environments3. The large-
FoV provides an immersive experience as well as comprehensive context for
indoor scene understanding; this enables applications such as AR/VR, autonomous
navigation, virtual tours, room layout estimation, and floor plan reconstruction.
The omnidirectional information allows sparser capture while maintaining geometric
context. Concurrent with the rise of deep learning, these advantages have inspired
3 https://www.ricoh360.com/tours/

https://www.ricoh360.com/tours/
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a rapid increase in research focused on the spherical domain, including layout
estimation [45,46,36,54,58,55], depth estimation [58,53,46], semantic segmentation
[59,19], object detection [30], and network design [44,29].
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Fig. 1: Our system (a) establishes bidirectional column-wise (angular)
correspondence while computing (b) pose estimation between two panoramas
that visually overlap.

Commercially, for practical and economic reasons, panoramic captures for
virtual tours and floor plan reconstruction typically result in sparse coverage,
with wide baselines between panoramas [43,12,37]. In particular, the indoor
environments of real homes in ZInD[12] have extensive featureless regions and
strong visual similarity between rooms, which present challenges to classical
feature-based Structure-from-Motion (SfM) approaches. To alleviate that, other
methods require denser RGB [1,6] or RGB-D [38,8] captures. However, those are
at the expense of more time (to capture) or investment in specialized hardware.

In this paper, we propose a new method to estimate relative pose for a pair
of 360◦ indoor panoramas under a wide range of baselines (small to extreme).
To address the challenges associated with operating in the spherical domain,
we take inspiration from the horizontal (1D column-wise) representation for
layout estimation [45,46]. We jointly learn to regress relative pose alongside
estimation of image-column-wise representations of visual overlap (co-visibility),
correspondence, and layout geometry. To learn the highly non-local associative
tasks of co-visibility and correspondence, we apply a transformer to image-
column feature sequences, allowing the network to attend globally across the full
360◦ context from both panoramas. Further, jointly learning to estimate layout
geometry provides the network with a strong prior for the indoor environment.
By providing dense supervision, we reduce ambiguity and guide the transformer
to learn rich representations for robust pose regression, even in the presence of
minimal visual overlap and wide baselines.

Our contributions are:

– Novel representation for relative pose estimation between two upright 360◦
cameras, which factors the auxiliary tasks of visual overlap, correspondence,
and layout estimation as image-column-wise quantities.

– Transformer-based architecture that operates over the image-column feature
sequences across both panoramas, applying inter and intra-image column
attention.
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– Support for both end-to-end direct pose regression as well as a post-processing
step using iterative robust model fitting, e.g., RANSAC [61], enabled through
the densely predicted corresponding layout boundary points.

– Co-visibility score generated by our co-visibility representation, which gives
a strong measure of trust in a given predicted relative pose. Using this
measure, we demonstrate strong pose precision and recall performance for
pose estimation in unordered panoramas.

– Direct estimation of two-view SfM with scale. To our knowledge, this is the
first end-to-end learning approach to estimate the pose of upright panoramas
with respect to predicted layout geometry.

– SOTA performance on a challenging real world dataset [12]. We achieve a
78% and 85% decrease in median rotation and translation error, respectively,
over a SOTA deep feature matching approach, while at the same time successfully
estimating a pose for 35% more panorama pairs.

2 Related Work

In this section, we briefly review representative methods in the related areas of
pose estimation and room layout estimation.

Two-View Pose Estimation Classical methods for relative pose estimation
(RPE) first extract and match image features like SIFT [31], which are then
used to derive the relative camera motion by estimating the fundamental or
essential matrix, for uncalibrated or calibrated cameras, respectively [62]. These
methods are generally well behaved and robust when the camera motions are
small and the scene texture is amenable to extraction and matching of features;
however, common failure modes include repetitive or limited texture, as well as
large camera motion between views. Recent works have attempted to address
these challenges using deep learning. Many works have focused on modeling
those components of the classical pipeline which are especially susceptible to
failure, such as feature detection [18,14], correspondence estimation [57,40,47],
and model fitting [4,39].

Of the recent works for deep feature detection, description, and correspondence
estimation, a combination of [14] and [40] has proven particularly effective for
relative pose estimation. The system of [14] replaces hand-crafted interest-point
detection and descriptors with learned counterparts by attaching two separate
decoder branches to a shared CNN encoder. The method of [40] accepts two
detection sets and learns the feature matching step with a Graph Neural Network
(GNN). Its attentional GNN variant combines both inter- and intra-image attention
in order to reason about both appearance and spatial cues. However, there is
no feedback from matching; correspondence estimation is subject to the input
detection quality with no global reasoning.

LoFTR [47] learns to perform both steps in a detector-free approach and
directly outputs dense correspondences. Their system also leverage inter- and
intra-image attention with a transformer applied in a coarse-to-fine approach.
This global reasoning improves matching for regions with limited texture or
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repetitive patterns. This method sets a new state-of-the-art on multiple benchmarks,
including indoor relative pose estimation in the perspective imagery of ScanNet.
Nevertheless, this method only focuses on one portion of the SfM pipeline, and
may still be subject to difficulties with model fitting.

In contrast, other techniques directly learn the mapping function between
images and pose [9,32,50], demonstrating improved performance for classically
challenging cases, including wide baselines. Similar to our work, many techniques
[32,20,9] first apply a feature extractor in a Siamese configuration, sharing weights
across the input pair. Melekhov et al. [32] use the extracted feature representations
directly as input to two fully-connected layers to regress the relative pose. En et
al. [20] propose multiple variants, including relative pose computation from two
absolute pose estimates, with a similar fully-connected regressor displaying the
best overall performance. Notably, they estimate the full translation vector and
report errors in meters. Chen et al. [9] formulate a directional parameterization of
the relative pose. They stack multiple decoder blocks on top of a Siamese encoder
and estimate discrete distributions over the sphere. Their best performing archite-
cture follows a two-stage approach which first derotates the image before estimating
the translation component, making it robust to wide baselines.

Such direct regression methods have also been proposed for the task of
absolute pose estimation (APE), with the aim of learning the camera-to-scene
transformation directly [26,52,25,5]. One subproblem of APE is the visual relocali-
zation task, which aims to localize one or more target images against scene
images of known pose. This problem may be framed as retrieval-then-RPE,
wherein nearest neighbors are retrieved, with the scene pose subsequently determined
through RPE. Such methods have demonstrated strong ability to generalize
[2,28] as the pose regressor is not tied to a scene-specific coordinate frame.
Laskar et al. [28] first train a Siamese architecture to regress relative pose, and
then use the learned feature representation for database retrieval of neighboring
panoramas. Balntas et al.’s work [2] is in a similar spirit with ours in that
they estimate a camera frustrum overlap, analogous to our co-visibility. From
the same feature embeddings, they additionally regress the relative pose, which
strengthens the retrieval performance while serving to localize to scene coordinates.

Two-view pose estimation with given priors (e.g., gravity-aligned vertical
direction [27,17,16]) or constrained motions (e.g., planar camera motion [21,11,1])
is an active area of research. This has many practical applications such as
robotics [34] and virtual walkthroughs [12,1], and are enabled by the availability
and robust integration of low-cost IMU sensors [22] and improved algorithms for
upright camera corrections [24,13,23]. In our work, we assume a planar motion
model for the spherical cameras, i.e., all the cameras lie on the same plane with a
fixed height and a gravity-aligned vertical direction. These practical constraints
are used in commercial applications, e.g., application of Street View technology
indoors [1]. Those assumptions reduce the general 6-DoF two-view spherical
geometry [48] to a 3-DoF problem solved in the 2D plane [1].

Layout Estimation HorizonNet [45] introduced the horizontal representation
for layout estimation in 360◦ indoor panoramas, significantly improving SOTA
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by factoring layout into output vectors over the image columns. By applying
an LSTM to the image column features produced through a height compression
module (HCM), they estimate both the floor and ceiling boundary contours as
well as the corner probability score. HorizonNet further exploits the upright
camera assumption to post-process Manhattan layouts. HoHoNet [46] improves
the HCM efficiency, and demonstrates the ability to predict per-pixel modalities
by applying an inverse discrete cosine transform to decompress the latent feature
representation.

Our work is inspired by the success of the horizontal representation in the
indoor domain. To learn rich pose representations, we frame correspondence and
visual overlap estimation as column-wise prediction, and additionally estimate
the layout contour from both views, to provide a strong prior for the indoor
environment. Similar to [47], we leverage a transformer to attend to inter and
intra-image relationships; however, our transformer is applied over image column
feature sequences, analogous to sequence processing in NLP, to efficiently aggregate
the full 360◦ range. Moreover, we do not require full depth maps for training;
only the sparse wall layout geometry is necessary. As has been demonstrated in
the perspective domain [9], direct pose regression provides advantages for wide-
baselines, occlusion, textureless regions, and other classically challenging cases.
The rich representations learned by our CoVis transformer bring these benefits,
for the first time, to the spherical domain.

3 Overview

Our CoVisPose architecture is shown in Fig. 2 (a). The inputs to our system are
a pair of 360◦ panoramas in equirectangular projection, captured in an indoor
space. We assume the camera is upright, with a fixed height for each home.
The orientation with the gravity vector is imposed via straightening as a pre-
processing step [60]. Each panorama may or may not have visual overlap with
neighboring panoramas. Further, we assume Atlanta world layouts [42], where
the walls are upright and orthogonal to the floor. As seen in Fig. 2 (a), we
adopt the feature extractor from HorizonNet [45] in a Siamese configuration,
with shared weights between the branches. Each branch consists of a ResNet50
backbone followed by an HCM to produce a feature sequence over the image
columns. The feature sequences from each image are then summed with fixed
positional encodings and per-image segment embeddings with learnable weights,
concatenated length-wise, and passed as input sequence to the CoVis transformer.
The output embedding sequence from the transformer is then passed as input
to two decoders which are trained jointly.

The Co-visibility, angular Correspondence and Floor-wall boundary (CCF)
decoder is a single fully connected layer which maps the transformer embedding
space to the per-column outputs. In Fig. 2 (b), we illustrate the CCF decoder’s
output representation for an example image pair. In the predicted co-visibility
probability vector, note the large gap in estimated co-visibility in panorama 1’s
view of the interior of the room, spanning from the right edge of the window
to the doorway. This represents the section of floor-wall boundary not being
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Fig. 2: CoVisPose system.(a) The architecture consists of CoVis transformer, the
Co-visibility, angular Correspondence and Floor-wall boundary (CCF) decoder,
and pose decoder. (b) An example to illustrate the CCF decoder’s outputs.

visible to panorama 2. We highlight two particular angular correspondences.
The highlighted correspondence from panorama 1 estimates that the center of
the window is visible at location ≈ 90◦ in panorama 2, while the correspondence
from panorama 2 estimates that the banister is visible at location ≈ 180◦ in
panorama 1.

Our pose decoder consists of a simple 6 layer 1D CNN, applied separately to
the output transformer embedding sequence from each image. The outputs are
then once again concatenated and passed to a fully-connected layer to regress
the relative pose. In addition to this direct pose regression, we also demonstrate
recovery of relative pose through a RANSAC procedure applied directly to the
correspondence network’s outputs. Projected into the floor plane, the floor-wall
boundary contours form a pair of 2D point sets. For those boundary points with
predicted co-visibility, the correspondence angles then suggest corresponding
point pairs between the two sets. The pose may subsequently be recovered by
rigid registration, which we estimate with a RANSAC iteration.

4 Method

In this section, we provide details on the components of CoVisPose, how training
is done, and how RANSAC is used for relative pose estimation. We also describe
how ZInD [12] is processed for evaluation. We first define the architecture outputs:
relative pose, co-visibility, angular correspondence, and floor-wall boundary.

Relative Pose. Given an equirectangular image pair, (I1, I2) ∈ R3×H×W , we
estimate the relative pose P2,1 of panorama I2 w.r.t. the local coordinate system
of I1 centered at the origin. Under the upright camera, camera-axis-aligned walls,
and orthogonal floor orientation assumptions, the camera pose may be simplified
to planar motion with a single rotation angle about the camera axis, i.e., a
translation vector t ∈ R2 and a rotation matrix R ∈ SO(2). Therefore, the pose
P2,1 ∈ SE(2). For direct regression, we represent the pose by five parameters,
estimating the unit rotation and translation vectors r and t, as well as the
translation scale s. The network is trained to estimate the translation scale
normalized by the camera height. This decoupled representation allows both
rotation and translation to be framed as directional estimation.
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Co-Visibility, Angular Correspondence, and Floor-Wall Boundary. Under
the wall-floor geometry assumptions, wall geometry may be represented by a
1D contour, the position of which is defined for a given image column i as a
vertical angle ϕi ∈ [0, π/2] as in [45,47]. For relative pose estimation, we extend
this column-wise vector representation to two additional quantities: (1) The co-
visibility vector, i.e., a binary value pc,i with value 1 if column i’s floor-wall
boundary is visible to the other panorama and 0 otherwise, and (2) the angular
correspondence, i.e., the horizontal angle αi ∈ [−π, π] at which column i’s floor-
wall boundary is visible in the other panorama’s FoV (defined only if pc,i = 1).
For a given panorama pair, these quantities are defined bidirectionally.

4.1 CoVisPose Network Architecture

Our architecture consists of the feature extractor, CoVis transformer, Co-Visibility,
Angular Correspondence, Floor-Wall Boundary (CCF) decoder, and pose decoder.

Feature Extractor. We leverage the single image feature extractor from [45],
a ResNet50 backbone followed by an HCM. For each panorama, this produces
a feature sequence over the (downsampled) column-space. For an input image
Ik ∈ R3×512×1024, we obtain the features fk ∈ R256×1024.

CoVis Transformer. While LSTM and CNN architectures have been applied
successfully for per-column prediction of layout [45,47], the local inductive biases
of these architectures [56,3] makes them ill-suited for the inherently non-local
tasks of co-visibility and correspondence estimation across pairs of 360◦ panoramas.
On the contrary, transformers [51] update embeddings globally and in parallel.

Inspired by [15,51], we add fixed sinusoidal positional encodings and learnable
per-image segment embeddings. Both are crucial for the angular correspondence
task; they provide the permutation invariant transformer the necessary information
to distinguish both relative position of image columns and image membership
while attending globally to both intra and inter-image column relationships.
We then concatenate the updated column-wise feature sequences length-wise to
form the input to the transformer, Fin = (f̂1, f̂2) ∈ R512×1024. Our transformer
consists of 6 encoder layers, each with 8 heads of internal self-attention, followed
by a feed-forward layer of dimension 2048. The output embeddings are of the
same dimensionality as the input, Ftr ∈ R512×1024. Those serve as input to two
decoders, to estimate the per-column outputs, and regress the relative pose.

Co-Visibility, Angular Correspondence, and Floor-Wall Boundary De-
coder. We apply a single fully connected layer to map the transformer embeddings
Ftr to the column-wise outputs Fout ∈ R512×12. Each vector of the output
sequence predicts the values for 4 image columns, and thus may be reshaped
to three column-wise vectors for each image, [ϕk,αk,pk] ∈ R1024, k ∈ [1, 2].

Pose Decoder. To regress the relative pose from the rich column-wise co-
visibility, correspondence, and wall depth information embedded in Ftr, we
separately apply a 6-layer 1-D CNN to each image’s embedding sequence. Each
layer consists of a convolution with kernel size 3, followed by batch normalization
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and a ReLU non-linearity. Each conv layer reduces the feature dimension by half.
We then once again concatenate the feature sequences, before flattening the
sequence and applying a fully-connected layer to map to the five-dimensional
pose output representation, (r, t, s). The scale parameter is made non-negative
by applying a ReLU.

4.2 Training

The model is implemented in PyTorch; we train in mixed precision on 4 NVIDIA
Tesla V100 for 30 epochs with a learning rate of .0001. We select the best model
by the lowest validation loss sum. During training we apply random rotational
augmentation, as well as randomly swapping the panorama pair order, inverting
the relative pose for regression.

Loss Functions. We apply the L1 loss for the angular floor-wall boundary
and correspondence outputs, and the binary cross entropy (BCE) loss for the
co-visibility probability. Being both angular quantities in radians, the floor-
wall boundary and correspondence losses are naturally of similar magnitude.
To equilibrate the magnitude of the BCE loss, we apply a scaling parameter βc.
The total column-wise output loss is

Lcovis = ||ϕk − ϕ̂
k
||1 + ||αk − α̂k||1 + βc ·BCE(pk

c , p̂
k
c ), k ∈ [1, 2]. (1)

For regressing the relative pose, we normalize the estimated rotation and translation
direction to be unit vectors, and multiply the translation direction by the estimated
scale, s, to produce the final estimated translation ts. To learn the pose parameters
we minimize mean-squared error over both vectors. We similarly scale the magnitude
of both the rotation and translation loss functions as we find these losses to have
an overall stronger effect than the per-column loss functions above:

Lpose = βr · ||r− r̂||22 + βt · ||ts − t̂s||22. (2)

We did not carefully tune the loss scaling parameters as we did not find the
optimization to be particularly sensitive to these values. In our experiments, we
used βc = .25, βr = 3× 10−3, βt = 6× 10−2.

Positive/Negative Sampling. For constructing the dataset for training and
testing, we form "positive" training examples by retaining all panorama pairs
from ZInD which have >= 10% co-visibility score. We further sample "negative"
examples with zero co-visibility with a probability of .1. These settings result in
an overall ratio of positives to negatives of approximately 2.5.

4.3 Relative Pose Estimation by RANSAC

In addition to learning direct pose regression, the CCF decoder outputs support
alignment by rigid registration. Projected into the floor plane using the assumptions
of upright camera and orthogonal floor plane, the floor-wall boundary points
from both images form two 2D point sets. For those boundary points whose co-
visibility probability is high, the predicted correspondence angle can be used to
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sample a point on the neighboring panoramas floor-wall boundary contour. In
this way, a set of corresponding points can be determined bidirectionally using
the predictions from both images in the pair. Fig. 2 (a) illustrates bidirectional
correspondence estimation, while (b) illustrates the resultant connectivity between
floor-wall boundary points generated by the estimated correspondence, which
can then be used to obtain pose by rigid registration.

It is possible to directly solve for the rotation and translation using singular
value decomposition on the corresponding point sets [49]; however, this method is
sensitive to noise. To compensate, we instead apply RANSAC. At each iteration,
we randomly select two pairs of corresponding points from the set predicted by
the model. A candidate rotation and translation is then determined from the
point pair by a 2-point minimal solver. A Hungarian algorithm-based assignment
to determine inliers can be used; however, given the quality of the correspondences
predicted by the model, we find greedy assignment to be faster with minimal
performance loss. After the RANSAC loop, given the alignment candidate with
the highest number of inliers, we use the inlier assignment to do an SVD refit in
order to determine the final rotation and translation.

4.4 ZInD Pre-Processing

ZInD’s complete geometry allows computation of visual overlap and floor-wall
boundary angular correspondence by comparing points on the visible wall layout
for panorama pairs that share the same space; however, with no signal on whether
the doors are open or closed, these quantities cannot be confidently extended
across doorways. To allow extension of our method to whole floors without the
burden of fully labeling all doors, a sample of 5K doors were labeled. We then
bootstrap off of these annotations by training a classification network consisting
of one convolutional and one fully connected classification layer, stacked on top
of pretrained mid-level depth, normal, and room layout features from [41]. This
classifier was then used to label the remainder of the dataset in a semi-supervised
manner. See the supplementary for more details and examples of this step.

5 Results
In this section, we describe how ZInD is used for evaluation, the evaluation
metrics, and comparisons with a few baselines. We also describe results of our
ablation study.

5.1 Dataset

We split out dataset with mined positives and negatives into train, test, and
validation sets according to the publicly released ZInD split. We evaluate our
method on the test set; the statistics on number of examples by visual overlap
and baseline distance can be found in the supplementary. Our dataset contains a
wide range of co-visibility, with a large fraction of examples subject to extremely
low visual overlap; 32% of positive examples have less than 25% co-visibility.
Further, our dataset contains extremely wide baselines between panoramas; 36%
of positive pairs have a baseline distance of more than 4 meters.
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5.2 Baselines

We compare our method to multiple baselines for relative pose estimation.

SIFT+OpenMVG. We run 2-view SfM from OpenMVG [33] with the three-
point upright relative pose solver [35] on the full panorama image pair. It assumes
an upright camera and solves for the horizontal rotation and 3 DoF translation.
Note that the recovered translation is not up-to-scale with the predicted room
layout geometry from CoVisPose.

LoFTR+OpenMVG. We split each panorama image into perspective crops
with a combination of horizontal angle at [0◦, 60◦, 120◦, 180◦, 240◦, 300◦] and
vertical angle [-30◦, 0◦, 30◦]. The crops are projected with a 90◦ horizontal field-
of-view, and a resolution of 640 by 640 pixels. We use the LoFTR [47] feature
matcher as trained in the original paper, exhaustively run on combinations
of crops from a panorama pair, and project putative feature matches back
to spherical space. Then we solve relative camera pose using openMVG with
settings similar to the SIFT+OpenMVG baseline.

LayoutLoc. We run LayoutLoc [12] on panorama pairs; it applies a semantic-
based camera alignment based on predicted room layout and wall features.
It solves the panorama relative poses with the same scale as predicted room
layout geometry. The success of a localization is determined by thresholding the
estimated camera pose confidence score.

DirectionNet. DirectionNet [10] is a recent supervised learning approach,
achieving SOTA performance on the challenging task of wide-baseline relative
pose estimation for perspective, limited FoV cameras in indoor scenes. DirectionNet
is a representative of the line of work focused on end-to-end camera pose estimation
without explicit feature correspondences. We adapted and re-trained their released
code-base4 on our domain (pairs of 360◦ spherical cameras) using the same
training set and data augmentations as described above. More details on the
training protocol are provided in the supplementary.

5.3 Evaluation Metrics
For relative pose error, we report the absolute error in the predicted rotation
and translation angles for all methods. For those methods which produce scale,
we additionally report the translation error in meters. For all of these quantities,
we report the mean and median errors in Table 1. For rotation and translation
angle errors, we also report % of total samples which have error less than 2.5◦,
and for translation errors, % of total samples with error less than .5 meters.

As optimization-based models may fail given insufficient input correspondences,
or lack of consistency in the set, to better understand this, we report the success
rate in %. Further, as many direct regression methods may not come with a
measure of confidence in a given pose, to demonstrate the strength of our co-
visibility output, we compute true positive/false positive rate curves as function
4 https://arthurchen0518.github.io/DirectionNet

https://arthurchen0518.github.io/DirectionNet
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Table 1: Relative pose statistics by co-visibility. We report the mean (“Mn”) and
median (“Med”) angular rotation and translation errors in degrees, as well as
the fraction of test set pairs for which the angular error was less than 2.5◦. In
addition, as our method additionally estimates two-view scale, we report the
mean and median translation distance error in meters, as well as the fraction of
pairs for which the translation error was less than .5 meters. Highlights: 1st ,
2nd and 3rd best results.
Co-Vis.% Method Success (% ↑) Rotation Translation angle Translation vector

Mn(◦↓) Med(◦↓) 2.5◦(% ↑) Mn(◦↓) Med(◦↓) 2.5◦(% ↑) Mn(m.↓) Med(m.↓) .5m.(% ↑)

75 - 100

SIFT-OpenMVG [31] 69.17% 12.50 0.58 53.10 17.31 1.62 41.68 - - -
LoFTR-OpenMVG [47] 89.12% 15.71 0.90 60.71 19.25 2.29 46.53 - - -
DirectionNet [10] 100.00% 16.35 1.48 69.28 18.43 5.53 25.12 - - -
LayoutLoc [12] 78.69% 13.13 0.00 70.19 14.86 1.46 51.12 0.64 0.11 63.96
CoVisPose-Ransac 99.73% 1.20 0.53 96.51 2.86 0.91 84.09 0.10 0.07 98.51
CoVisPose-Direct 100.00% 1.27 0.56 97.87 3.38 1.15 78.50 0.12 0.09 98.87

50 - 75

SIFT-OpenMVG [31] 47.88% 22.01 0.83 31.79 25.01 2.22 25.23 - - -
LoFTR-OpenMVG [47] 71.36% 24.54 1.84 38.25 26.53 4.13 27.93 - - -
DirectionNet [10] 100.00% 27.44 2.02 57.52 24.06 6.46 22.18 - - -
LayoutLoc [12] 60.84% 41.64 0.00 40.17 38.57 4.26 26.18 1.86 0.53 30.13
CoVisPose-Ransac 99.22% 1.45 0.67 92.36 1.92 0.89 83.46 0.16 0.08 94.93
CoVisPose-Direct 100.00% 1.48 0.73 94.71 2.13 1.09 81.55 0.16 0.10 96.93

25 - 50

SIFT-OpenMVG [31] 26.58% 41.51 7.94 11.05 45.18 14.68 8.13 - - -
LoFTR-OpenMVG [47] 52.26% 40.58 12.86 16.36 43.07 18.25 12.18 - - -
DirectionNet [10] 100.00% 38.38 2.75 47.58 29.88 9.04 17.56 - - -
LayoutLoc [12] 49.85% 77.39 90.00 18.57 63.40 50.52 8.27 3.56 3.15 8.94
CoVisPose-Ransac 96.42% 2.51 0.98 80.02 2.19 1.00 77.49 0.24 0.12 88.06
CoVisPose-Direct 100.00% 3.47 1.03 83.89 3.00 1.24 75.57 0.28 0.14 92.45

10 - 25

SIFT-OpenMVG [31] 16.55% 68.70 61.78 2.46 72.02 64.10 1.63 - - -
LoFTR-OpenMVG [47] 39.76% 59.32 37.75 5.16 63.71 50.83 3.95 - - -
DirectionNet [10] 100.00% 53.37 5.97 37.85 42.47 18.94 9.53 - - -
LayoutLoc [12] 46.59% 91.30 90.00 11.85 77.21 70.11 2.19 5.04 4.71 1.64
CoVisPose-Ransac 88.46% 6.18 1.78 54.36 4.82 1.59 57.66 0.56 0.22 67.64
CoVisPose-Direct 100.00% 8.90 2.10 55.87 6.79 2.13 56.15 0.72 0.27 73.56

of a threshold applied to a method-specific measure of confidence. For the methods
which solve for the essential matrix given correspondences, we use the number of
inliers of the fit. For CoVisPose, we use a threshold on the estimated co-visibility
score [12] [55] between the pair. For LayoutLoc we use the pose confidence score.

5.4 Relative Pose Estimation Accuracy

We report error metrics stratified by the GT co-visibility score in Table 1. First,
we observe that our CoVisPose achieves the best performance in almost all
cases across the range of visual overlap, for both rotation and translation errors.
Similar to [9,7], our empirical studies suggest that feature-based approaches, e.g.,
classic methods like SIFT [31] and learned ones like LoFTR [47], are competitive
in the high-overlap regime, where point features can be matched robustly. However,
those become less reliable as the visual overlap decreases. LayoutLoc [12] can
be seen as a learned, semantic feature-based approach, which outperforms the
point-based base-lines (SIFT and LoFTR) in this modality. Similar to them, its
performance quickly drops for wide to extreme baselines. Note that LayoutLoc
achieves 0◦ median rotation error for high visual overlap cases. This is due to
rooms in ZInD being aligned by the computed vanishing angle which LayoutLoc
aligns with as a final step. This results in zero rotation error when the geometric
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(a) (b) (c) (d)

Fig. 3: (a) Precision and recall of per-column co-visibility. (b) Histogram of
angular correspondence error, in degrees. (c) Histogram of floor-wall boundary
error, in degrees. (d) Relative pose precision and recall curves for CoVisPose and
baseline methods. True positives defined by maximum of rotation and translation
errors less than 5◦.

alignment is successful. Similar to the trends reported in Chen et al. [9], DirectionNet
(that we trained end-to-end) performs substantially better than the feature-
based approaches in the mid-to-low overlap regimes.

CoVisPose RANSAC shows a small advantage over CoVisPose Direct; when
accurate correspondences are available, a robust iterative fitting is often capable
of finding a more accurate pose. However, CoVisPose Direct inference only
requires 50 ms, whereas RANSAC iteration and inlier assignment typically requires
5-30 secs to fully exploit the dense correspondences. Moreover, direct regression,
like DirectionNet, returns a valid pose 100% of the time. Under very low visual
overlap this may be an advantage as a fitting algorithm may have few available
correspondences as input. This 100% success rate is potentially both a positive
and negative; without a reliable measure of confidence it is difficult to know
whether or not a directly regressed pose should be trusted. CoVisPose’s co-
visibility vector provides such a measure, allowing the method to be run in an
unordered set of panoramas, without a separate retrieval module.

Precision and Recall. We demonstrate the estimated co-visibility as a measure
of pose confidence by computing precision and recall over the entire test set,
including negative examples with no visual overlap, in Fig. 3(d). CoVisPose
demonstrates strong precision and recall, with similarly high accuracy for both
direct regression and RANSAC poses, correctly rejecting negative examples
through accurate estimated co-visibility (see Fig.3(a)(b)(c) for an in-depth analysis).
For computing the curves, true positives are defined as poses with the maximum
of rotation and translation angle errors less than 5◦. Returning a confident pose
for a pair with zero visual overlap is considered a false positive for this analysis.

5.5 Per-column prediction accuracy analysis

We report per-column prediction errors for co-visibility, angular correspondence
and floor-wall boundary estimation over all image columns from test images in
Fig. 3(a)(b)(c). We see that CoVisPose produces less than 5◦ of error in angular
correspondence for more than 73.1% of all image columns and less than 2.5◦
error in the floor-wall boundary position for more than 83.1% of all columns.
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GT Co-Visibility Score: 0.894
Baseline Distance: 2.40m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: 1.60, 3.53
DirectionNet: 1.04, 6.75
LayoutLoc: 0.0, 1.16
CoViSPose-Direct: 0.58, 0.36
CoViSPose-RANSAC: 0.11, 0.41

GT Co-Visibility Score: 0.195
Baseline Distance: 4.57m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 108.10, 77.71
LayoutLoc: 180, 24.82
CoViSPose-Direct: 1.84, 0.94
CoViSPose-RANSAC: 1.47, 2.08

GT Co-Visibility Score: 0.681
Baseline Distance: 2.19m

Rotation, Translation Errors (∘):
SIFT-SfM: 0.69, 0.85
LoFTR-SfM: 0.22, 0.56
DirectionNet: 0.65, 2.60
LayoutLoc: 0.0, 0.23
CoViSPose-Direct: 0.61, 1.08
CoViSPose-RANSAC: 0.18, 0.23

GT Co-Visibility Score: 0.36
Baseline Distance: 7.96m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 9.41, 4.78
LayoutLoc: 0.33, 56.55
CoViSPose-Direct: 2.52, 0.81
CoViSPose-RANSAC: 2.40, 1.75

GT Co-Visibility Score: 0.127
Baseline Distance: 9.63m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 178.73, 165.21
LayoutLoc: 179.67, 11.87
CoViSPose-Direct: 0.18, 0.96
CoViSPose-RANSAC: 0.64, 0.97

GT Co-Visibility Score: 0.55
Baseline Distance: 4.07m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 0.81, 2.49
LayoutLoc: Failed
CoViSPose-Direct: 1.30, 2.33
CoViSPose-RANSAC: 0.01, 1.56

(a) (b) (c) (d) (e)

GT Co-Visibility Score: 0.371
Baseline Distance: 5.44m

Rotation, Translation Errors (∘):
SIFT-SfM: Failed
LoFTR-SfM: Failed
DirectionNet: 1.89, 7.77
LayoutLoc: 90.00, 47.32
CoViSPose-Direct: 16.18, 10.70
CoViSPose-RANSAC: 33.76, 28.89

Fig. 4: Qualitative evaluation on ZInD. (a) SIFT feature point inliers generated
by 2-view SfM with OpenMVG, (b) LoFTR feature point inliers generated by the
same solver as (a), (c) CoViSPose prediction, (d) predicted floor-wall boundaries for
Panorama 1 and Panorama 2 aligned by CoViSPose direct regression. (e) Pose errors
for each method. Color scheme corresponds to maximum of rotation and translation
errors: Failure to recover pose or error > 10◦, error in [2.5◦, 10◦], error < 2.5◦.
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Table 2: Ablation study on direct pose regression performance by removing dense
column-wise outputs.

Method Rotation Translation angle Translation vector
Mn(◦↓) Med(◦↓) 2.5◦(% ↑) Mn(◦↓) Med(◦↓) 2.5◦(% ↑) Mn(m.↓) Med(m.↓) .5m.(% ↑)

CoVisPose Boundary 16.35 6.07 24.84 14.15 5.76 26.02 1.01 .48 51.89
CoVisPose Boundary+CoVis 4.94 1.24 74.34 4.83 1.57 66.45 .41 .16 86.13
CoVisPose Boundary+CoVis+AC 4.33 .97 80.17 4.14 1.39 71.13 .36 .14 88.72

5.6 Qualitative Results

Fig. 4 shows results from CoVisPose and baseline methods on ZInD panoramas.
We arrange result rows by ground truth (GT) co-visibility score, in decreasing
order. Common sources of baseline failure include lack of texture for feature
matching, wide-baselines, and low visual overlap. (Failure examples are in the
supplemental.) On the contrary, we see that CoVisPose produces accurate poses
for the vast majority of cases, including for panorama pairs with wide to extreme
baselines. In column (c), we further see the high spatial precision in geometry
estimation and alignment; in most cases the predicted room contours align
well. In row 4 we show a case where the competing direct regression method,
DirectionNet, shows better performance. We further examine limitations and
failure cases in the supplementary.

5.7 Ablation Study

We demonstrate the impact of jointly training our pose decoder alongside dense
column-wise outputs by training three CoVisPose variants. We found it difficult
to tune the model to converge without any column-wise outputs. When compared
with just the boundary output, we find that the performance increases dramatically
when adding the co-visibility mask (CoVis), and increases further with addition
of the angular correspondence (AC). While the boundary information offers a
strong geometry prior, we hypothesize that co-visibility increases performance by
providing a strong signal on inter-view association, which the angular correspondence
further refines. We also note that the gap between the training and validation
errors is markedly reduced as column-wise outputs are added, indicating increased
generalization. Details can be found in the supple-mentary.

6 Conclusion
We present a novel end-to-end learning approach for relative pose estimation
in wide baseline 360◦ indoor panoramas. We have shown how jointly learning
dense column-wise representations of visual overlap, correspondence, and layout
geometry increases the feasibility and accuracy of direct pose regression. This
representation yields accurate poses through a RANSAC-based approach applied
to the densely predicted corresponding boundary points. Further, our co-visibility
vector provides a strong measure of pose confidence. We set a new SOTA for
this task, improving upon existing methods, including classical SfM, deep feature
matching-based SfM, and direct pose regression.
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