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Abstract. We propose a precise and efficient normal estimation method
that can deal with noise and nonuniform density for unstructured 3D
point clouds. Unlike existing approaches that directly take patches and
ignore the local neighborhood relationships, which make them suscepti-
ble to challenging regions such as sharp edges, we propose to learn graph
convolutional feature representation for normal estimation, which empha-
sizes more local neighborhood geometry and effectively encodes intrinsic
relationships. Additionally, we design a novel adaptive module based on
the attention mechanism to integrate point features with their neigh-
boring features, hence further enhancing the robustness of the proposed
normal estimator against point density variations. To make it more dis-
tinguishable, we introduce a multi-scale architecture in the graph block
to learn richer geometric features. Our method outperforms competitors
with the state-of-the-art accuracy on various benchmark datasets, and
is quite robust against noise, outliers, as well as the density variations.
The code is available at https://github.com/UestcJay/GraphFit.

Keywords: Normal estimation, unstructured 3D point clouds, graph
convolution, multi-scale

1 Introduction

The normal estimation of point clouds is a fundamental problem in 3D computer
vision and computer graphics, which has a wide variety of applications in prac-
tice. Commonly, the scanned point clouds only contain spatial locations along
with sampling density, noise, outliers or textures, while lacking local surface ge-
ometry, like point normals. High-quality normals can facilitate a large number
of downstream tasks, such as point cloud denoising [29,28], surface reconstruc-
tion [23,14] and model segmentation [10].
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(a) PCPNet (b) NestiNet (c) DeepFit (d) AdaFit (e) Ours

Fig. 1: Comparison of the normal estimation error (colored by the heat map)
of learning-based methods PCPNet [17], NestiNet [5], DeepFit [3], AdaFit [45]
and the proposed method, where our method shows higher estimation accuracy,
especially on complex regions.

Normal estimation is essential and has been studied for a long time, yet not
well-solved. Traditional methods [20,27,9,6] usually adopt principle component
analysis (PCA) and singular value decomposition (SVD) for normal estimation.
They attain satisfactory results for simple and clean data but suffer from noise,
outliers, and complex shapes. Moreover, their performance heavily depends on
the parameter tuning. Recently, several learning-based methods [17,5,44,40,18]
have been proposed to directly regress normals and have exhibited promising
performance. Nevertheless, as pointed out in [45], direct regression brings in
finite generalization and stability, especially for laser scanned real-world point
clouds.

Different from the previous brute-force regression, a more accurate paradigm
is to combine traditional methods involving geometry information with learning-
based models for normal estimation, which typically specifies a fixed neighbor-
hood around each point and then fits a local surface such as a plane to infer the
normal. However, when point clouds are contaminated by noise or outliers, the
estimated normals tend to be erroneous. To mitigate this problem, the weighted
least-squares (WLS) fitting is invoked [26,3,43,45], in which point-wise weights
are predicted. Despite that the improvements of accuracy and robustness, precise
normal estimation in complex regions are still difficult, as illustrated in Fig. 1.
In principle, point normals are local geometric properties, and are significantly
affected by the geometric relations among the local neighborhood. However, pre-
vious methods directly adopt patches for normal estimation, and usually ignore
the intrinsic relationship between points in the same patch, which empirically
enables richer features and higher accuracy.

Motivated by this observation, in this paper, we present a novel method using
graph-convolutional layers for robust and accurate normal estimation. Benefit-
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ing from the graph structure, we not only extract features but also encode local
geometric relationship between points in the same patch. To enhance the fea-
ture integration capability and generate richer geometric information, we further
utilize the adaptive module based on a attention mechanism to integrate point
features with its neighboring features. Additionally, we design a novel multi-scale
representation to learn more accurate and expressive local information, as well
as reducing the influence of noise and outliers. In contrast to the cascaded scale
aggregation layer used in previous approaches, which directly takes the global
features of varying patches, our proposed multi-scale representation fuses local
information from two different scales in the feature space, and casts more atten-
tion on the local features. We compare the proposed method with representative
state-of-the-art approaches on popular benchmark datasets. Results demonstrate
that our method outperforms competitors with higher accuracy, and it is quite
robust against noise, outliers and density variations. We further verify the ad-
vantages of our method by applying it to surface reconstruction and point cloud
denoising in the supplemental material. To summarize, our main contributions
are threefold as follows:

– We propose a new method for accurate and robust normal estimation via
the graph-convolutional feature learning, which effectively integrates local
features and their relationships among the same point cloud patch.

– We design an adaptive module using the attention mechanism to fuse the
point features with its neighboring features, which brings high-quality feature
integration.

– We introduce a multi-scale representation module to extract more expressive
features, bringing higher robustness against noise and varying point density.

2 Related Work

2.1 Classical Methods

The most popular and simplest way for normal estimation is based on the prin-
cipal component analysis [20], in which the normal of a query point is calcu-
lated as the eigenvector corresponding to the smallest eigenvalue of a covariance
matrix. Although this method is simple, it usually suffers from the choice of
the neighboring size, noise, and outliers. Later, many variants such as moving
least squares (MLS) [27], truncated Taylor expansion (n-jet) [9], and fitting local
spherical surfaces [16] have been proposed. These approaches usually select a
large-scale neighborhood to improve the robustness against noise and outliers,
meanwhile trying to keep a correct normal estimation for sharp features. Par-
ticularly, Mitra et al. [31] delicately analyze the influence of the neighboring
size, the curvature, sampling density, and noise to find an optimal neighbor ra-
dius. To attain more features, some methods utilize Voronoi diagram [1,2,12,30]
to estimate the structure of the underlying surface, while others adopt Hough
Transform (HT) [6] to achieve analogous effects. Nevertheless, HT-based meth-
ods typically require high computational complexity and fine tuning of hyper-
parameters. Recent works have also been designed to robustly estimate normals
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for point clouds contaminated by outliers [33,24] or noise [15] with an adaptive
neighboring size [11,32,8].

2.2 Learning-based Approaches

Recently, with the marvelous success of deep learning in a wide variety of
domains [35,36,39,37,42,19,41,34,13], some learning-based attempts have been
made to estimate normals of point clouds, which can be generally categorized
into two types: regression-based and geometry-guided methods.
Regression-based methods. Due to the estimation of surface normals from
patches and the use of fully connected layers, regression-based methods are com-
monly simple. For instance, Lu et al. [28] transform point cloud patches into 2D
height maps by computing the distances between points and a plane, while Ben-
Shabat et al. [4] modify the Fisher Vector to describe points with their deviations
from a Gaussian Mixture Model (GMM). HoughCNN [7] projects points into a
Hough space via the Hough transform and then uses a 2D CNN to regress the
normal vector. Another line of studies focus on the direct regression for unstruc-
tured point clouds. Inspired by the high efficiency of PointNet [35], [17] proposes
a deep multi-scale PointNet for normal estimation (PCPNet), but requires a set
of scale values. Hashimoto et al. [18] also use PointNet to extract the local fea-
tures such as neighboring points while extract spatial representation by the voxel
network 3DCNN. Nesti-Net [5] introduces a new normal estimation method for
irregular 3D point clouds based on the mixture of experts and scale prediction,
which yields high accuracy but suffers from high computational complexity.
Geometry-guided methods. Despite that regression-based methods are direct
and simple, they usually produce weak generalization and unstable prediction
results. To circumvent these limitations, most recent works combine deep learn-
ing with classical geometric methods. IterNet [26] and DeepFit [3] employ a deep
neural network to learn point-wise weights for weighted-least-squares fitting to
estimate the normals, leading to good normal estimation quality and have been
extended to estimate other geometrical properties such as principal curvatures.
Zhang et al. [43] propose a geometry-guided network for robust surface normal
estimation, which improves the learning performance and the interpretability
of the weights. A more recent work, AdaFit [45] incorporates a Cascaded Scale
Aggregation (CSA) layer to aggregate features from multiple neighborhood sizes
and adds additional offsets to enable the output normals more robust and ac-
curate. Different from previous approaches, in this paper, we propose to use
graph-convolutional layers for feature learning and normal estimation, and incor-
porate a multi-scale architecture that emphasizes richer local geometric features
to generate more accurate normal estimation results.

3 Methodology

Problem definition. Given a 3D point cloud P =
{
pi ∈ R3

}N

i=1
and a query

point pi ∈ P, our target is to solve for the normal of each point in P. We first
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Fig. 2: Overview of our proposed network architecture. Graph block is
utilized to encode the relationship between neighbor points, which contains an
adaptive model to effectively integrate point features with the local neighbor
features. A multi-scale layer is employed to extract richer local features. Given
an input patch, our network predicts a point-wise weight and offset to fit a
surface for normal estimation.

extract a local patch Nk (pi) =
{
pi ∈ R3 | i = 1, 2, . . . , Np

}
⊂ P, Np is the size

of Nk (pi), then we employ the truncated Taylor expansion (n-jet) for surface
fitting [9] to represent any regular embedded smooth surface, as the graph of a
bi-variate height function with respect to any z direction does not belong to the
tangent space. An n-order Taylor expansion of the height function is defined as

z = f (x, y) = Jβ,n(x, y) =

n∑
k=0

k∑
j=0

βk−j,jx
k−jyj , (1)

where β = {βk−j,j | j = 0, 1, · · · , k; k = 0, 1, · · · , n} are the coefficients of the jet
that consists ofNn = (n+1)(n+2)/2 terms. The goal is to fit a surface toNk (pi).
We define the Vandermonde matrix M =

(
1, xi, yi, . . . , xiy

n−1
i , yni

)
i=1,...,Np

∈
RNp×Nn and the height function vector z =

(
z1, z2, . . . , zNp

)
∈ RNp . The sam-

pled points in Eq. (1) can be expressed as

Mβ = z. (2)

To enhance the robustness of the fitting method against noise and outliers,
like [3], we adopt the weighted least-squares fitting of polynomial surfaces here,
which can also relieve the problem of over-fitting or under-fitting [45]. Then our
objective is to predict the point-wise weight wi and offset (∆xi, ∆yi, ∆zi) to
adjust the point distribution. The optimization problem becomes:

β̂ = argmin
β

Np∑
i

wi ∥Jβ,n (xi +∆xi, yi +∆yi)− (zi +∆zi)∥2 . (3)

The solution to Eq. (3) can be expressed in a closed-form:

β̂ =
(
M⊤WM

)−1 (
M⊤Wz

)
, (4)
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Fig. 3: Our proposed adaptive module. It integrates neighbour features with
point features based on the attention mechanism.

where W is a diagonal weight matrix W = diag
(
w1, w2, . . . , wNp

)
∈ RNp×Np ,

in which the diagonal element wi is the weight of the point pi. Once getting the
jet coefficients β, the estimated normal n̂i of the point pi is

n̂i =
(−β1,−β2, 1)

∥(−β1,−β2, 1)∥2
, (5)

where we define β1 = β1,0, β2 = β0,1. Then the normals of neighboring points of
the query point can be calculated by transforming n-jet to the implicit surface
form, e.g., F (x, y, z) = 0:

n̂j =
∇F

∥∇F∥

∣∣∣∣
pi,j

=

(
−β ∂MT

∂x , β ∂MT

∂y , 1
)

∥∇F∥

∣∣∣∣∣∣
pi,j

. (6)

Motivation. The point normal on the surface is a locally geometric property,
which is significantly affected by their mutual relations. To investigate this char-
acteristic, we utilize the local neighbor information of the points in the same
patch to achieve more accurate surface fitting. An overview of the proposed net-
work architecture is presented in Fig. 2. The first block is composed of two point
convolutions that gradually transform the 3D spatial points into a higher feature
space. Then a cascade of two graph blocks is used, with several skip connections
to enhance the feature expression ability. These representations are then con-
catenated and fed into Multi-layer Perceptrons (MLP) to predict weights and
offsets for all points. We present detailed descriptions of the designed network
architecture in the following.
Graph block. The core of the proposed network in our method is the graph
block. Graph convolution, as a generalization of the ordinary convolution to point
data, represents point clouds with graph structures. Suppose the features F =
{fi | i = 1, 2, . . . , N} ∈ RN×C correspond to the input point cloud P ∈ RN×3.
Then we construct a graph by selecting the k-nearest neighbors (k-NN) of each
point with respect to the Euclidean distance in the feature space. We attain the
local neighborhood information using a feature mapping function ϕc(·) over the
point features (fi, fj):

gijc = ϕc (∆fij) , j ∈ N(i), (7)
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Fig. 4:Overview of the proposed multi-scale layer. It is employed to extract
richer local features.

where c = 1, 2, · · · , C. ϕc(·) can be implemented as a shared MLP, and N(i)
denotes the neighborhood of the feature fi. In order to combine the global
shape structure and the local neighborhood information [39], we define ∆fij =
[fj − fi, fi] as the input of ϕc(·), where [·, ·] represents the concatenation oper-
ation. Then we stack gijc of each channel to yield the local information feature
gij = [gij1, gij2, . . . , gijC ] ∈ RC . Finally, we output the local neighborhood infor-
mation for each input feature fi:

f ′
i = max

j∈N(i)
gij . (8)

Moreover, we design an adaptive module to integrate the local patch infor-
mation and the point feature. Inspired by the high efficiency of SENet [21]
with simple and lightweight channel attention mechanism, we design an adap-
tive module based on the attention mechanism between the point feature F =
{fi | i = 1, 2, . . . , N} ∈ RN×C and the local neighborhood information F ′ =
{f ′

i | i = 1, 2, . . . , N} ∈ RN×C . The adaptive module is presented in Fig. 3, in
which the scale is

sF = Sigmoid (ϕ (AvgPool (F ′ + F))) , (9)

where + is element-wise sum operation, and ϕ (·) represents the feature mapping
function implemented by the MLP. Finally, we attain the output adaptive feature
F̄ as

F̄ = sF ⊙F + sF ′ ⊙F ′, (10)

where sF ′ = (1− sF ), and ⊙ is the Hadamard product.
Multi-scale representation. To extract more distinguishable local features,
we also introduce a novel layer to enhance the multi-scale representation ability
of the designed network. As shown in Fig. 4, for a central feature fi ∈ RC ,
we first construct a graph by selecting the k1-nearest neighbors in the feature
space, which indicates the scale s1. After the operation mentioned above, we
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get the output of the local neighborhood feature f ′
is1

∈ RC as illustrated in the

top branch of Fig. 4. Then we select the scale s2 including k2-nearest neighbors
in the feature space, where we usually set s2 < s1. As observed in the bottom
branch of Fig. 4, the output local neighbor feature Ns2 (fi) ∈ RC×k2 effectively
integrates the feature f ′

is1
of the scale s1, and the channel-wise max-pooling

function is defined as

f ′
i = MaxPool

(
ϕ
([

Ns2 (fi) , f
′
is1

]))
, (11)

where ϕ is the MLP, and [·, ·] represents the concatenation operation. The use of
multi-scale layer to represent features is of great importance, as it extracts much
richer local features, enabling a more stable and robust prediction of weights
and offsets.
Loss functions. Similar to [3], we use the angle loss and the consistency loss
to train our proposed network. The angle loss measures the deviations of the
ground truth normals and the estimated ones, while the consistency loss targets
to constrain points that locate on the fitting surface. Furthermore, we regularize
the transformation matrix for much easier optimization. Our objective function
is defined as

Ltol = |ngt × n̂|+ Lcon + λ3Lreg, (12)

where λ1, λ2 and λ3 are the weights to trade off different losses, and

Lcon =
1

Npi

−λ1

Npi∑
j=1

log (wj) + λ2

Npi∑
j=1

wj |ngt,j × n̂j |

 , Lreg =
∣∣I −AAT

∣∣ .
(13)

4 Experimental Evaluation

Implementation details. We train our proposed network on the benchmark
PCPNet dataset [17] including eight models: four CAD objects and four high-
quality scanning figurines, whereas the test set has 19 different models. More
details of the used models are provided in the supplemental material. To be
fair, we adopt the same training and evaluation setup as PCPNet. Our network
is trained on 32,768 (1,024 samples by 32 shapes) random subsets of the 3.2
M training samples at each epoch. The training process is implemented with
PyTorch on Nvidia Tesla V100 GPU, using the Adam optimizer [25] with the
batch size and the learning rate equal to 256 and 1e-3, respectively. We run the
training for 600 epochs totally. The polynomial order n for the surface fitting is
3.
Evaluation criteria. To assess the performance of the proposed method, we
compare it with two types of representative state-of-the-art approaches: 1) the
geometric methods PCA [20] and n-jets [9]; 2) deep-learning-based methods in-
cluding PCPNet [17], Nesti-Net [5], IterNet [26], DeepFit [3], and AdaFit [45].
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Table 1: RMSE comparison for unoriented normal estimation to traditional
(PCA [20] and Jet [9]) and learning-based methods on the PCPNet dataset.

Aug. Ours AdaFit DeepFit IterNet Nesti-Net PCPNet Jet PCA

w/o Noise 4.45 5.19 6.51 6.72 6.99 9.62 12.25 12.29
σ = 0.125% 8.74 9.05 9.21 9.95 10.11 11.37 12.84 12.87
σ = 0.6% 16.05 16.44 16.72 17.18 17.63 18.87 18.33 18.38
σ = 1.2% 21.64 21.94 23.12 21.96 22.28 23.28 27.68 27.5
Gradient 5.22 5.90 7.31 7.73 9.00 11.70 13.13 12.81
Striped 5.48 6.01 7.92 7.51 8.47 11.16 13.39 13.66
Average 10.26 10.76 11.80 11.84 12.41 14.34 16.29 16.25

For Nesti-Net [5], the mixture of experts model is used to obtain normals. Sup-
pose the estimated normal set of the point cloud P is N (P) = {n̂i ∈ R3}NP

i=1,
then we use the root-mean-squared error (RMSE) of angles between the pre-
dicted and the ground truth normals n̂i and ni to evaluate the performance:

RMSE(N (P)) =

√√√√ 1

NP

NP∑
i=1

arccos2 (n̂i,ni), (14)

where (·, ·) is the inner product of two vectors. Additionally, we use the metric
of the percentage of good points PGP(α) with an angle tolerance equal to α to
report more detailed evaluation:

PGP(α) =
1

NP

NP∑
i=1

I (arccos (n̂i,ni) < α) , (15)

where I is an indicator function.
Synthetic test. We conduct a series of quantitative experiments to compare
the performance of all methods on the PCPNet dataset [17], in which the point
clouds are contaminated by different noise levels with varying standard deviation
σ. Besides, we perform experiments on two different types of point density to
simulate the effects of distance from the sensor (Gradient) and the local occlu-
sions (Striped). The results are reported in Tab. 1. As observed, the proposed
method attains the highest accuracy under different noise levels and varying
point density, demonstrating the effectiveness of our proposed graph-structure-
based normal estimation. AdaFit shows satisfactory results but it is relatively
sensitive to density variations. Compared with learning-based approaches, tra-
ditional methods including Jet and PCA show more deviations.

We further evaluate the normal estimation performance on the PCPNet using
the percentage of good points (PGPα) metric. The results are reported in Fig. 5.
It can be noted that the proposed method has the overall best performance
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Fig. 5: Comparison of the proposed method with state-of-the-art learning-based
approaches regarding the percentage of good points (PGPα).

Table 2: Statistics of the angle RMSE on the real-world SceneNN dataset [22].

Method Ours AdaFit DeepFit PCPNet

Average 21.33 22.61 24.59 27.27

under different test settings, meaning that it achieves more accurate normal
estimation. The normal prediction results of our method is visualized in the left
panel of Fig. 6. The right panel of Fig. 6 exhibits the angular error in each
test point cloud for all methods, where it can be seen that our proposed method
obtains lower RMSE. Besides, it is quite robust against challenging regions, such
as sharp edges and corners.

Real-world test. We also assess the effectiveness of our method on real-world
datasets to demonstrate its generalization and stability. We adopt the NYU
Depth V2 dataset [38] for test. It contains 1,449 aligned and preprocessed RGBD
frames, which are transformed to point clouds before applying our method. Note
that all compared methods are only trained once on the PCPNet dataset. Com-
pared with synthetic data, normal estimation of real-world scanning data are
more challenging due to the occlusion and varying noise patterns. In particular,
the noise often has the same magnitude as some of the features. Like most real
datasets, there is no ground truth for each point.

As shown in Fig. 7, our proposed method is comparable to AdaFit on pre-
serving fine details, meanwhile its performance is better than other compared
approaches that typically result in over-smoothing results. However, to a certain
extent, this also leads to the sharp extraction of scanning artifacts, as seen on
the walls of the scanned room and the refrigerator surface in Fig. 7.

We further validate the proposed model on the SceneNN dataset [22], which
contains 76 scenes re-annotated with 40 NYU-D v2 classes collected by a depth
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Noise Density

None Low Med High Gradient Striped

Ours AdaFit DeepFit NestiNet PCPNet

3.92 4.04 4.92 5.88 9.07

12.87 17.04 19.30 19.29 24.26

8.53 11.87 14.01 16.33 23.63

Fig. 6: Left: Normal estimation under four different noise levels (Columns one–
four), and varying point density (Columns five–six). We map the normals to
RGB for easy visualization. Right: Illustration of the normal estimation errors
for three different point clouds. The errors are mapped to a heatmap ranging
from 0◦ to 60◦. Quantities under the point clouds are the corresponding RMSE.

Table 3: Complexity comparison of learning-based normal estimators.

Aug. params(M) Model size(MB) Avg error

PCPNet 21.30 85.41 14.56
Nesti-Net 170.10 2,010.00 12.41
DeepFit 3.36 13.53 11.80
AdaFit 4.36 18.74 10.76
Ours 4.06 16.38 10.26

camera with ground-truth reconstructed meshes. We obtain the sampled point
clouds and compute ground-truth normals from the meshes. The statistical angle
RMSE of all methods are reported in Tab. 2. Thanks to the integration of more
local neighbor features, our method significantly outperforms all competitors
and achieves the state-of-the-art performance. We visualize the normal error of
a random scene in Fig. 8.

Computational complexity. We further compare the complexity of our model
with state-of-the-art approaches, where the number of parameters of each method,
their model size, and the average RMSE are reported. Tab. 3 indicates that Deep-
Fit has the smallest computational complexity, but its RMSE is relatively large.
Instead, the proposed method has the lowest average error along with compara-
ble complexity of DeepFit, thereby it achieves a good balance between accuracy
and complexity.
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(a) Ours (b) AdaFit (c) DeepFit (d) PCPNet

Fig. 7: Visualization of the normal estimation result on the NYU Depth V2
dataset. The second row is the zoom-in images of the red box in the first row.
Our method embraces better generalization to this dataset while retains more
details and sharp edges than others, yet the scanning artifacts are also kept and
visible. We map normals to RGB and then project them to the image.

(a) Scene (b) Ours (c) AdaFit (d) DeepFit (e) PCPNet

Fig. 8: Normal estimation for a real-world scene. The errors are mapped to a
heatmap ranging from 0◦ to 60◦. For (b)-(e), the normal errors are 26.03, 27.08,
28.86 and 30.83, respectively.

Comparison with DGCNN. We compare our network with the baseline back-
bone DGCNN [39], which can be seen as a standard graph convolution version
of our proposed method. To be fair, we train DGCNN on the PCPNet dataset
to predict point-wise weights and offsets. The neighborhood size and the jet or-
der of the two methods are the same and equal to 256 and 3, respectively. The
left panel of Tab. 4 summarizes the comparison results, where our method out-
performs DGCNN in various settings, such as different noise levels and varying
point density, demonstrating the overall advantages of our designed network.

Robustness against the Jet orders. We also investigate the influence of the
Jet order for normal estimation in our method. To this end, we set n = 1, 2, 3, 4,
and the neighborhood size is fixed as 256 points. Tab. 5 shows the RMSE on the
PCPNet dataset. As observed, with Jet order increasing, our method gradually
produces more accurate normal estimation. Even under lower Jet order, the
estimated normals are still comparable to DeepFit [3] and AdaFit [45] as reported
in Tab. 1, which shows our method is quite robust against Jet orders. Tab. 5 also
records the ablation study results of our proposed multi-scale layer, from which
we conclude that the multi-scale layer effectively fuses richer geometric features
hence assures more accurate normal estimation.
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Table 4: Left: RMSE comparison of the proposed method with DGCNN [39] on
the PCPNet dataset. Right: Effect of the adaptive module.

Aug. Ours DGCNN

w/o Noise 4.49 5.47
σ = 0.125% 8.80 8.90
σ = 0.6% 16.54 16.57
σ = 1.2% 22.69 22.85
Gradient 5.15 6.19
Striped 5.28 6.52
Average 10.49 11.08

Aug. Graph-block

with adaptive module ✓
w/o Noise 4.87 4.56
σ = 0.125% 8.94 8.87
σ = 0.6% 16.58 16.57
σ = 1.2% 22.83 22.77
Gradient 5.60 5.33
Striped 5.77 5.38
Average 10.74 10.58

Table 5: RMSE comparison with different Jet order n on the PCPNet dataset.

Aug. n = 1 n = 2 n = 3 n = 4

Graph-block ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-scale ✓ ✓ ✓ ✓
w/o Noise 5.02 4.60 5.26 4.40 4.56 4.49 4.80 4.34
σ = 0.125% 9.15 8.97 9.08 8.76 8.87 8.80 9.00 8.85
σ = 0.6% 16.65 16.59 16.60 16.54 16.57 16.54 16.61 16.48
σ = 1.2% 22.75 22.74 22.88 22.73 22.77 22.69 22.87 22.69
Gradient 5.85 5.36 5.74 5.23 5.33 5.15 5.60 5.06
Striped 5.93 5.49 5.95 5.36 5.38 5.28 5.59 5.22
Average 10.91 10.63 10.92 10.50 10.58 10.49 10.75 10.44

Table 6: Investigation on the neighbor size k on normal estimation.

Aug. k = 256 k = 500 k = 700

Graph-block ✓ ✓ ✓ ✓ ✓ ✓
Multi-scale ✓ ✓ ✓
w/o Noise 4.56 4.49 4.80 4.45 4.78 4.83
σ = 0.125% 8.87 8.80 8.90 8.74 8.77 8.70
σ = 0.6% 16.57 16.54 16.16 16.05 15.99 16.04
σ = 1.2% 22.77 22.69 21.80 21.64 21.45 21.36
Gradient 5.33 5.15 5.45 5.22 5.50 5.51
Striped 5.38 5.28 5.90 5.48 5.78 5.61
Average 10.58 10.49 10.50 10.26 10.38 10.34

Robustness against the neighborhood size. We also conduct experiments
on the PCPNet dataset to test the robustness of the proposed method against the
neighborhood size k = 256, 500, 700. The default Jet order n = 3 is used. From
Tab. 6, we see that the average RMSE is relatively stable and changes around
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10.50. There is no significant fluctuation even under different noise levels and
varying point density. Hence we can use k = 256 for general normal estimation
tasks. Note that AdaFit [45] uses a fixed large patch size (k = 700) for training,
which usually consumes more time and computing resource. The ablation study
of the multi-scale layer in Tab. 6 again evidences its advantages.
Effect of the proposed adaptive module. The designed adaptive module on
the basis of attention mechanism can effectively improve the normal estimation
precision. We implement ablation study to verify this and the results are reported
in the right panel of Tab. 4, in which the neighborhood size is set as 256 and the
jet order is equal to 3. It can be seen that by adding an adaptive module, the
network returns more accurate normals, particularly, it effectively reduces the
influence of the uneven point density, which can be concluded from the cases of
Gradient and Striped.

5 Conclusion

We presented an accurate and robust pipeline for normal estimation of unstruc-
tured 3D point clouds, which achieves state-of-the-art performance compared
with competing approaches. Our contribution is highlighting the local neighbor-
hood relationships for normal estimation which are usually neglected by previous
methods, meanwhile, we invoke graph convolutional learning to efficiently encode
such situation. Moreover, based on the attention mechanism, we introduce an
adaptive module on top of the graph block, to effectively combine the point
features with their local neighbor features. As demonstrated, this operation sig-
nificantly improves the network’s robustness against point density variations.
Together, we leverage the multi-scale layer to extract richer geometric features
and consequently enhance the normal estimation precision.

Extensive experiments are conducted on a wide variety of datasets from syn-
thetic to real-world data. Results demonstrate that our method achieves the
state-of-the-art performance in accuracy and robustness on the benchmark PCP-
Net dataset, and shows quite stable generalization ability on the real-world NYU
Depth V2 scenes, which suggests its potential as a fast normal estimation tech-
nique. In the future, we will customize the proposed method for CAD models,
especially for surface reconstruction and denosing from scanned point clouds.
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