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Abstract. We present a novel method to compute the 6DOF relative
pose of multi-camera systems using two affine correspondences (ACs).
Existing solutions to the multi-camera relative pose estimation are either
restricted to special cases of motion, have too high computational com-
plexity, or require too many point correspondences (PCs). Thus, these
solvers impede an efficient or accurate relative pose estimation when
applying RANSAC as a robust estimator. This paper shows that the
relative pose estimation problem using ACs permits a feasible minimal
solution, when exploiting the geometric constraints between ACs and
multi-camera systems using a special parameterization. We present a
problem formulation based on two ACs that encompass two common
types of ACs across two views, i.e., inter-camera and intra-camera. Ex-
periments on both virtual and real multi-camera systems prove that the
proposed solvers are more efficient than the state-of-the-art algorithms,
while resulting in a better relative pose accuracy. Source code is available
at https://github.com/jizhaox/relpose-mcs-depth.

Keywords: Relative pose estimation ·Multi-camera system · Affine cor-
respondence · Minimal solver

1 Introduction

Estimating the relative poses of a monocular camera, or a multi-camera system
is a key problem in computer vision, which plays an important role in structure
from motion (SfM), simultaneous localization and mapping (SLAM), and aug-
mented reality (AR) [39,45,42,26,43,20,22]. A multi-camera system refers to a
system of individual cameras that are rigidly fixed onto a single body, and it can
be set in a configuration that maximizes the field-of-view. Motivated by the fact
that multi-camera systems are an interesting choice in the context of robotics
applications such as autonomous drones and vehicles, relative pose estimation
for multi-camera systems has started to receive attention lately [20,22,1,35,18].

Different from monocular cameras which are modeled by the perspective cam-
era model, the multi-camera systems can be modeled by the generalized camera
model [16,46,37]. The generalized camera model does not have a single center
of projection. The light rays that pass through the multi-camera system do not
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(a) Inter-camera ACs (b) Intra-camera ACs

Fig. 1. Relative pose estimation from two ACs for a multi-camera system. Red triangle
represents a single camera, and gray ellipse represents a spatial patch which relates to an
AC. Specifically, inter-camera ACs refer to correspondences which are seen by different
cameras over two consecutive views. Intra-camera ACs refer to correspondences which
are seen by the same camera over two consecutive views.

intersect in a single center of projection, i.e., non-central projection [40]. Thus,
the relative pose estimation problem of multi-camera systems [45] is different
from the monocular cameras [39], which results in different equations. In addi-
tion, since feature correspondences established by feature matching inevitably
contain outliers, the relative pose estimation algorithms are typically employed
inside a robust estimation framework such as the Random Sample Consensus
(RANSAC) [13]. The computational complexity of the RANSAC estimator in-
creases exponentially with respect to the number of feature correspondences
needed. Thus, minimal solvers for relative pose estimation are very desirable
for RANSAC schemes, which maximizes the probability of picking an all-inlier
sample and reduces the number of necessary iterations [45,31,24,33,48,27].

The development of minimal solvers for relative pose estimation of multi-
camera systems ranges back to the method of Stewénius et al. with six point
correspondences (PCs) [45]. Later, some methods have been subsequently pro-
posed, such as the linear method with seventeen PCs [31], iterative optimization
method [26] and global optimization method [50]. In recent years, a number of
solvers use affine correspondences (ACs), instead of PCs, to estimate the relative
pose, which reduces the number of required correspondences [5,41,19,4,11,1,18].
Because an AC carries more information than a PC. However, existing AC-based
solvers to the 6DOF relative pose estimation for multi-camera systems are either
restricted to pose priors [17] or require at least six ACs [1]. It is desirable to find
an AC-based minimal solver for 6DOF relative pose estimation of multi-camera
systems, whose efficiency and accuracy are both satisfactory. This allows us to
reduce the computational complexity of the RANSAC procedure.

In this paper, we focus on the 6DOF relative pose estimation problem of
multi-camera systems from a minimal number of two ACs, see Fig. 1. We propose
minimal solvers based on the common configurations of two ACs across two
views, i.e., inter-camera and intra-camera. The contributions of this paper are:
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– We derive the geometric constraints between ACs and multi-camera systems
using a special parameterization, which eliminates the translation parame-
ters by utilizing two depth parameters. Moreover, the implicit constraints
about the affine transformation constraints are found and proved.

– We develop two novel minimal solvers for 6DOF relative pose estimation
of multi-camera systems from two ACs. Both solvers are designed for two
common types of ACs in practice. We obtain practical solvers for totally new
settings. In addition, three degenerate cases are proved.

– We exploit a unified and versatile framework for generating the minimal
solvers, which uses the hidden variable technique to eliminate the depth
parameters. This framework can be extended to solve various relative pose
estimation problems, e.g., relative pose estimation for a monocular camera.

2 Related Work

Stewénius et al. proposed the first minimal solver based on algebraic geometry,
and this solver requires 6 PCs in order to come up with 64 solutions [45]. Kim et
al. later presented alternative solvers for relative pose estimation with non-
overlapping multi-camera systems using second-order cone programming [23] or
branch-and-bound technique over the space of all rotations [24]. Clipp et al. also
derived a solver using 6 PCs for non-overlapping multi-camera systems [9]. Lim et
al. presented antipodal epipolar constraints on the relative pose by exploiting
the geometry of antipodal points, which are available in large field-of-view cam-
eras [33]. Li et al. used 17 PCs to solve the relative pose of multi-camera systems
linearly, which ignores side-constraints on the generalized essential matrix and
the contained essential and rotation matrices [31]. Kneip and Li proposed an
iterative approach for the relative pose estimation with an efficient eigenvalue
minimization strategy [26]. The above mentioned works are designed for 6DOF
relative pose estimation of multi-camera systems.

A number of methods estimate the relative pose of multi-camera systems with
a prior. Typically, the priors include multi-camera movement prior and known
vertical direction prior, which reduce the DOF of the relative pose problem.
Lee et al. [29] used a minimum of 2 PCs to recover the 2DOF relative pose,
while the multi-camera system is mounted on ground robots and the movement
follows the Ackermann motion model. In addition, when the vertical direction
of the multi-camera system is obtained by vanishing point estimation or sensor
fusion with an IMU, Sweeney et al. [47], Lee et al. [30] and Liu et al. [34] proposed
several minimal solvers with 4 PCs to solve 4DOF relative pose.

Recently, using ACs to estimate the relative pose of multi-camera systems
has drawn much attention. Alyousefi and Ventura [1] proposed a linear solver to
recover the 6DOF relative pose using 6 ACs, which generalizes the 17 PCs solver
proposed by Li et al. [31]. Guan et al. [17] used a first-order approximation to
relative rotation to estimate the 6DOF relative pose, which generalizes the 6 PCs
solver proposed by Ventura et al. [48]. They assume that the relative rotation of
the multi-camera systems between two consecutive views is small. Furthermore,
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Guan et al. [18] estimated the 3DOF relative pose under planar motion with a
single AC and estimated the 4DOF relative pose with known vertical direction
with 2 ACs. In this paper, we focus on using a minimal number of 2 ACs to
estimate the 6DOF relative pose of multi-camera systems, which does not rely
on any motion constraints or pose priors.

3 Relative Pose Estimation for Multi-Camera Systems

In this section, we assume that both the intrinsic and extrinsic parameters of
multi-camera systems are known. Aiming at the common configurations of two
ACs across two views in Fig. 1, our purpose is to find the minimal solvers for
inter-camera ACs and intra-camera ACs. The proposed solvers are the most
common ones in practice for multi-camera systems.

3.1 Parameterization
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Fig. 2. Relative pose estimation for multi-
camera systems.

We first formulate and parameterize
the relative pose estimation problem
for a multi-camera system. As shown
in Fig. 2, the multi-camera system
is composed of multiple perspective
cameras. The extrinsic parameters of
Ci are denoted as {Qi, si}, where Qi

and si represent relative rotation and
translation to the reference of the
multi-camera system. Denote the rel-
ative pose of multi-camera systems as
{R, t}, which represents the relative
rotation and translation from view 1
to view 2 of the multi-camera system.

In order to eliminate the transla-
tion parameters, we use a special pa-

rameterization to formulate the relative pose estimation problem [45]. Take an
AC seen by the different cameras for an example. The j-th AC relates the camera
C1 and C2 across two views, see Fig. 2. Let us denote the j-th AC as (xj ,x

′
j ,Aj),

where xj and x′
j are the normalized homogeneous image coordinates of feature

points in the view 1 and view 2, respectively. Aj is a 2× 2 local affine transfor-
mation, which relates the infinitesimal patches around xj and x′

j [41,2]. Suppose
the j-th AC is chosen to define a world reference system W . The origin of W
is set to the position of the j-th AC in 3D space and the orientation of W is
consistent with the reference of the multi-camera system in view 1. Denote the
relative rotation and translation from reference W to view 1 as {R1, t1}. Denote
the relative rotation and translation from reference W to view 2 as {R2, t2}. It
can be seen that R1 = I, R2 = R. In this paper, the Cayley parameterization
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is used to parametrized the relative rotation R:

R =
1

1 + q2x + q2y + q2z

1 + q2x − q2y − q2z 2qxqy − 2qz 2qy + 2qxqz
2qxqy + 2qz 1− q2x + q2y − q2z 2qyqz − 2qx
2qxqz − 2qy 2qx + 2qyqz 1− q2x − q2y + q2z

 ,

(1)

where [1, qx, qy, qz]
T is a homogeneous quaternion vector. Note that the Cayley

parameterization introduces a degeneracy for 180◦ rotations, but this is a rare
case for consecutive views in the robotics applications [44,26,51,49].

Next, we show that the translation parameters t1 and t2 can be removed by
using two depth parameters. For a calibrated multi-camera system, each image
point corresponds to a unique line in the reference of the multi-camera system.
This line in 3D can be represented as a Plücker vector L = [pT,qT]T, where the
3D vectors p and q represent the unit direction vector and the moment vector,
respectively [40]. They satisfy the constraint p · q = 0. Thus, the set of points
X(λ) on the 3D line can be parameterized as

X(λ) = q× p+ λp, λ ∈ R. (2)

where λ is the unknown depth parameter of 3D point. Since the origin of W is
set to the 3D position Xj corresponding to j-th AC, the Plücker coordinates of
the line connecting the 3D position Xj and the optical center of camera Ci can
be described as [pT

ij ,q
T
ij ]

T in the reference of the multi-camera system. The 3D
position Xj in view k satisfies the following constraint:

qij × pij + λjkpij = Rk

[
0, 0, 0

]T
+ tk, k = 1, 2. (3)

Based on Eq. (3), the translation tk from W to view k is parameterized as
the linear expression in the unknown depth parameter λjk

tk = qij × pij + λjkpij , k = 1, 2. (4)

where k represents the index of the views, i represents the index of the cameras,
and j represents the index of the ACs. It can be seen that λj1 and λj2 are the
depth parameters of the origin of W in views 1 and 2, respectively.

Through the above special parameterization, the 6DOF relative pose of multi-
camera systems can be described by five unknowns, which consist of three rota-
tion parameters {qx, qy, qz} and two depth parameters {λj1, λj2}.

3.2 Geometric Constraints

It has been shown in Fig. 2 that each AC relates two perspective cameras in
view 1 and view 2. The relative pose between two cameras [R′, t′] is determined
by the composition of four transformations: (i) from one perspective camera
to view 1, (ii) from view 1 to W , (iii) from W to view 2, (iv) from view 2
to the other perspective camera. Among these four transformations, the part (i)
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and (iv) are determined by known extrinsic parameters. In the part (ii) and (iii),
there are unknownsR, t1 and t2 which are parameterized as {qx, qy, qz, λj1, λj2}.
Formally, the relative pose [R′, t′] is represented as:[

R′ t′

0 1

]
=

[
Q2 s2
0 1

]−1 [
R t2
0 1

] [
I t1
0 1

]−1 [
Q1 s1
0 1

]
=

[
QT

2 RQ1 QT
2 (Rs1 −Rt1 + t2 − s2)

0 1

]
. (5)

Once the relative pose [R′, t′] between two perspective cameras for each AC
is expressed, the essential matrix E′ = [t′]×R

′ can be represented as:

E′ = QT
2 (R[s1 − t1]× + [t2 − s2]×R)Q1. (6)

By substituting Eq. (4) into Eq. (6), we obtain:

E′ =− λj1Q
T
2 R[pij ]×Q1 + λj2Q

T
2 [p

′
ij ]×RQ1

+QT
2

(
R[s1 − qij × pij ]× + [q′

ij × p′
ij − s2]×R

)
Q1. (7)

It can be verified that each entry in the essential matrix E′ is linear with
{λj1, λj2}. Generally speaking, one AC (xj ,x

′
j ,Aj) yields three independent

constraints on the relative pose estimation of a multi-camera system, which
consist of one epipolar constraint derived from PC (xj ,x

′
j) and two affine trans-

formation constraints derived from local affine transformation Aj . With known
intrinsic camera parameters, the epipolar constraint of PC between view 1 and
view 2 is given as follows [21]:

x′T
j E′xj = 0, (8)

The affine transformation constraints which describe the relationship of es-
sential matrixE′ and local affine transformationAj is formulated as follows [41,2]:

(E′Tx′
j)(1:2) = −AT

j (E
′xj)(1:2), (9)

where the subscript (1:2) represents the first two equations.
Even though the perspective cameras are assumed, the geometric constraints

can straightforwardly be generalized to generalized camera models as long as
local image patches across views are obtained equivalently by arbitrary central
camera models [2,12]. Based on Eqs. (8) and (9), two ACs provide six inde-
pendent constraints. Considering that the relative pose estimation problem of
multi-cameras systems has 6DOF, the number of constraints is equal to the
number of unknowns. Thus, we explore the minimal solvers using two ACs.

3.3 Equation System Construction

Note that the special parameterization has been adopted by choosing one AC
as the origin of world reference system in the subsection 3.1, we found the PC
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derived from the chosen AC cannot contribute one constraint since the coeffi-
cients of the resulting equation are zero. Thus, when j-th AC is chosen to build
up the world reference system W , five equations can be provided by two ACs.
Specifically, j-th AC provides two equations based on Eq. (9) and the other AC
provides three equations based on Eqs. (8) and (9). By substituting Eq. (7) into
Eqs. (8) and (9) and using the hidden variable technique [10], the five equations
provided by two ACs can be written as:

Fj(qx, qy, qz)︸ ︷︷ ︸
5×3

λj1

λj2

1

 = 0. (10)

The entries in Fj are quadratic in unknowns qx, qy, and qz. Since Eq. (10)
has non-trivial solutions, the rank of Fj satisfies rank(Fj) ≤ 2. Thus, all the
3× 3 sub-determinants of Fj must be zero. This gives 10 equations about three
unknowns {qx, qy, qz}. Moreover, we can choose the other AC to build up the
world reference system, and its orientation is also consistent with the reference
of the multi-camera system in view 1. Suppose the j′-th AC is chosen, we build
a new equation system about the same rotation parameters {qx, qy, qz}, which
is similar to Eq. (10):

Fj′(qx, qy, qz)︸ ︷︷ ︸
5×3

λj′1

λj′2

1

 = 0. (11)

Note that Eq. (11) provides new constraints which is different from Eq. (10).
We use the computer algebra system Macaulay 2 [15] to find that there are one
dimensional families of extraneous roots if only Eq. (10) or Eq. (11) is used. This
phenomenon has also been observed in [45,35]. Based on Eqs. (10) and (11), we
have 20 equations with three unknowns {qx, qy, qz}:

det(N(qx, qy, qz)) = 0, (12)

N ∈ {3× 3 submatrices of Fj} ∪ {3× 3 submatrices of Fj′}.

These equations have a degree of 6, i.e., the highest of the degrees of the mono-
mials with non-zero coefficients is 6.

Moreover, we derive extra implicit constraints in our problem, i.e., the rank
of (Fj)(1:2,1:3) is 1. The proof is provided as follows:

Theorem 1. When j-th AC is chosen to build up the world reference system, the
corresponding affine transformation constraints satisfy rank((Fj)(1:2,1:3)) = 1.

Proof. To achieve this goal, we need to prove that (Fj)(1:2,1:3) has two linearly
independent null space vectors v1 and v2. Based on Eq. (10), v1 = [λj1, λj2, 1]

T is
obviously a null space vector. Then we suppose that the second null space vector
can be expressed as v2 = [λz1, λz2, 0]

T, where λz1 and λz2 are two unknown
depth parameters of the origin of world reference system W in camera 1 (view
1) and camera 2 (view 2), respectively.



8 B. Guan and J. Zhao

For the multi-camera system in Fig. 2, we parameterize the transformation of
cameras with respect to the world reference system W . Denote the transforma-
tion between camera 1 in view 1 and W as [QT

1 , λz1Q
T
1 pij ], and the transforma-

tion between camera 2 in view 2 andW as [QT
2 R, λz2Q

T
2 p

′
ij ]. The transformation

between camera 1 in view 1 and camera 2 in view 2 {R̃, t̃} can be computed.
Thus, the corresponding essential matrix Ẽ = [t̃]×R̃ is represented as

Ẽ = −λz1Q
T
2 R[pij ]×Q1 + λz2Q

T
2 [p

′
ij ]×RQ1. (13)

Note that the coefficients of the unknowns λz1 and λz2 in Eq. (13) are the
same as the coefficients of the unknowns λj1 and λj2 in Eq. (7). Based on the
Eq. (9), the affine transformation constraints can be written as follows

(Gj)(1:2,1:2)

[
λz1

λz2

]
= 0. (14)

In comparison with Eq. (10), (Gj)(1:2,1:2) is the first 2×2 sub-matrix of
(Fj)(1:2,1:3). We can see that the null space vector v2 = [λz1, λz2, 0]

T is also
the null space vector of (Fj)(1:2,1:3). Thus, the rank of (Fj)(1:2,1:3) is 1.

Based on Theorem 1, the affine transformation constraints provide extra
equations for our problem. Only if j-th AC is chosen to build up the world refer-
ence system W , two affine transformation constraints of j-th AC are used in the
equation system construction. Similarly, when we choose the j′-th AC to build
up the world reference, the extra equations of the corresponding affine transfor-
mation constraints can also be provided. Thus, there are 6 extra equations for
the relative pose estimation using ACs:

det(M(qx, qy, qz)) = 0, (15)

M ∈ {2× 2 submatrices of (Fj)(1:2,1:3)} ∪ {2× 2 submatrices of (Fj′)(1:2,1:3)}.

These extra equations have a degree of 4. Note that the extra implicit con-
straints Eq. (15) are independent of Eqs. (10) and (11). For geometric expla-
nation, the extra constraints encode that the affine transformation constraints
come from a perspective camera of two viewpoints. As we will see later, using
the extra constraints from Theorem 1 reduces the number of solutions.

3.4 Polynomial System Solving

We propose two minimal solvers based on the common configurations of two ACs
in multi-camera systems, including an inter-camera solver and an intra-camera
solver. The inter-camera solver uses inter-camera ACs which are seen by different
cameras over two consecutive views. It is suitable for multi-camera systems with
large overlapping of views. The intra-camera solver uses intra-camera ACs which
are seen by the same camera over two consecutive views. It is suitable for multi-
camera systems with non-overlapping or small-overlapping of views.
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A suitable way to find algebraic solutions to the polynomial equation system
Eqs. (12) and (15) is to use the Gröbner basis technique. To keep numerical
stability and avoid large number arithmetic during the calculation of Gröbner
basis, a random instance of the original equation system is constructed in a
finite prime field Zp [32]. The relations between all observations are appropriately
preserved. Then, we use Macaulay 2 [15] to calculate Gröbner basis. Finally, the
solver is found with the automatic Gröbner basis solver [28]. We denote these
polynomial equations in Eq. (12) and Eq. (15) as E1 and E2, respectively. Note
that the polynomial equations E1 and E2 can be extended to solve various relative
pose estimation problems, such as with known rotation angle and unknown focal
lengths. In this paper, E1 is sufficient to solve the relative pose with inter-camera
ACs. For intra-camera ACs, there are one-dimensional families of extraneous
roots if only E1 is used. Moreover, using both E1 and E2 can reduce the number
of solutions in the inter-camera case.

Table 1. Minimal solvers for the multi-
camera systems. #sol indicates the num-
ber of solutions. 1-dim indicates one dimen-
sional families of extraneous roots.

AC type
E1 E1 + E2

#sol template #sol template
Inter-camera 56 56× 120 48 64× 120
Intra-camera 1-dim − 48 72× 120

Table 1 shows the resulting inter-
camera and intra-camera solvers. We
have the following observations. (1)
If E1 is used, the inter-camera solver
maximally has 56 complex solutions
and the elimination template of size
56 × 120. But the intra-camera case
has one-dimensional families of extra-
neous roots. (2) If both E1 and E2 are
used, the number of complex solutions
obtained by the inter-camera solver
can be reduced to 48. The number of complex solutions obtained by the intra-
camera solver is also 48. The elimination template of the inter-camera solver and
intra-camera solver is 64×120 and 72×120, respectively. (3) For the inter-camera
case, using equations from E1 results in smaller eliminate templates than using
E1 + E2. Meanwhile, the solver resulting from E1 has better numerical stability
than the solver resulting from E1+E2. This phenomenon has also been observed
in previous literature [7], which shows that the number of basis might affect the
numerical stability.

Once the rotation parameters {qx, qy, qz} are obtained, R can be obtained
immediately. Then {λjk}k=1,2 and {λj′k}k=1,2 are determined by finding the null
space of Fj and Fj′ , respectively. Note that the translations estimated by {λjk}
and {λj′k} are theoretically the same in minimal problems. Take the translation
estimation using {λjk} for an example. We can calculate t1 and t2 by Eq. (4).
Finally we calculate the relative pose by compositing the transformations [R1, t1]
and [R2, t2]. Moreover, our minimal solver generation framework can be easily
extended to recover the relative pose of a monocular camera. See supplementary
material for details.

3.5 Degenerated Configurations

We prove three cases of critical motions for relative pose estimation from ACs.
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Proposition 1. For inter-camera ACs, if a multi-camera system undergoes pure
translation and the baseline of two camera is parallel with the translation direc-
tion, the metric scale of translation cannot be recovered.

Proposition 2. For intra-camera ACs, when a multi-camera system undergoes
pure translation or constant rotation rate, both cases are degenerate motions.
Specifically, the metric scale of translation cannot be recovered.

Due to space limitations, the proof of degenerate cases and the methods to
overcome the degenerate cases are provided in the supplementary material.

4 Experiments

The performance of our solvers is validated using both synthetic and real-world
data. The proposed 2AC method are referred to as 2AC-inter for inter-camera
ACs, and 2AC-intra for intra-camera ACs. To further distinguish two solvers
for inter-camera ACs, 2AC-inter-56 and 2AC-inter-48 are used to refer the
solvers resulting from E1 and E1 + E2, respectively. The proposed solvers are
implemented in C++. The 2AC-inter solver and the 2AC-intra solver are com-
pared with state-of-the-art methods including 17PC-Li [31], 8PC-Kneip [26],
6PC-Stewénius [45] and 6AC-Ventura [1]. The methods which estimate the rel-
ative pose with a prior are not compared in this paper [47,48,17,18]. All the
solvers are integrated into RANSAC in order to remove outlier matches of the
feature correspondences. The relative pose which produces the most inliers is
used to measure the relative pose error. This also allows us to select the best
candidate from multiple solutions by counting their inliers.

The relative rotation and translation of the multi-camera systems are com-
pared separately in the experiments. The rotation error compares the angular
difference between the ground truth rotation and the estimated rotation: εR =
arccos((trace(RgtR

T)−1)/2), whereRgt andR denote the ground truth rotation
and the corresponding estimated rotation, respectively. We evaluate the trans-
lation error by following the definition in [30]: εt = 2 ∥(tgt − t)∥ /(∥tgt∥+ ∥t∥),
where tgt and t denote the ground truth translation and the corresponding es-
timated translation, respectively. εt denotes both the metric scale error and the
direction error of the translation. The translation direction error is also evalu-
ated separately by comparing the angular difference between the ground truth
translation and the estimated translation: εt,dir = arccos((tTgtt)/(∥tgt∥ · ∥t∥)).

4.1 Experiments on Synthetic Data

A simulated multi-camera system is made to evaluate the inter-camera and intra-
camera solvers simultaneously [17,18]. The baseline length between two simu-
lated cameras is set to 1 meter, and the movement length of the multi-camera
system is set to 3 meters. The resolution of cameras is 640 × 480 pixels with a
focal length of 400 pixels. The principal points are set to the image center (320,
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Table 2. Runtime comparison of relative pose estimation solvers (unit: µs).

Methods 17PC-Li [31] 8PC-Kneip [26] 6PC-Stew. [45] 6AC-Vent. [1] 2AC-inter-56 2AC-inter-48 2AC-intra

Runtime 43.3 102.0 3275.4 38.1 1084.8 842.3 871.6

240). We carry out a total of 1000 trials and assess the rotation and translation
error by the median of errors in the synthetic experiment.

In each test, 100 ACs are generated randomly, including 50 ACs from a
ground plane and 50 ACs from 50 random planes. The synthetic scene is ran-
domly generated in a cubic region of size [−5, 5]×[−5, 5]×[10, 20] meters. For
each AC, the PC is obtained by reprojecting a random 3D point from a plane
into two cameras. The associated affine transformation is obtained as follows:
First, four additional image points are chosen as the vertices of a square in view 1,
where its center is the PC of AC. The side length of the square is set to 30 or
40 pixels. A larger side length means the larger support regions for generating
the ACs, which causes smaller noise of affine transformation. The support region
is used for AC noise simulation only. Second, the ground truth homography is
used to calculate the four corresponding image points in view 2. Third, Gaussian
noise is added to the coordinates of four sampled image point pairs. Fourth, the
noisy affine transformation is calculated from the first-order approximation of
the noisy homography, which is estimated by using four noise image point pairs.
This procedure promises an indirect but geometrically interpretable way of nois-
ing the affine transformation [3]. The Gaussian noise with a standard deviation
is added to the PCs, and, also, to the sampled image point pairs which are used
to estimate the affine transformations. In the experiments, the required ACs are
selected randomly for the solvers within the RANSAC scheme. For the PC-based
solvers, only the PCs derived from the ACs are used.

Efficiency Comparison and Numerical Stability The proposed solvers are
evaluated on an Intel(R) Core(TM) i7-7800X 3.50GHz. All comparison solvers
are implemented in C++. The 17PC-Li, 8PC-Kneip and 6PC-Stewénius are pro-
vided by OpenGV library [25]. The 6AC-Ventura is publicly available from the
code of [1]. Table 2 shows the average processing times of the solvers over 10,000
runs. The methods 17PC-Li and 6AC-Ventura have low runtime, because they
solve for the multi-camera motion linearly. Among the minimal solvers, all the
proposed solvers 2AC-inter-56, 2AC-inter-48 and 2AC-intra are significantly
more efficient than the 6PC-Stewénius solver.

Figure 3 reports the numerical stability comparison of all the solvers in noise-
free cases. We repeat the procedure 10,000 times and plot the empirical prob-
ability density functions as the function of the log10 estimated errors. Numer-
ical stability represents the round-off error of solvers in noise-free cases. The
solvers 17PC-Li and 6AC-Ventura have the best numerical stability, because
the linear solvers with smaller computation burden have less round-off error.
Since the 8PC-Kneip solver uses the iterative optimization, it is susceptible to
falling into local minima. Among the minimal solvers, all the proposed solvers
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Fig. 3. Probability density functions over relative pose estimation errors on noise-free
observations for multi-camera systems. The horizontal axis represents the log10 errors,
and the vertical axis represents the density.

2AC-inter-56, 2AC-inter-48 and 2AC-intra have better numerical stability
than the 6PC-Stewénius solver. Moreover, 2AC-inter-56 has better numeri-
cal stability than 2AC-inter-48, which shows that adding the extra equations
E2 is not helpful in improving the numerical stability of the 2AC-inter solver.
Even though 2AC-inter-48 produces the less solutions, we prefer to perform
2AC-inter-56 for the sake of numerical accuracy in the follow-up experiments.
In addition to efficiency and numerical stability, another important factor for
a solver is the minimal number of needed feature correspondences between two
views. Since the proposed solvers require only two ACs, the number of RANSAC
iterations is obviously lower than PC-based methods. Thus, our solvers have an
advantage in detecting the outlier and estimating the initial motion efficiently
when integrating them into the RANSAC framework. See supplementary ma-
terial for details. Due to space limitations, the performance of the proposed
solvers with different image noise is also shown in the supplementary material.
As we will see later, the proposed solvers have better overall efficiency than the
comparative solvers in the experiments on real-world data.

4.2 Experiments on Real Data

We evaluate the performance of the proposed solvers on three public datasets
in popular modern robot applications. Specifically, the KITTI dataset [14] and
nuScenes dataset [8] are collected on an autonomous driving environment. The
EuRoc MAV dataset [6] is collected on an unmanned aerial vehicle environ-
ment. These datasets provide challenging image pairs, such as large motion and
highly dynamic scenes. We compare the proposed solvers against state-of-the-art
6DOF relative pose estimation techniques. The rotation error εR and the trans-
lation direction error εt,dir are used to evaluate the accuracy of the proposed
solvers [1,26,34]. We tested on a total of 30,000 image pairs. Our solvers focus
on relative pose estimation, i.e., integrating the minimal solver with RANSAC.
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Table 3. Rotation and translation error on KITTI sequences (unit: degree).

Seq.
17PC-Li [31] 8PC-Kneip [26] 6PC-Stew. [45] 6AC-Vent. [1] 2AC method
εR εt,dir εR εt,dir εR εt,dir εR εt,dir εR εt,dir

00 (4541 images) 0.139 2.412 0.130 2.400 0.229 4.007 0.142 2.499 0.121 2.184
01 (1101 images) 0.158 5.231 0.171 4.102 0.762 41.19 0.146 3.654 0.136 2.821
02 (4661 images) 0.123 1.740 0.126 1.739 0.186 2.508 0.121 1.702 0.120 1.696
03 (801 images) 0.115 2.744 0.108 2.805 0.265 6.191 0.113 2.731 0.097 2.428
04 (271 images) 0.099 1.560 0.116 1.746 0.202 3.619 0.100 1.725 0.090 1.552
05 (2761 images) 0.119 2.289 0.112 2.281 0.199 4.155 0.116 2.273 0.103 2.239
06 (1101 images) 0.116 2.071 0.118 1.862 0.168 2.739 0.115 1.956 0.106 1.788
07 (1101 images) 0.119 3.002 0.112 3.029 0.245 6.397 0.137 2.892 0.123 2.743
08 (4071 images) 0.116 2.386 0.111 2.349 0.196 3.909 0.108 2.344 0.089 2.235
09 (1591 images) 0.133 1.977 0.125 1.806 0.179 2.592 0.124 1.876 0.116 1.644
10 (1201 images) 0.127 1.889 0.115 1.893 0.201 2.781 0.203 2.057 0.184 1.687

Table 4. Runtime of RANSAC averaged over KITTI sequences (unit: s).

Methods 17PC-Li [31] 8PC-Kneip [26] 6PC-Stew. [45] 6AC-Vent. [1] 2AC method

Mean time 52.82 10.36 79.76 6.83 4.87

Standard deviation 2.62 1.59 4.52 0.61 0.35

To ensure the fairness of the experiments, the PCs derived from the ACs are
used in the PC-based solvers. Due to space limitations, the experiment results
on the EuRoc MAV dataset are shown in the supplementary material.

Experiments on KITTI Dataset All the solvers are evaluated on KITTI

dataset [14] collected on outdoor autonomous vehicles with a forward facing
stereo camera. We treat it as a general multi-camera system by ignoring the
overlap in their fields of view. The 2AC-intra solver is tested on all the avail-
able 11 sequences, which consist of 23000 image pairs in total. The ground truth
is directly given by the output of the GPS/IMU localization unit [14]. For con-
secutive views in each camera, the ASIFT [38] is used to establish the ACs.
There are also strategies to speed up the extraction of ACs, such as MSER [36],
GPU acceleration, or approximating ACs from SIFT features [18]. To deal with
outlier matches, all the solvers are integrated into a RANSAC framework. To
select the right solution from multiple solutions, we counted their inliers in a
RANSAC-like procedure and the solution with the most inliers is chosen.

Table 3 shows the rotation and translation error of the proposed 2AC method

for KITTI sequences. The median error is used to evaluate the performance. It
is seen that the overall performance of the 2AC method outperforms the com-
parative methods in almost all cases. Moreover, to compare the advantage of
computation efficiency, the RANSAC runtime averaged over all the KITTI se-
quences for the solvers is shown in Table 4. The reported runtimes represent the
relative pose estimation by RANSAC combined with a minimal solver, which
mainly includes hypothesis generation and best candidate selection from multi-
ple solutions by counting their inliers. Even though some solvers are faster than
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Table 5. Rotation and translation error on nuScenes sequences (unit: degree).

Part
17PC-Li [31] 8PC-Kneip [26] 6PC-Stew. [45] 6AC-Vent. [1] 2AC method
εR εt,dir εR εt,dir εR εt,dir εR εt,dir εR εt,dir

01 (3376 images) 0.161 2.680 0.156 2.407 0.203 2.764 0.143 2.366 0.114 2.017

the proposed 2AC method in Table 2, our method has better overall efficiency
than all the comparative methods when integrating them into the RANSAC
framework. The detailed analysis is presented in the supplementary material.

Experiments on nuScenes Dataset The performance of the solvers is also
tested on the nuScenes dataset [8], which consists of consecutive keyframes from
6 cameras. This multi-camera system provides full 360 degree field of view. We
utilize all the keyframes of Part 1 for the evaluation, and there are 3376 images in
total. The ground truth is given by a lidar map-based localization scheme. Similar
to the experiments on KITTI dataset, the ASIFT detector is used to establish
the ACs between consecutive views in six cameras. The proposed 2AC method is
compared with state-of-the-art methods including 17PC-Li [31], 8PC-Kneip [26],
6PC-Stewénius [45] and 6AC-Ventura [1]. All the solvers are integrated into
RANSAC in order to remove outlier matches of the feature correspondences.

Table 5 shows the rotation and translation error of the proposed 2AC method

for the Part1 of nuScenes dataset. The median error is used to evaluate the
estimation accuracy. It is demonstrated that the proposed 2AC method offers
the best performance among all the methods. In comparison with experiments
on KITTI dataset, this experiment also demonstrates that our 2AC method can be
directly used to the relative pose estimation for the systems with more cameras.

5 Conclusion

By exploiting the geometric constraints using a special parameterization, we es-
timate the 6DOF relative pose of a multi-camera system using a minimal number
of two ACs. The extra implicit constraints about the affine transformation con-
straints are found and proved. Two minimal solvers are designed for two common
types of ACs across two views, i.e., inter-camera and intra-camera. Moreover,
three degenerate cases are proved. The framework for generating the minimal
solvers is unified and versatile, and can be extended to solve various problems,
e.g., relative pose estimation for a monocular camera. Compared with existing
minimal solvers, our solvers require fewer feature correspondences and are not
restricted to special cases of multi-camera motion. Based on a series of exper-
iments on synthetic data and three real-world image datasets, we demonstrate
that our solvers can be used efficiently for ego-motion estimation and outperform
the state-of-the-art methods in both accuracy and efficiency.

Acknowledgments. This work has been partially funded by the National Nat-
ural Science Foundation of China (Grant Nos. 11902349 and 11727804).
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