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1 An Overview Video

We provide a narrated video for our paper in the supplementary material, which
highlights the key contributions of our paper. It also contains 3D visualizations
of our results.

2 Additional Ablations on Sintel

Table 1. Results for additional experiments on Sintel.

Static (Rel. L1) Dynamic (Rel. L1) All (Rel. L1) ATE RRE

MiDaS 0.305 1.468 0.697 — —

RCVD 0.427 1.505 0.847 0.164 1.151

Ours w. Binary Mask 0.281 2.268 0.765 0.135 0.713

Ours w. Zhou et al.[5] Mask 0.392 3.088 1.155 0.269 5.905

Ours, full 0.227 1.267 0.484 0.089 0.410

We provide additional movement map ablations in this section, reporting
quantitative depth results separately for the static and dynamic part of the Sintel
dataset.

First, we ablate our method using a binary movement mask(Tab.1, Ours w.
Binary Mask), using the straight-through estimator for differentiability [1].

We then compare with the movement estimation strategy by Zhou et al. [5],
which treats the movement map as weights for the L1 loss and adds a sparsity
prior to avoid trivial solutions. We empirically find the sparsity prior quite
sensitive and fail to generate good results. Here we report the result using the
default value (0.5) from Zhou et al. [5] (Tab.1, Ours w. Zhou et al. [5] Mask).

3 DAVIS: Full Results

We provide full qualitative results on the DAVIS dataset for both our method
and Robust-CVD [2]. The result is in video format and shows depth, motion
segmentation and residual flow results for both methods. Due to the size limit of
supplementary materials, 3D visualizations of the results are not included. We

https://magenta-wisp-a83d36.netlify.app/intro.mp4
https://magenta-wisp-a83d36.netlify.app/davis_results.html
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are happy to host them anonymously upon reviewer request, if the guidelines
permit.

As shown in Sec. 4.3 in the main paper, our method largely performs well
on DAVIS. However, we observed several cases where the results are suboptimal.
These include situations where the depth of moving objects is inaccurate (8
videos), videos featuring changing intrinsics over the course of the video (3 videos),
videos with fisheye lenses (4 videos), videos where initial depth is inaccurate (1
video), and situations where the movement map switches between foreground
and background (3 videos). Overall we consider 71 of 90 videos to be successes,
with 79 partial successes (camera poses are accurate, but depth maps are not),
and 11 failures. As mentioned in the main paper, there are several avenues to
improve these results, including integrating recent work in moving object depth
prediction [4].

Video results are provided separately for successful tracks, tracks with inac-
curate depth of moving objects, tracks with changing intrinsics, tracks shot with
fisheye lenses, tracks with bad depth initialization and tracks where movement
map switches.

4 Network Details

We here provide the details of the networks used in our work. For the depth
network, we only optimize the refine layers of the MiDaS V2 [3] decoder, which
consist of 8 residual convolution layers. For the movement map decoder, we use
the second-to-last feature map from the MiDaS V2 encoder, and decode it with
a light-weight network. Assuming the input image is of size H ×W , the network
specifics are:

https://magenta-wisp-a83d36.netlify.app/davis/success_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/inaccurate_fg_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/inaccurate_fg_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/changing_intrinsics_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/camera_distortion_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/camera_distortion_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/bad_init_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/lost_tracking_davis.mp4
https://magenta-wisp-a83d36.netlify.app/davis/lost_tracking_davis.mp4
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ID Operation Output Shape

Input Image – 3×H ×W

Encoder Feature – 256×H/16×W/16

C1 3× 3 Conv 128×H/16×W/16

N1 InstanceNorm 2d 128×H/16×W/16

A1 ReLU 128×H/16×W/16

U1 Bilinear Upsample 128×H/8×W/8

C2 3× 3 Conv 128×H/8×W/8

N2 InstanceNorm 2d 128×H/8×W/8

A2 ReLU 128×H/8×W/8

U2 Bilinear Upsample 128×H/4×W/4

C3 3× 3 Conv 64×H/4×W/4

N3 InstanceNorm 2d 64×H/4×W/4

A3 ReLU 64×H/4×W/4

U3 Bilinear Upsample 64×H/2×W/2

C4 3× 3 Conv 32×H/2×W/2

N4 InstanceNorm 2d 32×H/2×W/2

A4 ReLU 32×H/2×W/2

U4 Bilinear Upsample 32×H ×W

C5 3× 3 Conv 1×H ×W

A5 ELU 1×H ×W

Table 2. Details of the movement map decoder. The decoder takes in the feature
map from the MiDaS feature encoder, and outputs a single channel movement map
with the same spatial resolution as the input image.
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