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Abstract. This paper presents a novel coarse-to-fine multi-view stereo
(MVS) algorithm called importance-sampling-based MVSNet (IS-MVSNet)
to address a crucial problem of limited depth resolution adopted by cur-
rent learning-based MVS methods. We proposed an importance-sampling
module for sampling candidate depth, effectively achieving higher depth
resolution and yielding better point-cloud results while introducing no
additional cost. Furthermore, we proposed an unsupervised error dis-
tribution estimation method for adjusting the density variation of the
importance-sampling module. Notably, the proposed sampling module
does not require any additional training and works reasonably well with
the pre-trained weights of the baseline model. Our proposed method
leads to up to 20× promotion on the most refined depth resolution, thus
significantly benefiting most scenarios and excellently superior on fine
details. As a result, IS-MVSNet outperforms all the published pa-
pers on TNT’s intermediate benchmark with an F-score of 62.82%.
Code is available at github.com/NoOneUST/IS-MVSNet.
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1 Introduction

Multi-view stereo (MVS) is one of the most fundamental computer vision chal-
lenges. MVS aims to reconstruct the 3D structure of scenes from multiple 2D
image slots taken at different angles and positions. Most existing MVS algorithms
formulate the reconstruction task as a problem of maximizing the geometric con-
sistency among views. Inspired by the great successes of deep learning in visual
perception [7, 11, 17], MVSNet [27] introduced convolutional neural networks
(CNNs) for better reconstruction quality. While these learning-based methods
are proven effective, they encountered difficulties handling large-scale scenes due
to the heavy computational overhead. For example, the maximum resolution of
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Fig. 1: Model structure of IS-MVSNet. At stage s = 1, we uniformly sample depth
candidates. At each stage s > 1, we first estimate the former error distribution
on the whole dataset, then we sample depth candidates according to the former
prediction and error distribution. Next, we establish a cost volume at the sampled
depths. Afterward, we adopt a 3D CNN to estimate the probability of each
sampled depth to be true. The depth prediction (purple point) is calculated
as the dot product of the sampled depths and the corresponding probability
estimations.

MVSNet is limited to 1152×864×192 (width, height, depth) given a GPU with
11GB graphics memory [3]. Follow-up works [6,29] partially eased the resolution
constraints via predicting the depth maps in a coarse-to-fine manner. Specifi-
cally, these papers start from a low-resolution depth prediction, then gradually
enlarge the resolution while shrinking the depth range and reducing the candi-
date depth number. In the end, we can obtain a depth prediction with a higher
resolution. The basic assumption behind these coarse-to-fine algorithms is that
the coarse prediction is a reliable ground truth estimation.

Even with the coarse-to-fine strategy, the depth resolution is still a crucial
factor preventing us from high accuracy and efficiency at the same time [4]. We
argue that the existing coarse-to-fine algorithms [6, 26, 29] did not fully use the
reliable former prediction assumption because these methods equally treat each
candidate within the depth range. In this paper, instead, we put more effort into
the most promising candidates. Then, the new problem is to distinguish which
depths are the most trustworthy. Although the coarse prediction is assumed to
be close to the actual depth, it is not 100% accurate. Thus, towards a more
precise localization of the ground truth, it becomes crucial to estimate the error
distribution of the coarse prediction.

Based on such considerations, we propose a novel MVS algorithm named
importance-sampling-based MVSNet (IS-MVSNet), introducing an effective can-
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didate depth sampling strategy to conduct a more precise depth prediction via
significantly enlarging the depth resolution around the ground truth in a cost-free
manner.

Inspired by the importance sampling theory [12], we sample the candidate
depths following the estimated error distribution of the last stage instead of
blindly treating the error distribution uniform as all the existing coarse-to-fine
approaches. If we can estimate the error distribution effectively, the new depth
prediction will undoubtedly be more accurate. Towards a general estimation
strategy of the error distribution, we fit it with a simple but effective uni-modal
probability density function. For better local consistency, IS-MVSNet adopts
a geometric interval sequence to place hypothesized depths. In this way, we
significantly increase the depth resolution at the ground truth. In most cases,
our method samples more densely around the previous stage’s prediction while
giving less attention to the furthest points. Our sampling strategy outperforms
the uniform-sampling-based solution adopted by the existing models in most
cases while introducing no additional computational overhead.

Besides the importance-sampling-based strategy, we propose an unsupervised
algorithm to estimate the error distribution based on photometric consistency.
In this way, our model becomes adaptive to new datasets. With these properties,
IS-MVSNet generalizes very well on various unseen scenarios.

Finally, our extensive experiments on the most popular MVS datasets, in-
cluding Tanks & Temples [10] (TNT), ETH3D [19], and DTU [1], demonstrate
IS-MVSNet’s superiority over current SOTAs. With an F-score of 62.82%, IS-
MVSNet surpasses all the published MVS algorithms on TNT’s intermediate
benchmark by a clear margin.

2 Related Work

Multi-view stereo has been studied for decades as a fundamental computer vision
task. Before the prosperity of deep learning, there had been various hand-crafted
methods [5, 18, 21]. Despite the traditional solutions’ success, learning-based al-
gorithms provide better semantic insights and are more robust in illumination
and parallax.

As the first learning-based MVS algorithm, SurfaceNet [8] suffers significant
GPU memory overhead and applicable restricted scenarios due to the divide-
and-conquer framework and the adopted 3D CNNs. Most modern models in-
herit the main framework proposed by MVSNet [27] to ease the constraints
above. MVSNet separates the depth map prediction from the point cloud fusion
and establishes a differentiable end-to-end depth prediction network contain-
ing four sequential sub-steps: representation learning for input views, geometric-
consistency-based scoring at hypothesized depths, scoring refinement, and depth
regression. Although MVSNet demonstrates a practical and universal pipeline,
its performance is intensively restricted by the image resolution and depth sam-
pling. Specifically, MVSNet can only achieve an F-score of 43.48% on a GPU
with 11GB of graphics memory.
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For the sake of high-quality, large-scale 3D reconstruction, the follow-up pa-
pers generally ease MVSNet’s resolution barrier in two ways: RNN-based [24,25]
and CNN-based [4,6,26]. The RNN-based methods utilize GRU or LSTM instead
of CNN to regularize the cost volume. While the RNN-based models trade tem-
poral overheads for spatial advantages, the CNN-based models generally inherit
the coarse-to-fine framework proposed in [16].

CasMVSNet [6] first sparsely samples hypothesized depths from a wide range
and generates a rough depth estimation, then repeatedly shrinks the depth
range and refines the depth prediction. CVP-MVSNet [26] tunes the depth range
based on the image resolution. UCSNet [4] decides the depth range according to
the former stage’s confidence. However, its depth resolution may be lower than
other fixed-depth-range methods because of its unstable depth range determin-
ing strategy [14].

In this paper, we inherit both the learning-based framework and the hierar-
chical pipeline. However, we promote the depth resolution around the ground
truth via non-uniformly sampling of the candidate depths. Specifically, inspired
by the importance sampling theory, we first unsupervisedly estimate the pre-
vious stage’s error distribution, then based on which, we sample the current
stage’s candidate depths. Compared to CasMVSNet, we retain both the depth
range and the depth number while sampling at different locations. Compared to
CVP-MVSNet and UCSNet, we aim to find better candidates within an arbi-
trary depth range while not caring about the depth range or the depth number
itself. There are also non-MVS methods considering candidate selection. For ex-
ample, AdaBins [2] assumes the model can learn how to tune the bin density
with an additional sub-network. UASNet [14] and NeRF [15] first infer an initial
prediction, then sample based on it. We argue these methods generalize worse on
unseen datasets because a) UASNet, UCSNet, and NeRF estimate distributions
for every pixel individually, which is difficult. We estimate the distribution of
the whole dataset, which is statistically more stable and accurate; b) we can
unsupervisedly adjust the sampling strategy on unseen datasets, but UASNet
and UCSNet cannot, thus are easy to overfit.

3 Methodology

In this section, we first present the main structure of IS-MVSNet and then
provide a comprehensive introduction to the model’s details. Following Cas-
MVSNet [6] and VisMVSNet [29], IS-MVSNet inherits a coarse-to-fine network
structure. The overall framework of our model is shown in Fig. 1. Firstly, IS-
MVSNet adopts a feature pyramid network [13] (FPN) to extract the hierarchical
representations for both the reference and source images. The FPN allows IS-
MVSNet to capture both the global contexts and the local pixel-wise details.
Then, a group of hypothesized depths is sampled for further evaluation.

For the coarsest stage s = 1, we uniformly sample hypothesized depths within
the pre-defined depth range. For stages s > 1, we propose an importance-
sampling-based hypothesized depth selection strategy, which is formally de-
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scribed in Sec. 3.1. This strategy provides IS-MVSNet with much higher sam-
pling effectiveness without sacrificing efficiency. In Sec. 3.2, we propose an un-
supervised method to estimate appropriate hyper-parameters for importance
sampling.

After this, we project the source feature maps to the reference view at the
chosen hypothesized depths and calculate the inter-view matching cost at each
hypothesized depth to form a cost volume. Next, we adopt a 3D CNN to reg-
ularize the cost volume and predict the probability of each hypothesized depth
as the ground truth. Finally, the current stage’s depth prediction is calculated
as the inner product of the depth samples and the corresponding probability
predictions.

3.1 Importance-sampling based hypothesized depth selection

As a coarse-to-fine algorithm, IS-MVSNet gradually refines the depth prediction.
Given stage s > 1, although the former prediction Ds−1

p is generally close to the
actual depth dgt, there is still a gap between them. Suppose we can estimate each
pixel’s depth prediction error and further sample hypothesized depth around
the ground truth with greater resolution. In that case, the model’s capability of
capturing fine details can be immensely enhanced.

Although it is difficult and impractical to estimate the error for each pixel, we
propose to estimate the error distribution for the whole dataset and adjust the
hypothesized depth sampling accordingly. While all the existing MVS algorithms
did not consider the error estimation and blindly treated the prediction error as
a uniform random variable. In IS-MVSNet, we propose a method to find out ns

promising candidate depth values {dsi}
ns
i=1 for each pixel at stage s > 1, based

on both the former stage’s depth prediction Ds−1
p and the probability density

function (PDF) fs−1
e (δ) of the depth prediction error δ ∼ ∆s−1

p = dgt −Ds−1
p ,

where dgt denotes the pixel’s real depth, estimated on all the pixels within the
dataset. Then, we sample at {dsi}

ns
i=1 to generate a more precise depth prediction

Ds
p =

∑ns

i=1 d
s
i · p(dsi ), where p(dsi ) denotes the probability that the candidate

depth dsi ∈ {dsj}
ns
j=1 is the nearest neighbor of dgt.

In this way, we can locate the most promising candidate depths more precisely
and then allocate more attention to them. The result is that depth precision gets
promoted due to the finest depth resolution increment around the ground truth.

Error formulation The first problem is how to formulate the error distribution.
We argue it is reasonable to approximate the error PDF as a uni-modal function
for three reasons. Firstly, since many factors influence the prediction error, the
central limit theorem [9] suggests that the error tends to follow a zero-mean
uni-modal distribution. Secondly, the coarse prediction is generated via uniform
sampling, which leads to unbiased estimation [12]. Thirdly, our experiments on
various real datasets verify that the error indeed follows a uni-modal distribution
with a mean close to zero. Notably, we do not require the former stage to give a
uni-modal probability prediction for a given pixel’s hypothesized depths. Instead,



6 L. Wang, Y. Gong, X. Ma, Q. Wang, K. Zhou, L. Chen

we prefer the distance from the actual depth to the depth prediction calculated
from all the hypothesized depths to follow a uni-modal distribution.

Suppose most pixels’ depths are correctly estimated in the former stage, it is
clear that our method outperforms uniform sampling. In Fig. 4d, our experiments
on real datasets show that sampling following zero-mean Gaussian distribution
indeed significantly surpasses uniform distribution. Moreover, even in extreme
cases where most pixels’ depths are wrongly estimated in the former stage, sam-
pling following Gaussian distribution benefits the majority of pixels by providing
a higher sampling density at these pixels’ actual depths. Even if we do not es-
timate the mean and sample following a zero-mean Gaussian distribution, our
method still benefits more pixels than uniform sampling. Our sampling method
is better or comparable to uniform sampling even in the regions containing the
most wrong former predictions, e.g., repetitive and textureless regions, small and
thin objects distant from backgrounds.

Discrete interval Compared to sampling from a continuous PDF, discretized
intervals have two advantages. First, given a limited depth number, e.g., 8, dis-
cretized intervals lead to a sampling density more stable and closer to the actual
error distribution than i.i.d. sampling. Second, discretized intervals benefit the
convolutions because the neighboring pixels have similar sampled depths, and
the spatial correlation is crucial for convolution.

We further propose to sample the candidate depths following a pre-defined
interval sequence unevenly based on such considerations. Precisely, the error
PDF should control the depth interval: in positions with larger PDF, the inter-
val should be smaller; otherwise, it should be larger. Let µs−1

e denote the mean
error at stage s − 1, then the depth interval close to Ds−1

p + µs−1
e should be

smaller, otherwise larger. We adopt a simple and typical geometric sequence to
fit the interval pattern to satisfy the requirement. Note that other sequences with
similar trends are also acceptable as if they have similar properties with a Gaus-
sian distribution N(µs−1

e , σs−1
e ), i.e., both have only one single mode at µs−1

e and
the sequence has a parameter with similar effect as σs−1

e of N(µs−1
e , σs−1

e ). In
addition, it is unnecessary to strictly force the interval sequence to converge to
N(µs−1

e , σs−1
e ) when the number of intervals → ∞. For example, the arithmetic

sequence also works well. In this way, we sample the depths following the er-
ror distribution while preserving the local consistency. Our detailed importance
sampling algorithm is described below.

Detailed algorithm We use discretized intervals to put depth hypotheses in the
depth range rather than directly sampling depths from a continuous PDF. In the
first stage, we divide the whole depth range R1 into n1 − 1 equivalent intervals
of size R1/n1−1 because there is no prior unbiased depth estimation given at
stage s = 1. In the following stages s ∈ {2, 3, . . .}, we adopt a trivial geometric
progression for generating the depth hypothesis with promoted sampling density
in the central area. The discretized intervals are parameterized by ks, a hyper-
parameter determining the shape of the intervals. As illustrated in Fig. 2, the
minimum interval is reduced to 1

ks
and the change velocity of interval lengths is
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cs, which is controlled by ks. A larger ks means to sample more densely near the
rectified former prediction Ds−1

p + µs−1
e . When ks > 1, the central hypothesized

depths have intervals reduced to 1/ks, while the fringing depths have intervals
enlarged. In other words, the central interval rs/ks gets smaller than the uniform
sampling interval rs by a factor of 1/ks. When ks = 1, our importance sampling
down-grades to uniform sampling. When 0 < ks < 1, our method can deal with
the case that most former predictions are wrong.

To be specific, the depth intervals form a symmetric geometric progressions
T = [ 1

ks
rsc

ns
2 −1

s , · · · , 1
ks
rsc

2
s,

1
ks
rscs,

1
ks
rs,

1
ks
rscs,

1
ks
rsc

2
s, · · · , 1

ks
rsc

ns
2 −1

s ], where

tj = 1
ks
rsc

|ns
2 −j|

s is the jth interval, rs = Rs

ns−1 is the depth interval in uniform
sampling, and cs is the common ratio between adjacent intervals. Since we want
to keep IS-MVSNet’s depth range and the number of hypothesized depths the
same as those of the baseline model, i.e.,

∑ns−1
i=1 ti = Rs, cs is uniquely controlled

by ks, rs, and ns according to Eq. (1). In practice, cs is numerically calculated
as the root of Eq. (1).

c
ns
2

s − 1 =
1

2
(ksns − ks + 1)(cs − 1) (1)

The depth candidates are defined uniquely for each pixel. To be specific, first,
each pixel has its own set of discrete depth candidates defined by the interval
sequence; second, the intervals between depth candidates and the depth range R
(i.e., the sum of intervals) are consistent among all the pixels in terms of sizes;
third, the center position of the depth range R along the depth axis is set to
each pixel’s previous depth estimate Ds−1

p . As a result, each pixel has a unique
set of depth candidates whose intervals are but the same among pixels; fourth, if
the mean error µs−1

e is estimated, the position of the range is further "rectified"
to Ds−1

p + µs−1
e .

3.2 Unsupervised error distribution estimation

In IS-MVSNet, we introduce two new hyper-parameters ks and µs, to adjust the
sampling function gs(x)’s shape in stages s > 1. In practice, the depth estimation
error concentratedly distributes around zero. Thus, in default, we treat the mean
error µs = 0 and only estimate ks. However, the ks estimation solution proposed
in this section is also applicable to µs. If we want to estimate both ks and µs,
we first fix ks and estimate µs, then fix µs and estimate ks.

As analyzed in Sec. 3.1, the optimal ks can be uniquely determined by min-
imizing the sampling function gs(x)’s difference to the actual error distribution
with the true depths known. However, we do not know the actual depth in
real scenarios, and the scale, illumination, and camera intrinsics are distinct in
different datasets. Thus, it is necessary to estimate a ks for each dataset. We
treat the matching costs as cues for the actual depths and demonstrate that
estimating the error distribution is equivalent to minimizing the matching costs,
which is always obtainable. This section proposes a general unsupervised hyper-
parameter ks selection strategy, making the importance-based sampling module
hyper-parameter-free in all scenarios.
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Fig. 2: The illustration of depth selection given a depth number of 6. In our
sampling strategy, the depth range is retained the same. The minimum depth
interval is reduced to 1

ks
and the interval lengths are increasing at the ratio of

cs, which is uniquely controlled by ks following Eq. (1). A greater ks leads to
a smaller minimum interval, a greater cs, and a higher changing velocity of the
interval lengths.

Fig. 3: The illustration of the error distribution estimation module. We evaluate
k with the photometric loss and apply a ternary search to find the optimal k
following Algorithm 1 and Algorithm 2.

Algorithm 1: Unsupervised k selection
Data: kl: the minimum hypothesis k,

kr: the maximum hypothesis k
Result: k∗

e : the estimated optimal k
1 while within the allowed iterations do
2 kmid ← kl+kr

2
, kmidmid ← kmid+kr

2
;

3 Measure the photometric cost Cl, Cr, Cmid, Cmidmid with Algorithm 2;
4 if Cmid < Cmidmid then
5 kr ← kmidmid;
6 else
7 kl ← kmid;
8 end
9 end

10 k∗
e ← argmin

k
(Cl, Cr, Cmid, Cmidmid) % the minimum C must be in the four;
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Recall that in MVS, the input 2D images and the camera parameters are
always obtainable, and photometric consistency exists among different views.
Given a 3D point P with the depth dr and projection Pr in the reference view,
then, P ’s projection in the vth source view Pv’s coordinate can be computed
as Pv = Hv(dr)Pr, where Hv(dr) = Kv(Rv − 1

dr
tvar

T )Kv
−1 is a homography

matrix, ar denotes the reference view’s principal axis, and Kv, Rv, tv denote the
vth camera’s intrinsics, relative rotations, and translations, separately.

Algorithm 2: Photometric cost calculation
Data: k: the sampling hyper-parameter,

Fi: representation for the ith view,
V : number of views,
q: number of selected reference views,
Ds−1

p : the former stage’s depth prediction
Result: Ck: the photometric cost

1 for each scene in the dataset do
2 Randomly select q views as the reference views ;
3 for each reference view i do
4 for each source view j do
5 Sample hypothesized depths according to k and the former stage’s

depth prediction Ds−1
p following Sec. 3.1;

6 Infer each hypothesized depth’s probability with the trained model;
7 Calculate the depth prediction Ds

p for each pixel as the dot
product of the sampled depths and the predicted probabilities;

8 Map each pixel in Fj to view i with the homography matrix Hj at
Ds

p: Fj ← HjFj ;
9 end

10 Calculate the inter-view variance for all pixels:

var ←
∑

Fj
2

V
− (

∑
Fj

V
)
2
, then append var to V arSet

11 end
12 end
13 Ck ← V arset

Suppose the depth estimation Ds
p is correct, then P s

v = Hv(D
s
p)P

s
r should

represent the same 3D point as P s
r , saying that P s

r ’s feature F s
r = F s

v . Since
multiple views are given, we use the variance V ar[F s

v ] to measure their similarity.
Thus, the best depth estimation D∗

p = argmin
de

V ar[F s
v ].

As mentioned in Sec. 3.1, k determines the estimated error distribution’s
PDF. Specifically, a larger k refers to an error distribution with a smaller vari-
ance. When k = 1, the importance sampling performs the same as the uniform
sampling; only one candidate has the chance to be sampled when k = ∞. Clearly,
k = {1,∞} both lead to a non-minimum difference between the estimation and
the actual PDF. Thus, as shown in Fig. 4a, when k increases starting from 1,
the model’s performance first gets promoted, then gradually decreases. We use a
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uni-modal function to approximate the performance-k curve. Based on such con-
sideration, we proposed a ternary-search-based unsupervised hyper-parameter k
selection algorithm as described in Algorithm 1, Algorithm 2 and Fig. 3. Since
the ternary search reduces the search range by a constant ratio in each iteration,
it converges very fast. Generally, 3 to 5 iterations are enough to find a satisfying
k. Our experiments in Fig. 4c show that randomly picking two reference views
from each scan is enough for k’s determination.

4 Experiment

Our experiments adopt the most popular MVS datasets: Tanks & Temples
(TNT), ETH3D, DTU, and BlendedMVS [28]. We summarize their properties
in Tab. 1. We compare IS-MVSNet to the SOTA learning-based algorithms,
e.g., VisMVSNet [29], CasMVSNet, CVP-MVSNet, UCS-MVSNet, Patchmatch-
Net [20], and traditional algorithms, e.g., COLMAP [18], ACMM [21], ACMP [22].
On Tanks & Temples and ETH3D datasets, the metric is F-score, while on the
DTU dataset, the metric is the overall distance. Our model only requires the
number of stages S > 1. In our experiments, we set S = 3 following most ex-
isting models [6, 29] for two reasons. First, in this way, we can conduct more
fair comparisons to the mainstream models. Second, S = 3 provides satisfying
precision while maintaining high efficiency. Note that for a fair comparison, we
use the same hypothesized depth number (even) as Vis-MVSNet. Thus, Ds−1

p

is not sampled to make the sampling symmetric. It is reasonable to adopt any
progression with increasing intervals. Here we choose the geometric progression
T to approximate the error distribution instead of other sequences for the follow-
ing two reasons. The first reason is that it is both trivial and easy to implement.
The second reason is that compared with the arithmetic sequence, the inter-
val in the geometric progression increases much faster and thus can mimic the
Gaussian-like noise more accurately.

Table 1: Adopted datasets
Dataset Indoor scenes Outdoor scenes High resolution
TNT [10] Ë Ë Ë
BlendedMVS [28] Ë Ë Ë
ETH3D [19] Ë Ë Ë
DTU [1] Ë é é

Training setting Following VisMVSNet, we train IS-MVSNet on two datasets:
BlendedMVS and DTU. When the model is evaluated on the DTU’s testing
set, we train IS-MVSNet on DTU’s training set; otherwise, we train it on the
BlendedMVS’s training set. While training, the image resolution is fixed at 640×
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512, the number of source views is three, and the total number of stages is
three. We sample 32 hypothesized depths with equivalent intervals in the first
stage. While in the second and third stages, the depth intervals are determined
following our novel sampling strategy described in Sec. 3.1, and the numbers of
hypothesized depths are 16 and 8, respectively. We use an Adam optimizer to
train the model for ten epochs. The batch size is four, and the initial learning
rate is 10−3. The learning rate is decayed by a factor of 0.5 in epochs 6, 8, and
9, respectively.

Evaluation setting We evaluate IS-MVSNet on three datasets: Tanks & Temples,
ETH3D, and DTU, without fine-tuning. When synthesizing the point clouds, we
adopt the dynamic consistency checking approach [25].

Tanks & Temples Dataset When predicting the depth maps, the number of
source views is seven, the minimum consistency among views is four, the input
image size is 1920×1056, and the estimated k∗ = 10. Thus, the finest depth reso-
lution is 10× promoted. As shown in Tab. 2, IS-MVSNet surpasses all published
methods on the intermediate benchmark. Note that IS-MVSNet is superior to the
SOTA method Vis-MVSNet in nearly all scenes. At the same time, IS-MVSNet
also achieves a higher F-score than nearly all published learning-based methods
on the advanced dataset. Although ACMP [22] achieves a higher F-score on the
advanced dataset, it does not hurt our importance sampling’s superiority. This
is because ACMP’s advantage comes from its use of planar information, which
does not conflict with our sampling strategy. Without the planar information,
ACMP degrades to ACMM [21], which performs worse than our method on both
datasets. The point cloud generated by our algorithm is of high reconstruction
quality and precise details.

Table 2: F-score (higher is better) results on the Tanks & Temples [10].
Intermediate set % Advanced set %

Method Mean Fam. Franc. Horse Light. M60 Pan. Play. Train Mean Audi. Ballr. Courtr. Museum Palace Temple
COLMAP [18] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
CVP-MVSNet [26] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
CasMVSNet [6] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
UCSNet [4] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -
Vis-MVSNet [29] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 - - - - - - -
ACMM [21] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
ACMP [22] 58.41 70.31 54.06 54.11 61.65 54.16 57.60 58.12 57.25 37.44 30.12 34.68 44.58 50.64 27.20 37.43
PatchmatchNet [20] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
Ours 62.82 79.92 62.05 52.54 62.68 63.65 62.57 62.94 56.21 34.87 20.54 39.88 33.07 47.73 30.12 37.91

ETH3D Dataset The number of source views is seven, the minimum consistency
among views is four, the input image size is 3072 × 2048, and the estimated
k∗ = 6. Thus, the finest depth resolution is 6× promoted. As shown in Tab. 3,
IS-MVSNet offers significant advantages over the learning-based SOTAs PVS-
Net [23] and PatchmatchNet [20]. Although ACMP shows a higher F-score on the
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training set, our method performs better on the testing set, which is obviously
more important than the training set.

Table 3: F-score ↑ on the ETH3D high-res set at evaluation threshold 2cm.
Method Training set (%) Testing set (%)
Gipuma [5] 36.48 45.18
COLMAP [18] 67.66 73.01
PVSNet [23] 67.48 72.08
PatchmatchNet [20] 64.21 73.12
ACMP [22] 79.79 81.51
Ours 73.33 83.15

Table 4: Overall distance (mm), accuracy distance (mm), and completeness dis-
tance (mm) on the DTU testing set. All three metrics are preferred to be smaller.
Method Overall distance Accuracy distance Completeness distance
COLMAP [18] 0.532 0.400 0.664
MVSNet [27] 0.462 0.396 0.527
VisMVSNet [29] 0.365 0.369 0.361
UCSNet [4] 0.344 0.338 0.349
CasMVSNet [6] 0.355 0.325 0.385
Ours 0.355 0.351 0.359

DTU Dataset The number of source views is four, the minimum consistency
among views is five, the input image size is 1152× 864, and the estimated k∗ =
20. Thus, the finest depth resolution is 20× promoted. The 20× promotion is
compared to the finest stage of Vis-MVSNet (a typical uniform-sampling-based
method). For example, Vis-MVSNet’s finest depth resolution on DTU is 2.65
mm, while our method is 0.13 mm. It is hard to quantitatively compare to
UCSNet and UASNet because their resolutions rely on network predictions. Still,
we generalize better and are more stable, as stated in Sec. 2.

Following Vis-MVSNet, we predict depth maps of half sizes, while other men-
tioned methods are in full sizes. Since objects in DTU are pretty small, the
depth maps require higher plane resolution. In consequence, our improvements
on TNT are more significant than on DTU. As shown in Tab. 4, our method
outperforms Vis-MVSNet, where all the improvements come from our sampling
strategy. Although UCSNet shows a better overall distance, its advantage relies
on the depth range determination strategy, which does not conflict with our
depth-range-agnostic sampling algorithm.
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5 Ablation study

5.1 Error distribution

Without adopting the importance sampling strategy, we measure the coarse
stage’s error distributions on BlendedMVS and DTU and find out the distri-
bution is indeed uni-modal. We calculate the per-pixel error as the predicted
depth’s difference to the ground truth: δ = dgt − dp. Moreover, the error dis-
tribution concentrates around 0. Thus, it is reasonable to trust the last stage’s
prediction and sample more densely around it.

5.2 The effectiveness of k

To analyze k’s impact on the model’s performance, we test IS-MVSNet with
different k. The performance to k curve is shown in Fig. 4a and Fig. 4b. When
k = 1, the importance sampling is equivalent to the uniform sampling. As k
increases, the performance first gets better, then gradually decreases. It can be
observed that an extensive range of k brings about significant improvement.

(a) F-score ↑ on ETH3D (b) Overall distance ↓ (mm) on DTU

(c) Variance ↓ estimation with varying k (d) F-score ↑ with varying σ (Gaussian)

Fig. 4: Ablation studies. (a) and (b) demonstrate that importance sampling
is superior to uniform sampling under a wide range of k. (c) reveals that two
to three samples per scene are enough to estimate k accurately. (d) shows that
importance sampling does not rely on the probability approximation function
because continuous Gaussian sampling also outperforms uniform sampling.
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Reliability of coarse prediction On the ETH3D training set, the F-score at thresh-
old 50 cm is as high as 0.96, 0.97, and 0.98 at stages 1 → 3, respectively; on DTU,
the overall distance is as low as 0.73, 0.41, and 0.35 mm at stages 1 → 3, respec-
tively. Regarding the 2 cm F-score measured on the ETH3D training set, uniform
sampling achieves 0.14, 0.32, and 0.44 at stages 1 → 3, respectively, while our
sampling strategy achieves 0.14, 0.41, and 0.58 at stages 1 → 3, respectively.
These facts suggest that the coarse prediction on real datasets is reliable, and
our method works well in reality.

5.3 The necessity of interval sequence sampling

Although i.i.d. sampling is straightforward, it suffers from the local consistency
problem mentioned in Sec. 3.1. Empirically, converting the i.i.d uniform sampling
to identical interval sampling leads to 6.4% F-score improvement on the ETH3D
high-res training set. Moreover, as shown in Fig. 4d, i.i.d. sampling following
Gaussian distribution with a proper variance σ significantly outperforms uniform
distribution. These facts suggest that sampling following an increasing interval
sequence is beneficial and necessary.

5.4 Unsupervised k selection

To validate the effectiveness of our unsupervised k selection algorithm, we fix
the weights and use different k to generate the point clouds. It can be observed
in Fig. 4a and Fig. 4c that the variance curve matches very well with the F-score
curve. The minimum variance on the whole ETH3D dataset occurs when k = 6,
exactly where the highest F-score is achieved according to Fig. 4a. Moreover,
in Fig. 4c, we show that randomly evaluating two reference images from each
scene is enough for variance estimation. Thus, our hyper-parameter selection
algorithm is lightweight.

6 Conclusion

This paper presents an effective importance-sampling-based multi-view stereo
network and the corresponding hyper-parameter estimation algorithm. Both the-
oretical analysis and extensive experiments strongly prove our method’s superi-
ority. Although, like other coarse-to-fine models, our model is limited to corner
cases, in which the coarse prediction is too far from the ground truth. Our depth
sampling and hyper-parameter estimation techniques could benefit most coarse-
to-fine solutions.
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