
Supplementary Material:
Space-Partitioning RANSAC

Daniel Barath1 and Gabor Valasek2

1 ETH Zürich, Computer Vision and Geometry Group, Switzerland
danielbela.barath@inf.ethz.ch

2 Eötvös Loránd University, Budapest, Hungary
valasek@inf.elte.hu

1 Polynomial Approximation

This section gives a brief overview of three classic polynomial approximation schemes
that we experimented with to bound the range of nonlinear transformations. The deriva-
tion of the results below are detailed in standard books on numerical analysis, we list
these here for implementation reference and to make our paper self-contained. Sim-
ilarly, we briefly summarize polynomial basis conversion via fitting for the sake of
convenience.

The literature of polynomial approximations is rich, our selection of Taylor, Her-
mite, and Lagrange interpolation was motivated by ease of implementation and the ex-
istence and conciseness of error terms for these polynomials when used in the context
of function approximation.

In terms of convenience, Lagrange interpolation in Bernstein basis is the least ob-
trusive solution as it only requires the evaluation of the target function. Hermite and
Taylor expansions require higher order derivatives, which have to be either computed
formally, via automatic differentiation, or numerical differentiation. However, all solu-
tions require the ability to bound the magnitude of certain derivatives, if conservative
bounds are to be computed.

1.1 Taylor Approximation

We denote the n-dimensional Euclidean space by Rn and ∥·∥2 is the Euclidean norm.
The partial derivatives of an f : R2 → R function are ∂1f, ∂2f or fx, fy .The scalar
product of vectors a, b ∈ Rn is written as ⟨a, b⟩ = aTb.

Definition 1. Let α = (α1, . . . , αn) ∈ Nn be a multi-index. Then we define the follow-
ing operations:

– |α| = α1 + α2 + · · ·+ αn

– α! = α1! · α2! · . . . · αn!, where 0! = 1

– xα = xα1
1 · xα2

2 · . . . · xαn
n (x = (x1, x2, . . . , xn) ∈ Rn)

– ∂αf = ∂α1
1 ∂α2

2 . . . ∂αn
n f (f : Rn → R)

2 Dániel Baráth and Gábor Valasek

Definition 2. Let f : Rn → R be f ∈ Ck+1. The degree k multivariate Taylor approx-
imation of f about x0 is

Tk,x0
(x) =

∑
|α|≤k

∂αf(x0)

α!
(x− x0)

α . (1)

Theorem 1 (Taylor Approximation Theorem). Let f : Rn → R, S ⊂ Rn open and
convex, f ∈ Ck+1[S]. If a,a+ h ∈ S, then

f(a+ h) = T
(k)
f (a+ h) +Ra,k(h) (2)

where the residual Ra,k can be expressed using an adequate c ∈ (0, 1):

Ra,k(h) =
∑

|α|=k+1

∂αf(a+ c · h)h
α

α!
(3)

or, with an integral form, as

Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0

(1− t)k∂αf(a+ th)dt . (4)

Corollary 1 (Error bound of Taylor approximation). Let f : Rn → R be such that
f ∈ Ck+1[S] and M > 0 such that ∀x ∈ S : ∀|α| = k + 1 : |∂αf(x)| ≤ M . Then

Ra,k(h) ≤
M

(k + 1)!
||h||k+1

1 . (5)

In the two-dimensional case, the Taylor polynomials are written as

T
(k)
f (x, y) =

k∑
i=0

i∑
j=0

∂j
1∂

i−j
2 f(a, b)

j!(i− j)!
(x− a)j(y − b)i−j (6)

In the case of vector valued functions of two variables, the Taylor expansion natu-
rally generalizes to

T
(k)
f (x, y) =

k∑
i=0

i∑
j=0

∂j
1∂

i−j
2 f(a, b)

j!(i− j)!
(x− a)j(y − b)i−j ∈ Rn (7)

1.2 Hermite Interpolation

Definition 3 (Hermite interpolant). Let f : R → R be such that f ∈ Ck+1. The
polynomial hk(x) of degree 2k+1 is an order k Hermite interpolant at a, b ∈ R if and
only if

h
(i)
k (a) = f (i)(a) (8)

h
(i)
k (b) = f (i)(b) (9)

holds, i = 0, . . . , k and f (i) denotes the i-th derivative.

Space-Partitioning RANSAC 3

The above two-point Hermite interpolation is sometimes described as dense in the
sense that all derivatives and function values are prescribed up to a fixed order and
there are no gaps, that is, missing derivatives. It can be easily seen that the Hermite
interpolation polynomial is unique. More importantly, its error characteristics are given
by

Theorem 2 (Error bound of Hermite interpolation). Let f : R → R be such that
f ∈ Ck+1 and let hk(x) be an order k Hermite interpolant at a, b ∈ R. Then for all
x ∈ [a, b] exists a ξ ∈ [a, b] such that

f(x)− hk(x) =
f (k+1)(ξ)

(k + 1)!
(x− a)k+1(x− b)k+1 . (10)

Oftentimes, it is more convenient to bound the above as a function of the b−a width
of the domain. The maximum of the function is attained at the midpoint of the interval
and straightforward substitution gives the resulting modified bound. The above holds
for vector valued functions as well but similarly to the Taylor case, the 1-norm has to
be used.

In our case, we approximate the image of the cell boundary curves, thus the single
variable error term is sufficient.

1.3 Lagrange Interpolation

By Lagrange interpolation we refer to the interpolation of a f : [a, b] → R, [a, b] ⊂ R
function at some prescribed a = x0 < x1 < · · · < xk = b points by polynomials. Then
the following holds

Theorem 3. If pk(x) is a polynomial that interpolates f : [a, b] → R, [a, b] at a =
x0 < x1 < · · · < xk = b and f ∈ Ck+1[a, b], then for any x ∈ [a, b], there exists a
ξ ∈ (a, b) such that the following holds:

f(x)− pk(x) = (x− x0) · · · · · (x− xk)
f (k+1)(ξ)

(n+ 1)!
. (11)

There are ways to re-phrase the above in terms of differences, should the target
function not meet the continuity assumptions of the theorem but we did not experiment
with the practical applicability of these.

As we have no control over the magnitude of f (k+1)(ξ), the only way to minimize
the error in (11) is to find xi ∈ [a, b] nodes that minimize Πk

i=0(x− xk) over [a, b].

Definition 4 (Chebyshev polynomials). The Chebyshev polynomials over [−1, 1] are
defined recursively as

T0(x) = 1, (12)
T1(x) = x, (13)

Tk+1(x) = 2xTk(x)− Tk−1(x) (14)

for k ≥ 1.

4 Dániel Baráth and Gábor Valasek

Theorem 4 (Interpolation at Chebyshev nodes). If pk(x) is a polynomial that in-
terpolates f : [−1, 1] → R, f ∈ Ck+1[a, b] at the roots of Tk+1(x), that is, xi =

cos
(

2i+1
2k+2

)
, i = 0, 1, . . . , k, then

|f(x)− pk(x)| ≤
1

2k(k + 1)!
max

t∈[−1,1]

∣∣∣f (k+1)(t)
∣∣∣ . (15)

This is the best upper bound if we can only vary the location of the xi interpolation
nodes.

If the function is defined over an arbitrary [a, b] interval, the Chebyshev nodes sim-
ply have to be affinely mapped from [−1, 1] to [a, b] to compute the necessary Cheby-
shev nodes as follows:

xi =
a+ b

2
+

b− a

2
cos

(
2i+ 1

2k + 2

)
. (16)

2 Bounding Polynomials

2.1 Properties of Bézier Curves

Let bi ∈ Rd, (i = 0, 1, . . . , n) denote the control points of a d-dimensional Bézier
curve. The parametric equation of the curve is

b(t) =

n∑
i=0

biB
n
i (t) , t ∈ [0, 1] , (17)

where Bn
i (t) are the Bernstein polynomials over [0, 1], i.e.

Bn
i (t) =

(
n

i

)
ti(1− t)n−i . (18)

As the Bernstein basis is positive and forms a partition of unity (i.e. Bn
i (t) ≥ 0, t ∈

[0, 1] and
∑n

i=0 B
n
i (t) = 1), it follows that all points of the curve are contained within

the convex hull of its bi control points. Consequently, the axis aligned bounding box of
the control points is a conservative bound on the range of the curve.

Similarly, if we want to bound the magnitude of a f : R → Rn vector valued
function, we can construct a Bézier approximation to the ∥f(xi)∥ magnitude values (in
arbitrary norm) via interpolation and use the value of the largest control point (here,
scalar) to infer an approximate upper bound on the magnitude.

2.2 Interpolating Data

Recall that the evaluation of a function in a basis such as in Equation (17) can be written
in matrix form as

b(t) = [Bn
0 (t), B

n
1 (t), . . . , B

n
n(t)] ·

b0

b1

. . .

bn

 (19)

Space-Partitioning RANSAC 5

As such, when given n+1 parameter values t0 < t1 < · · · < tn and corresponding
points in space p0,p1, . . . ,pn, we can compute the bi, (i = 0, 1, . . . , n) Bézier control
points that interpolate them by solving

Bn
0 (t0) Bn

1 (t) . . . Bn
n(t)

Bn
0 (t1) Bn

1 (t) . . . Bn
n(t)

.

Bn
0 (tn) B

n
1 (tn) . . . B

n
n(tn)

 ·

b0

b1

. . .

bn

 =

p0

p1

. . .

pn

 (20)

for [b0, . . . , bn]T . One can either use a linear solver for better robustness, or use inter-
polation nodes that yield a small condition number for the matrix on the left. Cheby-
shev nodes are such a choice, up to moderate degrees (that is, up to 10), making direct
inversion possible which reduces the interpolation problem to a simple matrix-vector
multiplication. Note that if t0 = 0, tn = 1, the first and the last rows of the matrix are
e1, en+1 respectively, where ei are the canonical basis vectors of dimension n+ 1.

In our tests on Lagrange interpolation, we used the roots of the Chebyshev polyno-
mials over closed intervals, i.e. ti = 1

2

(
1− cos(iπn)

)
∈ [0, 1], i = 0, . . . , n.

2.3 Converting Hermite to Bézier Control Data

Since we approximate our mapped boundary curves from endpoint derivative data, i.e.
we use Hermite interpolation, we have to convert the Hermite basis polynomial data
to Bernstein basis. This can be done by brute-force interpolation, as in evaluating the
Hermite polynomial in n+ 1 points and multiplying the resulting vector by the inverse
of the Bernstein evaluation matrix of at the sample parameters, as shown in the previous
subsection.

A simpler approach is possible, however, by recalling that the derivatives of Bézier
curves at the endpoints are

b(k)(0) =
n!

(n− k)!
∆kb0 (21)

b(k)(1) =
n!

(n− k)!
∆kbn−k (22)

where the ∆ forward differences are defined as

∆jbi = ∆j−1bi+1 −∆j−1bi (23)

for j = 1, 2, . . . and ∆0bi = bi+1 − bi. These allow us to compute the control points
directly from the raw derivatives.

Let m(k)
i , i = 0, 1 denote the appropriate k-th directional derivatives at the two

endpoints of the boundary curve. Then from requiring

m
(k)
i = b(k)(i) , (i = 0, 1) (24)

6 Dániel Baráth and Gábor Valasek

to hold, we have

m
(k)
0 =

n!

(n− k)!
∆kb0 (25)

m
(k)
1 =

n!

(n− k)!
∆kbn−k (26)

This allows us to progressively compute the control points from the derivatives such
that the resulting curve will reconstruct them at the endpoints.

For example, the first three derivatives at t = 0 determine the b1, b2, b3 control
points from

m
(1)
0 = n(b1 − b0) (27)

m
(2)
0 = n(n− 1)(b2 − b1 −∆b0) (28)

m
(3)
0 = n(n− 1)(n− 2)(b3 − b2 −∆b1 −∆2b0) (29)

as

b1 =
m

(1)
0

n
+ b0 (30)

b2 =
m

(2)
0

n(n− 1)
+∆b0 + b1 (31)

b3 =
m

(3)
0

n(n− 1)(n− 2)
+∆2b0 +∆b1 + b2 (32)

and at t = 1 endpoint from

m
(1)
1 = n(bn − bn−1) (33)

m
(2)
1 = n(n− 1)(∆bn−1 − bn−1 + bn−2) (34)

m
(3)
1 = n(n− 1)(n− 2)(∆2bn−2 −∆2bn−3) (35)

= n(n− 1)(n− 2)(∆2bn−2 −∆bn−2 + bn−2 − bn−3)

as

bn−1 = bn − m
(1)
1

n
(36)

bn−2 = bn−1 −∆bn−1 +
m

(2)
1

n(n− 1)
(37)

bn−3 = bn−2 −∆bn−2 +∆2bn−2 −
m

(3)
1

n(n− 1)(n− 2)
(38)

	Supplementary Material:Space-Partitioning RANSAC

