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1 Relative Pose Estimation for Monocular Cameras

In this section, we show that our minimal solver generation framework can be
easily extended to solve various relative pose estimation problems, e.g., relative
pose estimation for a monocular camera. It has been proved that a minimal
number of two affine correspondences (ACs) is sufficient to recover the relative
camera pose of a monocular camera [16,2]. Being different from [16,2] that solve
the essential matrix firstly and then decompose it into the relative pose, we solve
the relative rotation and translation between two views directly.

Consistent with the relative pose estimation for multi-camera systems, we
also use the special parameterization to formulate the relative pose estimation
problem for a monocular camera, see Fig. 1. The translation parameters can be
eliminated using two depth parameters. We denote the j-th AC as (xj ,x

′
j ,Aj),

where xj and x′
j are the normalized homogeneous image coordinates of fea-

ture points in the view 1 and view 2, respectively. Aj is a 2 × 2 local affine
transformation, which relates the infinitesimal patches around xj and x′

j . The
corresponding unit direction vectors of feature points represented in two views
can be computed as follows: pj = xj/∥xj∥ and p′

j = x′
j/∥x′

j∥.

1.1 Parameterization for Relative Pose

We choose one AC to define a world reference system W , as shown in Fig. 1.
Suppose the j-th AC is currently chosen. Let the origin ofW as the position of the
j-th AC in 3D space and the orientation of W is consistent with view 1. Denote
the transformation between view 1 and view 2 as [R, t], the transformation
between view 1 and reference W as [R1, t1], and the transformation between
view 2 and reference W as [R2, t2]. Note that R1 = I, R2 = R. We also use
Cayley parameterization to represent the rotation R. Next, we parameterize t1
and t2 as linear functions of two unknown depth parameters {λj1, λj2}:

t1 = λj1pj , t2 = λj2p
′
j . (1)

The relative pose between two views is determined by the composition of two
transformations: (i) from view 1 toW , (ii) fromW to view 2. There are unknowns
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Fig. 1. Relative pose estimation from two ACs for a monocular camera. Red triangle
represents a monocular camera. One AC is used to define a world reference system W .

R, t1 and t2 which can be parameterized as {qx, qy, qz, λj1, λj2}. Formally, the
relative pose [R, t] between view 1 and view 2 is represented as[

R t
0 1

]
=

[
R t2
0 1

] [
I t1
0 1

]−1

=

[
R t2 −Rt1
0 1

]
. (2)

The essential matrix can be represented as

E = [t]×R = −R[t1]× + [t2]×R. (3)

By substituting Eq. (1) into Eq. (3), it can be verified that each entry in
the essential matrix is linear with {λj1, λj2}. Then, we substitute Eq. (3) into
Eqs.(8) and (9) in the paper. It can be seen that one AC yields three equations
for the relative pose estimation of a monocular camera. Note that the special
parameterization has been adopted by choosing one AC as the origin of world
reference system, the PC derived from the chosen AC cannot contribute one
constraint since the coefficients of the resulting equation are zero. Thus, when
j-th AC is chosen to build up the world reference systemW , five equations can be
obtained from two ACs, which consist of two affine transformation constraints
from j-th AC and three equations from the other AC. Based on the hidden
variable technique [6], the five equations provided by two ACs can be written as

F′
j(qx, qy, qz)︸ ︷︷ ︸

5×2

[
λj1

λj2

]
= 0. (4)

The entries in F′
j are quadratic in unknowns qx, qy, and qz.
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1.2 Equation System Construction

The relative pose estimation problem of a monocular camera has 5DOF. How-
ever, two ACs provide six independent constraints. That means the number of
constraints is greater than the number of unknowns, and there is a redundant
constraint. Thus, we randomly choose four equations from Eq. (4) to explore the
minimal case solution. For example, two affine transformation constraints of j-th
AC, and the epipolar constraint and the first affine transformation constraint of
the other AC are stacked into 4 equations in 5 unknowns, i.e., the first four
equations of Eq. (4):

Fj(qx, qy, qz)︸ ︷︷ ︸
4×2

[
λj1

λj2

]
= 0. (5)

Since Eq. (5) has non-trivial solutions, the rank of Fj satisfies rank(Fj) ≤ 1.
Thus, all the 2×2 sub-determinants of Fj must be zero. This gives six equations
about three unknowns {qx, qy, qz}. Up to now, we suppose j-th AC is chosen to
build up the world reference system W . Since there are two ACs in the minimal
solution case, we can also choose the other AC to build up the world reference
system, and its orientation is also consistent with the reference of the multi-
camera system in view 1. Suppose the j′-th AC is chosen, we obtain an new
equation system about the same rotation parameters {qx, qy, qz}, which is similar
to Eq. (5):

Fj′(qx, qy, qz)︸ ︷︷ ︸
4×2

[
λj′1

λj′2

]
= 0. (6)

Note that Eq. (6) provides new constraints which is different from Eq. (5).
We use the computer algebra system Macaulay 2 [7] to find that there are one
dimensional families of extraneous roots if only Eq. (5) or Eq. (6) is used. Based
on Eqs. (5) and (6), we have twelve equations with three unknowns {qx, qy, qz}:

det(N(qx, qy, qz)) = 0, (7)

N ∈ {2× 2 submatrices of Fj} ∪ {2× 2 submatrices of Fj′}.

These twelve equations have a degree of 4, i.e., the highest of the degrees
of the monomials with non-zero coefficients is 4. The Gröbner basis technique
is also used to produce the solver for the polynomial equation system Eq. (7).
Our monocular camera solver maximally has 20 complex solutions and the elim-
ination template of size 36 × 56. Once the rotation parameters {qx, qy, qz} are
obtained, R can be obtained immediately using Eq. (1) in the paper. Take the
translation estimation using {λjk}k=1,2 for an example. {λjk} is determined by
finding the null space of Fj , see Eq. (5). Next we can calculate the translations t1
and t2 by Eq. (1). Finally, we calculate the relative pose [R, t] of the monocular
camera based on Eq. (2).
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It should be noted the number of solutions obtained by our monocular camera
solver is essentially the same as the solvers using essential matrix parametriza-
tion. The solvers using essential matrix parametrization have 10 solutions for
the essential matrix [15,17]. For each essential matrix, there are four possible
rotation-translation pairs [10]. Thus, there are 40 rotation-translation pair so-
lutions for the solvers using essential matrix parametrization. Our monocular
camera solver uses rotation and translation parametrization, and there are 20
solutions for the rotation. Since each rotation has two possible translations with
opposite directions, the proposed monocular camera solver also has 40 rotation-
translation pair solutions. Thus, we can see that the solvers using two different
parametrizations have the same number of rotation-translation pair solutions.

2 Relative Pose Estimation for Multi-Camera Systems

2.1 Degenerated Configurations

In this section, we prove three cases of critical motions for the proposed solvers,
including both the inter-camera solver and the intra-camera solver. In these
critical configurations, the rotation and the translation direction between two
views of the multi-camera system can be correctly recovered, but the metric
scale of translation is unobtainable. The proofs of degenerated configurations
modeled in different ways have been proposed in [8].

Proposition 1. For inter-camera ACs, if a multi-camera system undergoes pure
translation and the baseline of two camera is parallel with the translation direc-
tion, the metric scale of translation cannot be recovered.

Proof. In the case of inter-camera ACs, each AC is seen by the different cameras
over two consecutive views. For the pure translation case, the rotation between
two views of the multi-camera system satisfies R = I. Since the baseline of two
camera is parallel with the translation direction, the translation satisfies s2−s1 =
a(t2 − t1), where a is a unknown number, t2 − t1 is the translation between two
views of the multi-camera system. The essential matrix in Eq. (6) in the paper
can be written as

E′ = QT
2 ([t2 − t1]× − [s2 − s1]×)Q1

= (1− a)QT
2 [t2 − t1]×Q1. (8)

The essential matrix E′ is homogeneous with the translation between two
views of the multi-camera system t2 − t1. We substitute Eq. (8) into Eqs. (8)
and (9) in the paper. Then the geometric constraints provided by an AC become:

x′T
j QT

2 [t2 − t1]×Q1xj = 0, (9)

(QT
1 [t2 − t1]×Q2x

′
j)(1:2) = AT

j (Q
T
2 [t2 − t1]×Q1xj)(1:2). (10)
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Fig. 2. Critical motion due to constant rotation rate.

Suppose κ is a free parameter, it can be verified that κ(t2 − t1) satisfies
Eqs. (9) and (10). Thus, the metric scale of translation between two views of the
multi-camera system cannot be recovered.

Proposition 2. For intra-camera ACs, when a multi-camera system undergoes
pure translation or constant rotation rate, both cases are degenerate motions.
Specifically, the metric scale of translation cannot be recovered.

Proof. In the case of intra-camera ACs, each AC is seen by the same camera
over two consecutive views. So we have s1 = s2 and Q1 = Q2.

(1) For the pure translation case, with the assumption that R = I, the es-
sential matrix in Eq. (6) in the paper can be written as

E′ = QT
1 ([t2 − t1]×)Q1. (11)

The essential matrix is homogeneous with the translation between two views
of the multi-camera system t2 − t1. Suppose κ is a free parameter, it can be
verified that κ(t2 − t1) invariably satisfies Eqs. (8) and (9) in the paper.

(2) For the constant rotation rate case, i.e., both camera paths move along
concentric circles, the proof is inspired by [5]. We take the camera C1 in Fig. 2
as an example, the rotation induced translation Rs1 − s1 is aligned with the
translation t2 −Rt1. DenoteRs1 − s1 = a(t2 −Rt1) and substitute it to Eq. (6)
in the paper, the essential matrix becomes

E′ = (1 + a)QT
1 ([t2 −Rt1]×R)Q1. (12)

The essential matrix is homogeneous with the translation between two views
of the multi-camera system t2 −Rt1. Suppose κ is a free parameter, it can be
verified that κ(t2 −Rt1) also satisfies Eqs. (8) and (9) in the paper.
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To deal with these degenerate cases, we can use auxiliary sensors, such as
integrating the acceleration over time from an IMU, to recover the metric scale
of the translation [13,8,9]. Moreover, in the absence of auxiliary sensors, since
the frame rate of current cameras is high and the multi-camera system usually
moves at a constant speed within a short time, we can also use the metric scale
of the previous image pairs to approximate the current metric scale.

2.2 Polynomial System Solving

In subsection 3.4 of the paper, we use all the equations E1 and E2 to construct
polynomial systems and find solvers. It is possible to construct solvers using a
subset of these equations. Specifically, denote E1,1 as

det(N(qx, qy, qz)) = 0, N ∈ {3× 3 submatrices of Fj}, (13)

and E1,2 as

det(N(qx, qy, qz)) = 0, N ∈ {3× 3 submatrices of Fj′}. (14)

We can see that E1 = E1,1∪E1,2. Using different combinations of E1,1, E1,2, and
E2, we have the following results for polynomial system solving. The dimension,
degree, and number of solutions are shown in Table 1. When the dimension of the
corresponding polynomial idea is zero, it means the number of solutions is finite.
Otherwise, a positive dimension of the corresponding polynomial idea indicates
infinite solutions.

Table 1. Different equation combinations for the multi-camera system solvers.
dimension indicates the dimension of the corresponding polynomial ideal. degree indi-
cates the degree of the algebraic variety. #sol indicates the number of solutions. 1-dim
indicates one dimensional families of extraneous roots.

Equation
Inter-camera Intra-camera

dimension degree #sol dimension degree #sol

E1,1 1 2 1-dim 1 3 1-dim

E1,2 1 2 1-dim 1 3 1-dim

E2 1 16 1-dim 1 16 1-dim

E1 0 56 56 1 1 1-dim

E1,1+E2 0 56 56 0 56 56

E1,2+E2 0 56 56 0 56 56

E1+E2 0 48 48 0 48 48

3 Experiments

In this section, the experiment results of the proposed monocular camera solver
are shown in subsection 3.1. The experiment results of the proposed multi-camera
system solvers are shown in subsection 3.2, subsection 3.3, subsection 3.4, sub-
section 3.5 and subsection 3.6.
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Methods 5PC-Nister [15] 2AC-Barath [2] 2AC-single

Runtime 5.5 11.0 127.1

Table 2. Runtime comparison of monocular camera solvers (unit: µs).

-20 -15 -10 -5

Rotation error (log10)

0

0.2

0.4

0.6

D
e
n

s
it

y

5PC-Nister

2AC-Barath

2AC-single

(a)

-20 -15 -10 -5

Translation direction error (log10)

0

0.1

0.2

0.3

0.4

D
e
n

s
it

y

5PC-Nister

2AC-Barath

2AC-single

(b)

Fig. 3. Probability density functions over relative pose estimation errors of the monoc-
ular camera solvers in noise-free cases (10, 000 trials). The horizontal axis represents
the log10 errors and the vertical axis represents the density.

3.1 Experiments for Monocular Cameras

In this set of experiments, we evaluate the performance of the proposed solver
for monocular cameras in Section 1, which is referred to as 2AC-single. The
2AC-single solver is obtained as a side product of our minimal solver generation
framework. It should be noted that the purpose of the following experiments
is not to outperform the state-of-the-art methods using the essential matrix
parametrization [15,2]. Instead, we illustrate the feasibility and practicality of
the proposed solver.

The proposed solvers are evaluated on an Intel(R) Core(TM) i7-7800X 3.50GHz.
All the solvers are implemented in C++. The code of 5PC-Nister is provided
by the PoseLib1. The 2AC-Barath are publicly available from the code of [3].
Table 2 shows the average processing times of the monocular camera solvers over
10,000 runs. Since the solvers 5PC-Nister and 2AC-Barath solve the essential
matrix firstly and then decompose it into the relative pose, the runtime of both
methods is lower than the proposed 2AC-single solver, which computes the rela-
tive rotation and translation directly. The 5PC-Nister is most efficient, because
it solves a univariate polynomial equation using the efficient Sturm sequence
method. The proposed 2AC-single solver takes about 0.127 milliseconds, and
it is still applicable for common scenarios.

1 https://github.com/vlarsson/PoseLib

https://github.com/vlarsson/PoseLib
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Fig. 4. RANSAC iteration number with respect to outlier ratio for success probability
99.9%. The number of RANSAC iterations increases exponentially with respect to the
minimal number of feature correspondences.

Figure 3 reports the numerical accuracy comparison of the monocular camera
solvers in noise-free cases. We repeat the procedure 10,000 times and plot the
empirical probability density functions as the function of the log10 estimated
errors. Numerical stability represents the round-off error of monocular camera
solvers in noise-free cases. It is shown that the solvers 5PC-Nister [15] and
2AC-Barath [2] have comparable numerically stability. The numerical accuracy
of the proposed 2AC-single solver is sightly worse than the comparative solvers.
Since the modes of the rotation error and translation error of the 2AC-single

solver are about 1 × 10−13, and both the rotation error and translation error
are basically below 1 × 10−8, our method is also applicable for relative pose
estimation of a monocular camera in the practical applications.

3.2 Efficiency Comparison in a RANSAC Framework

For the 6DOF relative pose estimation of multi-camera systems, we have eval-
uated the efficiency comparison and numerical stability of all the solvers in the
paper. In addition to efficiency and numerical stability, another important fac-
tor for a solver is the minimal number of needed feature correspondences be-
tween two views. Because the minimal solvers are typically employed inside a
RANSAC framework, and the computational complexity of the RANSAC esti-
mator increases exponentially with respect to the number of feature correspon-
dences needed. The number of iterations N required in RANSAC can be given
by N = log(1− p)/ log(1− (1− ϵ)s), where s is the minimal number of feature
correspondences needed for the solver, ϵ is the outlier ratio, and p is the success
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probability that all the selected feature correspondences are inlier. For a prob-
ability of success p = 99.9%, the number of required RANSAC iterations with
respect to the outlier ratio is shown in Fig. 4.

It can be seen that the number of iterations N increases exponentially with
respect to the minimal number of feature correspondences s. For example, given
the outlier ratio ϵ = 50%, when the solvers need 17, 8, 6 and 2 feature corre-
spondences, the number of required RANSAC iterations is 905410, 1765, 439 and
25, respectively. Since the proposed solvers require only two ACs, the number of
RANSAC iterations is obviously lower than both the PC-based methods and the
AC-based linear method. Thus, our solvers have an advantage in detecting the
outlier and estimating the initial motion efficiently when integrating them into
the RANSAC framework. As we will see later, the proposed solvers have better
overall efficiency than the comparative solvers in the experiments on real data.

3.3 Accuracy with Image Noise

In this scenario, the magnitude of image noise is set to Gaussian noise with a
standard deviation ranging from 0 to 1.0 pixels. The directions of the multi-
camera system are set to forward, random, and sideways motions, respectively.
Figure 5 shows the performance of the proposed solvers with increasing image
noise. All the solvers are evaluated on both inter-camera ACs and intra-camera
ACs. The corresponding estimation results are represented by solid lines and
dash-dotted lines, respectively. The 2AC method indicates 2AC-inter-56 when
using inter-camera ACs, and indicates 2AC-intra when using intra-camera ACs.
In this figure, the display range is limited so that some curves with large errors
are invisible or partially invisible.

We have the following observations. (1) The solvers using inter-camera ACs
generally have better performance than intra-camera ACs, especially in recov-
ering the metric scale of translation. (2) The performance of AC-based methods
is influenced by the noise magnitude of affine transformation, which is deter-
mined by the support region of sampled points. Thus, the AC-based methods
have better performance with larger support regions at the same magnitude of
image noise. (3) When the side length of the square is 40 pixels, the proposed
2AC method provides better results than the comparative methods with both
inter-camera ACs and intra-camera ACs. (4) The 8PC-Kneip performs well in
the forward motion of the multi-camera systems, but it performs poorly in the
random and sideways motions. The probable reason may be the iterative opti-
mization which is susceptible to falling into local minima [20]. (5) The linear
solvers 17PC-Li and 6AC-Ventura with fewer calculations have less round-off
error than the proposed 2AC method in noise-free cases, see Fig. 3. However, our
method has better accuracy than the linear solvers with the influence of image
noise. This is also consistent with the real-world data experiments.
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Fig. 5. Rotation and translation error with increasing image noise. The first, second
and third rows reports the performance of the proposed solvers under forward, random
and sideways motions, respectively. Solid line indicates using inter-camera ACs, and
dash-dotted line indicates using intra-camera ACs.
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3.4 Evaluation of PC-based Solvers using ACs

In this experiment, we test the performance of PC-based solvers for the multi-
camera relative pose estimation using ACs. An AC can be converted into three
PCs, which are then used as the input of the PC-based solvers. Three gener-
ated PCs converted from an AC consist of a PC (xj ,x

′
j) and two hallucinated

PCs calculated by the local affine transformation Aj . However, the halluci-
nated PCs inevitably have errors even for noise-free input. Because the local
affine transformation is only valid in the distribution area, where it is infinites-
imally close to the image coordinates of AC [2]. Following the conversion equa-
tion in [3], we can compute three approximate PCs converted from one AC:
(xj ,xj + [s, 0]T ,xj + [0, s]T ) and (x′

j ,x
′
j + Aj [s, 0]T ,x′

j + Aj [0, s]T ), where
s represents the size of the distribution area of the generated PCs. It can be
found that the size of s determines the magnitude of the conversion error of the
hallucinated PCs. In this experiment, we set s to 1, 5, and 10 pixels, respectively.
The performance of PC-based solvers is evaluated with the different sizes of the
distribution area.

Take the relative pose estimation using inter-camera ACs for an example.
The synthetic data is generated by following the configuration in Section 4.1 in
the paper. We carry out a total of 1000 trials in the synthetic experiment. The
rotation and translation errors are assessed by the median of errors. In each test,
100 ACs are generated randomly, which includes 50 ACs from a ground plane
and 50 ACs from 50 random planes. The support region for generating the ACs
is set to 40*40 pixels. In this experiment, the 2AC method indicates the proposed
2AC-inter-56 solver. The required ACs are selected randomly for the AC-based
solvers within the RANSAC scheme. So, 6 and 2 ACs are selected randomly for
the 6AC-Ventura [1] method and the proposed 2AC method, respectively. For
the PC-based solvers, the hallucinated PCs converted from a minimal number
of ACs are used as input. Thus, 6, 3 and 2 ACs are selected randomly for the
solvers 17PC-Li [12], 8PC-Kneip [11], and 6PC-Stewénius [18], respectively. It
should be noted that we only use the hallucinated PCs converted from ACs for
hypothesis generation. The corresponding inlier set of the estimated relative pose
is still determined by evaluating the image point pairs of ACs. The relative pose
which produces the most inliers is used to measure the error. This also allows us
to select the best candidate from multiple solutions.

Figure 6 shows the performance of the PC-based solvers with increasing im-
age noise under random motion. Solid lines represent the estimation results using
the image point pairs of ACs. Dashed lines, dash-dotted lines, and dotted lines
represent the estimation results using the hallucinated PCs converted from ACs,
when the size of the distribution area is set to 1, 5, and 10 pixels, respectively.
We have the following observations. (1) The PC-based solvers using the halluci-
nated PCs have worse performance than using the image point pairs of the ACs.
Because the conversion error is newly introduced while the hallucinated PCs
are generated by the ACs. In addition, since the hallucinated PCs generated by
each AC are close to each other, this may be a degenerate case for the PC-based
solvers. (2) Even though the image noise is zero, the rotation and translation
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Fig. 6. Rotation and translation error of the PC-based solvers using ACs with increas-
ing image noise. Solid lines indicate using the image point pairs of ACs. Dashed lines,
dash-dotted lines, and dotted lines indicate using the hallucinated PCs converted from
ACs, when the size of the distribution area is set to 1, 5, and 10 pixels, respectively.
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error of the PC-based solvers is not zero when using the hallucinated PCs. This
also shows that the local affine transformation is only valid in the infinitesimal
patches around the image point pairs of ACs. (3) The PC-based solvers have
better performance with smaller distribution areas at the same magnitude of
image noise. Because the conversion error between ACs and hallucinated PCs
is determined by the size of the distribution area, and the smaller distribution
area causes the smaller conversion error. (4) The proposed 2AC method provides
better estimation results than the comparative methods. Compared with the PC-
based solvers, the AC-based solvers use the affine transformation constraints as
expressed in Eq. (9) in the paper. These affine transformation constraints de-
scribe the strictly satisfied geometric relationship between the essential matrix
and the local affine transformation. The affine transformation constraints have
not any conversion error. It is an advantage compared to using the epipolar
constraints of the hallucinated PCs.

3.5 Experiments on KITTI Dataset

In order to visualize the comparison results, we also show the estimated trajec-
tory for KITTI sequence 00. Figure 7 shows the estimated trajectories without
any post-refinement. The estimated trajectory of the proposed 2AC method is
compared with the best performing comparison method 8PC-Kneip [11], which
has been shown in Table 3 of the paper. Note that the frame-to-frame relative
pose estimation results are directly concatenated without any post-refinement.
We align both estimated trajectories with the ground truth. The trajectories on
X-Z plane are displayed in Fig. 7. It is worth mentioning that our 2AC method

has a smaller error than the 8PC-Kneip method in Y-axis. Moreover, the abso-
lute trajectory error (ATE) is encoded by the color along the estimated trajec-
tory [19]. It is shown that the proposed 2AC method has a smaller ATE than the
8PC-Kneip method.

3.6 Experiments on EuRoC Dataset

To validate the proposed solver in an unmanned aerial vehicle environment,
we further use the EuRoC MAV dataset [4] to evaluate the 6DOF relative pose
estimation. The EuRoC MAV dataset is recorded using a stereo camera mounted
on a micro aerial vehicle. We test the 2AC-intra solver on all the available 5
sequences, which are collected in a large industrial machine hall. Each sequence
contains synchronized stereo images, accurate position, and IMU measurements.
The spatio-temporally aligned ground truth is provided from the nonlinear least-
squares batch solution over the Leica position and IMU measurements. Since the
industrial environment is unstructured and cluttered, it renders these sequences
challenging to process. In order to prevent the movement of the image pair from
being too small, the images for relative pose estimation are thinned out from
the consecutive image sequences by an amount of one out of every four images.
Besides, the image pairs with insufficient motion are cropped in this experiment.
The ACs between the consecutive views in each camera are also established by
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Fig. 7. Estimated trajectories without any post-refinement. The relative pose measure-
ments between consecutive frames are directly concatenated. The trajectories estimated
by 8PC-Kneip [11] and 2AC method are represented by the colorful curves. The ground
truth trajectory is represented by the black curves with stars. Best viewed in color.

Table 3. Rotation and translation error on EuRoC sequences (unit: degree).

Seq.
17PC-Li [12] 8PC-Kneip [11] 6PC-Stew. [18] 6AC-Vent. [1] 2AC method
εR εt,dir εR εt,dir εR εt,dir εR εt,dir εR εt,dir

MH01 (788 images) 0.113 2.928 0.109 2.865 0.124 3.555 0.106 2.858 0.092 2.519
MH02 (675 images) 0.106 2.494 0.112 2.553 0.144 2.908 0.102 2.483 0.086 2.242
MH03 (605 images) 0.137 2.412 0.148 2.276 0.181 3.068 0.133 2.075 0.125 1.928
MH04 (449 images) 0.154 2.950 0.170 3.127 0.175 5.531 0.165 2.966 0.139 2.609
MH05 (514 images) 0.167 3.071 0.158 2.753 0.179 4.275 0.176 2.904 0.146 2.714

the ASIFT [14]. For the PC-based solvers, only the PCs derived from the ACs
are used. All the solvers are tested on about 3000 image pairs in total.

Table 3 shows the rotation and translation error of the proposed 2AC method

for EuRoC sequences. It is shown that the 2AC method provides better results than
the comparative methods 17PC-Li, 8PC-Kneip, 6PC-Stewénius and 6AC-Ventura.
This experiment also demonstrates that our 2AC method is well suited for the
relative pose estimation in the unmanned aerial vehicle environment.
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