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In this document, we provide additional details, experiments and applications
to support the original paper. Below is a summary of the contents:

– A detailed description of the adopted datasets and training settings, as well
as the architecture of the proposed network are provided.

– We demonstrate the practical applications of our method for point cloud
denoising and 3D surface reconstruction based on normal estimation.

– More qualitative results, including angle RMSE and PGP5/10, are reported.

1 Implementation Details

We use the benchmark dataset PCPNet [1] to train the proposed network and
test it. The training set contains eight shapes: four CAD objects (boxunion, cup,
fandisk and flower) and four high-quality scans of figurines (armadillo, bunny,
dragon and turtle). All shapes are modeled as triangular meshes and densely
sampled with 100 k points. To augment the training set, we add Gaussian noise
with zero mean and varying standard deviation σ ∈ {0.012, 0.006, 0.00125}, with
respect to the diagonal length of the bounding box for each model. Then we
attain 32 point clouds for training. The test set has 19 shapes, including CAD
objects, figurines, and analytic shapes.

The proposed network is trained and implemented by the Pytorch framework
on a Nvidia Tesla v100 GPU, using the Adam optimizer[4]. The batch size and
initial learning rate are equal to 256 and 1e-3, respectively. We train the network
600 epochs in total, and the learning rate decays to 10% of the initial value at
epoch 200 and 500. The overall training loss is defined as

Ltol = |ngt × n̂|+ Lcon + λ3Lreg1 + λ4Lreg2, (1)
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Fig. 1: Architecture details of our proposed network GraphFit.
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where we use the default settings λ1 = 0.05, λ2 = 0.25, λ3 = 0.1, and λ4 = 0.01.

2 Details of Our Proposed Network Architecture

Fig. 1 presents the details of our proposed network architecture. An MLP unit
consists of a 1 × 1 Conv, a BatchNorm layer and a ReLU in the left of Fig. 1.
For MLP in the Graph block and the multi-scale layer, we use the Leaky ReLU
(LReLU) as its activation function.

3 Results on the SceneNN Dataset

The PGPα results are shown in Fig. 2, our method significantly outperforms all
competitors and achieves the state-of-the-art performance.
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Fig. 2: Comparison of PGPα for unoriented normal estimation on the SceneNN
dataset [2].

Table 1: Investigation on the influence of different number of graph blocks on
normal estimation.

Aug. 1 Graph-block 2 Graph-blocks 3 Graph-blocks

No Noise 4.90 4.56 4.43
σ = 0.125% 9.06 8.87 8.88
σ = 0.6% 16.58 16.57 16.53
σ = 1.2% 22.87 22.77 22.74
Gradient 5.52 5.33 5.22
Strip 5.61 5.38 5.31

Average 10.76 10.58 10.52

4 Ablation Study of Different Graph Blocks

To demonstrate the effectiveness of different graph blocks in the proposed net-
work, we further implement ablation study and report the average RMSE in
Tab. 1, in which the neighborhood size and the jet order are equal to 256 and 3,
respectively. As can be seen, the network achieves higher accuracy for both noise
and varying point density by adding graph blocks, where the average RMSE
decreases from 10.76 to 10.52. Nevertheless, with the number of graph blocks
increasing, such as from two to three, the angle RMSE of unoriented normal
vectors does not reduce significantly, thereby we adopt one graph block for use.

5 Practical Applications

We also deploy the proposed normal estimation method for point cloud denoising
and 3D surface reconstruction.
Point cloud denoising. It is an important task in the 3D vision field to remove
noise disturbance for point clouds. We combine the proposed normal estimation
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Fig. 3: Point cloud denoising using our proposed normal estimator.

Table 2: Comparison of the surface reconstruction precision (RMSE) of our pro-
posed method and AdaFit, DeepFit, PCPNet.

Ours AdaFit DeepFit PCPNet

Liberty 0.00039 0.00064 0.00084 0.00165
Column 0.00592 0.00885 0.01077 0.01667
Netsuke 0.00495 0.00501 0.00993 0.01573
Average 0.00375 0.00483 0.00718 0.01135

method with the modified edge recovery algorithm in [5] to update the point
positions pi. The new position p′

i is calculated by

p′
i = pi + γi

∑
j∈Ni

(pj − pi)
(
nT
i ni + nT

j nj

)
(5)

where Ni are the neighboring points of pi, ni,nj are the estimated normals.
Fig. 3 shows sample denosing results. As observed, our method attains highly
promising denosing performance compared with the ground truths, which are
recovered via the ground truth normals.
3D surface reconstruction. One common application of normal estimation
for point clouds is to reconstruct the potential surface. We apply the proposed
normal estimation method and adopt Poisson reconstruction [3] for this purpose.
Tab. 2 reports the RMSE of all compared approaches in the sense of Hausdorff
distance. Results demonstrate that our method achieves high-quality reconstruc-
tion on all test cases. It is more accurate than baseline competitors. We present
several reconstructed surface in Fig. 4.

6 More Qualitative Results

We present more test results in Fig. 5 and Fig. 6 to demonstrate the better
performance of our proposed normal estimator.



GraphFit 5

(a) Input (b) Ours (c) Groundtruth

Fig. 4: Poisson surface reconstruction via the proposed normal estimator.
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(a) Ours (b) AdaFit (c) DeepFit (d) NestiNet (e) PCPNet

Fig. 5: Illustration of the normal estimation errors. The errors are mapped to a
heatmap ranging from 0◦ to 60◦. Values above the models are the corresponding
RMSE. Our method achieves higher accuracy.
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(a) Ours (b) AdaFit (c) DeepFit (d) NestiNet (e) PCPNet

Fig. 6: Qualitative results with respect to PGP(5) and PGP(10). Values above
the models are the corresponding PGP5/10 errors. Our method attains more
accurate normal estimation.
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