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Abstract. Casual videos, such as those captured in daily life using a
hand-held camera, pose problems for conventional structure-from-motion
(SfM) techniques: the camera is often roughly stationary (not much
parallax), and a large portion of the video may contain moving objects.
Under such conditions, state-of-the-art SfM methods tend to produce
erroneous results, often failing entirely. To address these issues, we propose
CasualSAM, a method to estimate camera poses and dense depth maps
from a monocular, casually-captured video. Like conventional SfM, our
method performs a joint optimization over 3D structure and camera
poses, but uses a pretrained depth prediction network to represent 3D
structure rather than sparse keypoints. In contrast to previous approaches,
our method does not assume motion is rigid or determined by semantic
segmentation, instead optimizing for a per-pixel motion map based on
reprojection error. Our method sets a new state-of-the-art for pose and
depth estimation on the Sintel dataset, and produces high-quality results
for the DAVIS dataset where most prior methods fail to produce usable
camera poses.
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1 Introduction

Structure-from-motion (SfM) and related methods for 3D reconstruction from
monocular video are considered a relatively mature technology. They work quite
reliably for predominantly stationary scenes involving large camera motions, such
as a video of a walkthrough of a house, or a video taken from a car driving down
a street. Videos taken under “casual” conditions, however, often violate these
assumptions. The operator is often standing roughly stationary, capturing moving
subjects such as people and pets, and the video may only be a few seconds long.
Under these conditions, state-of-the-art SfM systems often fail. Worse, when SfM
does fail, it tends to fail spectacularly and produce useless results (Fig. 1).

In this paper, we introduce a new method for dense depth and 3D camera pose
estimation designed for casual videos. Our method performs a joint optimization
of cameras and 3D structure over the video, similar to methods based on bundle
adjustment [33, 1]. But in contrast to sparse feature matches typically used in such
approaches, our method optimizes dense 3D correspondences, following recent
work that fine-tunes a pre-trained depth prediction network on the input video [18,
37]. While powerful, previous fine-tuning methods require known camera poses,
and simply adding camera poses to the optimization produces poor results [16].
We reexamine this approach and show that with several careful modifications,
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Fig. 1. Structure and motion for casual videos. Given a casually shot video with
moving objects, our method estimates the structure and motion of the scene and
the camera poses. Above: input video frame. Below: 3D reconstruction of estimated
stationary points for the entire video and estimated moving points for the current
frame. On these videos, the conventional SfM system COLMAP either fails to create a
single camera track (top right), or produces incorrect results (bottom right). Note that
COLMAP is provided GT motion masks for these examples.

camera poses and the depth network can be successfully optimized together. The
pre-trained depth estimates disambiguate camera motion when parallax is small,
and the fine-tuning process produces sharp, temporally-consistent depth maps,
leading to previously unachievable quality on real-world videos (Fig 1).

One key innovation is to optimize for per-pixel movement maps that effectively
modulate the training loss in moving areas. Unlike masks based on semantic
segmentation [16, 6], the movement maps capture only the parts of the scene
that are currently moving. These movement maps, for example, allow multi-view
constraints to be enforced for stationary people and vehicles. They also help
relax the multi-view constrains for moving objects that semantic segmentation
may miss, such as unusual animals and moving background “stuff” (such as trees
swaying in the wind).

This method, which we name CasualSAM, achieves a new state-of-the-art for
simultaneous depth prediction and camera pose estimation in dynamic scenes,
while remaining competitive with prior methods on traditional SfM scenarios
featuring stationary scenes. Our method is simple, involving a single, joint
optimization with one reprojection loss term and one depth prior loss term. And,
importantly, unlike conventional SfM systems that can fail catastrophically, our
method gracefully degrades in performance on especially difficult videos. We
benchmark the approach on the Sintel [5] and TUM RGBD [28] datasets, and
show convincing qualitative results on DAVIS [24].

2 Background

Structure from motion and visual SLAM. Estimating camera poses and
scene structure from monocular video is a long-standing problem in computer
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vision and related areas. This problem is variously called structure from motion
(SfM) or visual SLAM, depending on the precise inputs and constraints [8, 26,
21] (e.g., SLAM methods often operate in real time).

The classic approach to SfM is to compute sparse 2D correspondence across
the input views, and optimize for the camera poses and sparse 3D point locations
that minimize a reprojection error given these 2D observations [32]. Some visual
SLAM methods instead seek to solve for dense or semi-dense depth per frame,
and optimize directly based on image intensities rather than sparse correspon-
dence [23, 14, 11, 10]. However, SfM methods based on reprojection or photometric
error fundamentally depend on a static scene assumption. For dynamic scenes,
the underlying epipolar constraints break down, leading to errors or failures. In
addition, these methods require parallax, and face ambiguities between rotational
and translational motion in the face of small camera motion.Previous work [36]
recovers sparse depth measures from accidental motion, but is limited in recon-
struction quality and focuses on static scenes only When faced with videos that
feature a combination of small camera motion and dynamic scene motion, classic
methods often produce completely erroneous results.

A variety of methods have integrated learned components into classic SfM or
SLAM methods. Previous works [38, 20] explored jointly optimizing depth maps,
camera poses and confidence masks for weighting the photo-metric loss during
training. These methods focus on mostly static scenes, where the confidence
mask is either intended for excluding out-of-view pixels, or based on a tuned
prior that is sensitive for joint optimization. Notable recent examples include
DROID-SLAM, which makes use of a learned bundle adjustment layer to update
camera poses and dense depth maps [30], and D3VO, which leverages modules for
learned prediction of depth, pose, and uncertainty within a bundle adjustment
framework [35]. Like D3VO and other recent methods like CodeSLAM [3], our
method leverages monocular depth prediction as a prior. However, unlike our
method, these prior works tend to be designed for and evaluated on standard
SLAM benchmarks (such as KITTI), that feature large camera motions and
dynamic content that occupies a small fraction of the field of view (if it exists at
all). We show our method, with its explicit handling of motion, leads to better
performance on datasets like TUM that feature more dramatic scene motion.

Some methods attempt to directly model dynamic scene motion. One class
of methods, exemplified by DynamicFusion, uses explicit depth sensing (e.g.,
with a Kinect sensor) to reduce the ill-posedness of the problem [22]. Other
non-rigid structure from motion methods leverage monocular video and fit a
low-dimensional model to the dynamic scene [31], but have trouble scaling to
arbitrary video featuring arbitrary motion. Our method works from standard
RGB videos and more robustly handles scene motion.

Test-time refinement of depth estimation. Recently, methods that finetune
a pretrained depth prediction network on an input video have been shown to
produce high-quality, temporally-consistent depth maps [7, 6, 18, 37]. In these
methods, the optimized variables are the weights of a deep network that predicts
the unknowns, rather than the unknowns themselves. A chief advantage of these
methods is their ability to combine a monocular depth prior with an optimization
across the entire video. These approaches can roughly be divided into methods
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Fig. 2. System overview. Our method performs a global optimization over a video,
optimizing for camera poses Ri, ti, focal length f , and the weights of a monocular depth
and movement prediction network. The principal loss (Reprojection Loss) compares
the reprojection of the depth map with the observed optical flow, while an auxiliary
loss (Depth Prior Loss) constrains the optimization to stay close to the initial depth
estimates. Both losses are weighted by the estimated movement map. Only a subset of
the weights of the network are optimized (see Sec. 3.2).

that use a self-supervised loss to learn depth, optical flow, and camera posing [7,
6], and methods that assume flow and camera poses and aim for high-quality
depth map reconstruction [18, 37].

Because the test-time loss is still based on triangulation, moving objects
remain an issue for these methods. CVD [18] assumes a mostly stationary scene,
relying on the depth prior to avoid errors due to object motion. The method of
[6] segments the video and proposes separate motion models for each segment,
while GLNet [7] derives motion from optical flow and estimated depth. Dynamic
Video Depth [37] explicitly models scene flow with an additional neural network,
but relies on accurate initial camera poses to initialize the scene flow network
from initial depth estimates. In contrast to these approaches, we model movement
as uncertainty of the reprojection accuracy. This approach is robust to camera
misalignment and does not require semantic segmentation.

Most related to our work is Robust Consistent Video Depth Estimation
(RCVD) [16]. Like our approach, RCVD optimizes for camera poses and depth
maps in a dynamic scene using a learned depth prior, driven by observed optical
flow. Unlike our method, moving objects are assumed to be masked out using
semantic segmentation. Further, RCVD does not finetune the depth network,
opting instead to refine depth using a spline-based warp. The reason given is
that finetuning the depth network requires an alternating optimization between
stochastic gradient descent for the network and global optimization for the camera
poses, which is unstable. We show that this alternating optimization can be
avoided by collecting a full gradient at each iteration before updating the network
weights (GD vs. SGD, Sec. 3.2), and demonstrate significantly improved quality
as a result (Tab. 1).
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Fig. 3. Network design and trainable parameters. Our network consists of a
monocular depth prediction network [25] with an additional movement prediction
branch. Only the weights of the coarse layers of the depth network and the movement
decoder weights are optimized. The depth prediction network is a U-net architecture
with skip connections, but the movement branch is a CNN connected only to the coarse
layers of the depth network.

3 Method

Our method takes a RGB video as input and performs a joint estimation of
camera poses, focal length, dense depth maps, and dense movement maps (Fig. 2).
There are two key design objectives for our method: (1) robustness to camera
movement featuring small translational motion and (2) robustness to significant
dynamic object motion. In Sec. 3.1, we explain how our method address these
two challenges. We also introduce a two-stage optimization process that aims to
jointly optimize networks weights and camera poses over all input frames, similar
to global bundle adjustment.

3.1 Problem Formulation

Given images of a video sequence I1, I2, ..., In, we aim to recover the corresponding
camera rotations R1,R2, ...,Rn, translations t1, t2, ..., tn, dense depth maps
D1, D2, ..., Dn, and movement maps M1,M2, ...,Mn. The movement maps are
not binary masks, but instead scalar fields whose magnitude correlates with
object motion magnitudes. We assume a pinhole camera model whose projection
center is in the middle of the image, and also aim to recover the focal length f .

Our optimization runs over a collection of pairs of frames. This collection is
different between the initialization stage and the joint optimization stage. To
illustrate our formulation, we start with a single pair of frames, Ii and Ij . As
in geometric bundle adjustment, the major signal for driving the optimization
is to make estimated depth and camera poses agree with image space pixel
correspondence. In our case, the correspondence is estimated using an off-the-shelf
optical flow algorithm. We denote the optical flow between Ii and Ij as flowi→j .
If we denote camera relative transformations from Ii to Ij as Ri→j = RjR

T
i and

ti→j = tj − ti, we can write the objective as:

Lossi→j
flow(x) = L(π(Di(x)KRi→jK

−1x̂ + Kti→j)− x,flowi→j(x)), (1)
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where L is some loss function, x is the pixel coordinate, x̂ is x in homogeneous
coordinates, π(·) is the projection operation (x, y, z)→ (x/z, y/z), and K is the
camera intrinsics matrix derived from focal length f . Note that this formulation
is equivalent to bundle adjustment using a geometric reprojection error.

However, when camera motion is dominated by rotation, as in many casual
videos, Equation 1 is less effective for optimizing Di due to the limited parallax.
This can be seen by rewriting it using disparity (1/depth) instead of depth:

Lossi→j
flow(x) = L(π(KRi→jK

−1x̂ +
1

Di(x)
Kti→j)− x,flowi→j(x)). (2)

When ti→j is small(relative to the depth Di), the loss term’s gradient w.r.t. Di

will be small due to the Kti→j term. In such cases, another constraint is needed
that keeps the depth to be consistent according to optical flow:

Lossi→j
depth(x) = L(d(Di(x)Ri→jK

−1x̂ + ti→j), Dj(x + flowi→j(x))), (3)

where d(·) denotes the depth of a 3D point in camera coordinates (x, y, z)→ z.
We use both Equation 1 and Equation 3 for our optimization.

Note that the combination of these two objectives are found effective by
CVD [18] and RCVD [16], each with their specific choice of the loss function L.
For our implementation, we use L1 for Lossflow and the ratio loss introduced in
RCVD for Lossdepth. The ratio loss has the form:

L(a, b) =

∣∣∣∣max(a, b)

min(a, b)
− 1

∣∣∣∣ (4)

Handling movement. Until now, our formulation only addresses the problem
of small camera translation, and not the problem of object motion. Most SfM
methods that handle scene motion do so through a required input motion mask
that specifies the moving regions, since pixels that belong to moving objects are
outliers in both Equation 1 and Equation 3, contaminating the optimization
process. In many cases, semantic segmentation is used as an approximation,
where objects belonging to classes that tend to move are excluded from the
optimization [16, 2]. As shown in Figure 8, semantic segments can be problematic.
For example, pixels corresponding to stationary people are often excluded, but
they are in fact helpful for depth and camera triangulation.

Instead of semantic segmentation, we aim to estimate object movement
as part of the joint optimization. We adopt the machinery of Bayesian deep
learning [13] and treat movement as the heteroscedastic aleatoric uncertainty of
the reprojection, or in other words, a spatially-varying estimate of the noise of
the depth and camera predictions. Instead of a Gaussian noise model as in [13],
we use a Cauchy distribution as we empirically find it more robust. Treating
the movement map Mi as the γ of a zero-mean Cauchy distribution, taking the
negative-log-likelihood and simplifying, the error function is:

C(x,Loss) = log(Mi(x) +
Loss(x)2

Mi(x)
). (5)
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The full reprojection loss is then:

Li→j
reproj =

1

N

∑
x

C(x,Lossi→j
flow) + C(x,Lossi→j

depth). (6)

As in [13], the uncertainty Mi is learned and allows the optimization to reduce
Mi where the loss can be minimized effectively, and increase Mi where it cannot.
Intuitively, Mi becomes a measure of how far an outlier the optical flow at x is
from the expected ego-flow, which is in turn an estimate of how much object
movement is present.

While the above method encourages an accurate movement map Mi, by design
it does not penalize inaccurate depth estimates where Mi is large. Where Mi

is large and the reprojection loss is unreliable, we fall back to the depth prior.
Specifically, we propose to constrain the depth estimate D to the initial depth
estimate Dinit using a movement-weighted version of the scale invariant loss [9]:

Li
prior =

1

N

∑
x

Mi(x)(log
Di(x)

Dinit
i (x)

+ α)2, α =
1

N

∑
x

log
Dinit

i (x)

Di(x)
(7)

as a depth prior loss. Finally, the total loss function we use for optimizing a pair
of images is:

Li,j
total = Li→j

reproj + λLi
prior, (8)

where we use λ = 1 through out the experiments. To optimize over a collection
of pairs, we average Li,j

total over all pairs for the total Loss Ltotal.

3.2 Two-Stage Optimization

Initialization. Since the depth maps from the depth prediction network are scale
and shift invariant, we need to roughly align them before the joint optimization.
Empirically, we find that calibrating only the scale is sufficient for the optimization.
Specifically, for each initial depth map Dinit

i , we assign a scale variable si and let
Di = siD

init
i when optimizing Ltotal. During this phase, the weights of the depth

network are fixed while the remaining variables are optimized.
The collection of image pairs is defined by a sliding window of 5 frames, from

the beginning of the image sequence to the end. We use all pairs of frames within
the sliding window, and optimize Ltotal for 600 iterations.

Full Optimization. After initialization, the camera poses are roughly aligned
but not yet sufficiently accurate (Table 1). We then fix the scale factors si and
optimize the weights of the depth network, letting Di = siDepthNet(Ii) while
optimizing Ltotal. In contrast to the initialization stage, in this stage we optimize
Ltotal over all the frames in the video, with a collection of images pairs covering
the entire set of images. Empirically, we find the pair sampling strategy by CVD
is simple and effective; image pair i, j is sampled if |i− j| is a power of 2. Note
that we compute a full gradient for each step and perform gradient descent (GD)
for both network weights and camera parameters, using an adaptive first-order
optimizer (Adam [15]). The per-parameter weight tuning of Adam is sufficient to
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deal with the widely varying gradient magnitudes between the camera parameters
and network weights.

Implementation Details. We use RAFT [29] to estimate optical flow and
MiDaS [25] as the depth prediction network. Since we perform a full gradient
descent over all sampled pairs of frames during the full optimization, we only
optimize the coarse layers (4 refinement layers) of the MiDaS decoder to make
computation costs manageable. The movement maps Mi are generated by a
small CNN decoder that takes as input the MiDaS encoder output (Fig. 3). The
decoder is composed of 8 convolution layers with two bi-linear upsampling layers.
More details of the networks can be found in the supplementary material.

The camera poses are represented with camera-to-world translations and
rotations. Rotations are represented in Lie Algebra so(3), and translations as 3d
vectors. Focal length f is initialized as 55mm through out all the experiments.

We use a learning rate of 1e-3 for the movement map decoder, 1e-4 for
the coarse layers of MiDaS network. For the full optimization, we accumulate
gradients over batches of 8 pairs of frames to perform full gradient descent. We
take 1800 iterations of full gradient descent for all our experiments. Since Eq. 5
is ill-defined when Mi = 0, we add a fixed bias of 0.5 to Mi when computing the
error function.

4 Results

We evaluate CasualSAM both quantitatively and qualitatively on the MPI Sintel
dataset [5], dynamic sequences from the TUM RGB-D dataset [28], and the DAVIS
video dataset [24]. We evaluate both camera pose and depth maps on Sintel,
which contains fast object and camera motion with ground truth annotations. We
evaluate camera pose accuracy on the TUM dynamic sequences, where motion
is limited but ground truth camera poses are provided. Since no ground-truth
depth or poses are available for DAVIS, we evaluate consistency between our
predictions and optical flow, and show results for 3D reconstruction.

Baselines. We compare with two state-of-the-art learning-based methods:
DROID-SLAM (DSLAM) [30] and Robust CVD (RCVD) [16]. DSLAM is a
robust SLAM system that focuses on camera localization for almost static scenes
and requires camera intrinsics as an input. RCVD is a camera localization and
depth estimation system aimed at video clips. It optimizes camera focal length
within its system and uses an off-the-shelf semantic segmentation as an approx-
imation for movement masks. We also compare with COLMAP [26, 27] as a
non-learning based baseline to demonstrate the limitations of conventional SfM.

4.1 Camera Pose and Depth Accuracy on Sintel

Camera Pose Evaluation. We compare camera pose quality against RCVD
and DSLAM. Metrics used are Absolute Translation Error(ATE), Relative Trans-
lation Error(RTE) and Relative Rotation Error(RRE). Since camera tracks in the
Sintel dataset have very different lengths (from less than 1 meter to larger than
100 meters), simply averaging over all sequences introduces bias towards long
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Table 1. Pose and depth accuracy on Sintel. We compare camera pose accuracy
on Sintel using normalized ATE and RTE (fraction of total path length) for translation,
and RRE for rotation in degrees.

Method
Pose Error ↓ Depth Error, Rel. L1 ↓ Avg. Depth Accuracy ↑

ATE RRE RTE Avg. Dynamic Static δ < 1.5 δ < 1.52 δ < 1.53

DSLAM† (GT focal)[30] 0.077 1.605 0.043 – – – – – –

Ours (GT focal) 0.036 0.190 0.008 0.440 1.151 0.191 0.651 0.792 0.863

RCVD‡ (Opt. focal)[16] 0.164 1.151 0.057 0.847 1.505 0.427 0.543 0.718 0.806

Ours (Init. only) 0.122 0.449 0.025 0.697 1.468 0.305 0.526 0.719 0.825

Ours (No uncertainty) 0.134 0.573 0.026 0.779 2.295 0.284 0.527 0.717 0.829

Ours (Opt. focal, full) 0.089 0.410 0.015 0.484 1.267 0.227 0.626 0.775 0.853

† We use the original code to run all experiments. ‡ we used the results provided by the authors.

(a) Input Video 

(c) RCVD vs. Ours

(b) DSLAM vs. Ours

Camera Y-Z coordinates

Normalized ATE over Sintel

GT Path Length: 8.55 m GT Path Length: 7.37 m GT Path Length: 0.28m GT Path Length: 0.15m

ATE: 0.416m, 0.023m

ATE:1.127m, 0.047m ATE: 0.050m, 0.007m ATE: 0.076m, 0.039m

ATE: 0.013m, 0.008mATE: 0.003m, 0.004mATE: 0.031m, 0.056m

ATE: 0.541m, 0.004m

Fig. 4. Results of camera localization on Sintel. In the top row, we plot ATE
results of CasualSAM, RCVD and D-SLAM over all the Sintel sequences, sorted by
ATE of CasualSAM without ground truth focal length. We then select 4 sequences
from low ATE to high ATE shown in (a). We plot the Y-Z coordinates of the camera
locations of each method against ground truth (b-e).

trajectories. Therefore, before calculating the metrics, ground truth trajectories
are normalized to unit length. For all methods, we align the predicted results to
the normalized ground truth tracks using Umeyama [34] alignment with scale
calibration. Five sequences are excluded from ATE and RTE calculation because
the cameras are stationary. The overall results are reported in Table 1 and
per-track statistics in Figure 4. Our method achieves 53% smaller ATE than
DSLAM given the ground truth camera intrinsics, and 46% smaller ATE than
RCVD when optimizing for focal length.
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(a) Image (b) Semantic Mask (e) Depth, RCVD(c) Movement Map, Ours (d) Mask, GT (f) Depth, Ours (g) Depth, GT

Fig. 5. Qualitative results of depth and movement map prediction on Sintel.
Given an image (a), we show semantic masks (b) used by RCVD as movement segmen-
tation proxies. Our movement map estimation is shown in (c) and ground truth masks
in (d). We also show depth maps of RCVD, CasualSAM, and ground truth in (e)-(f).
CasualSAM has more accurate estimate of both movement and depth maps.

Depth Map Evaluation. We evaluate the depth map quality against RCVD.
Because DSLAM a slam system that focuses on camera localization, it is excluded
from depth evaluation. We adopt the standard depth metrics: Absolute Relative
Error and Delta accuracy measures; for Absolute Relative Error, we report results
for static and dynamics regions separately, in addition to the average error. We
follow the standard evaluation protocol by excluding points that are further than
80 meters. Median alignment is applied for all the metric calculations. We report
quantitative results in Table 1 and qualitative results in Figure 5. Ours method
produces more accurate depth maps than RCVD for dynamics and static part of
the scenes, qualitatively and quantitatively.

Ablations We perform an ablation study on the sintel dataset, quantifying
the contribution of uncertainty map estimation and known intrinsics. Without
uncertainty map estimation, where the reprojection and prior term are replaced
with plain L1 loss, both camera pose quality and depth map quality degrades, as
all the moving objects are treated as if being static. Without known intrinsics,
the camera poses degrades compared to results using known intrinsics. However,
in the per-track statistics shown in Figure 4, this degradation is largely due
to three tracks in the entire dataset. A more detailed ablation, comparing our
uncertainty map estimation against previous works[38, 20] can be found in the
supplementary material.

Table 2. ATE on TUM dynamic sequences. Absolute Translation Error (ATE) in
meters of estimated camera poses for dynamic sequences in the TUM RGBD dataset [28].

Method s halfsphere s rpy s static s xyz w halfsphere w rpy w static w xyz

DROID-SLAM (GT focal) [30] 0.079 0.065 0.005 0.009 0.023 0.144 0.006 0.016

Ours (GT focal) 0.045 0.019 0.005 0.008 0.080 0.032 0.005 0.012

RCVD(Opt. K) 0.254 0.058 0.026 0.206 0.241 0.171 0.020 0.205

Ours(Opt. K) 0.096 0.033 0.008 0.009 0.088 0.082 0.007 0.024
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(a) Residue Flow Error over all pixels (b) Residue Flow Error, 90% quantile

RFE

(b) Residual Flow Error, 90% quantile(a) Residual Flow Error over all pixels

RFE

Fig. 6. Residual Flow Error Over DAVIS. (a) We show the Residual Flow Error
statistics over all the valid pixels in the DAVIS dataset. Even with GT segmentation,
COLMAP[27] only generates valid depth values for 10% pixels over the entire dataset.
(b) 90% of the errors of CasualSAM are below 0.5 pixels.

4.2 Camera Pose Accuracy on TUM benchmarks

We further evaluate camera pose quality of CasualSAM on the dynamic subset
of the TUM benchmarks. This subset contains 8 tracks, capturing two people
sitting and walking in front of an office desk. In addition to dynamic objects, this
sequence is challenging due to versatile camera motions. Our method is better
or on par with Droid-SLAM for 7 out 8 sequences with known intrinsics, and is
better than RCVD in all sequences when intrinsics is not known.

4.3 Depth and Pose Quality on DAVIS

The DAVIS video dataset [24] is a set of 90 short videos captured with hand-
held cameras and containing moving objects. Most of the videos are less than
10 seconds long. Though intended as a segmentation benchmark, the dataset
provides an excellent range of casual videos to test our method.

Residual Flow Error. Since no ground-truth camera poses were captured,
we instead evaluate how well the ego-flow induced by the camera motion and
the estimated depth map agree with optical flow as measured by RAFT [29].
Since DAVIS provides segmentation masks for foreground objects, we report the
differences between ego-flow and optical flow outside the mask, which is suppose
to be static through out the video. We refer to this metric as Residual Flow
Error(RFE). To give an accurate picture of the distribution of results, we plot
the cumulative distributions of errors across all pixels of the DAVIS videos in
Figure 6. Note that the RFE of CasualSAM is 53% of RCVD and 90% of the
error is less than 0.5 pixels. We show qualitative results of the RFE in Figure 7.

We also compare with COLMAP [27, 26] under RFE. COLMAP’s SfM pipeline
either failed or produced multiple tracks for 63 out of 90 videos, even when
provided the DAVIS GT segmentation as a movement mask. For the remaining 27
sequences, we run the COLMAP’s MVS pipeline for per-frame depth estimates,
which provides valid depth values for only 10% of all pixels. The RFE for the
majority of valid pixels is low, but still higher than the bottom 10% of pixels
from our method (Figure 6).
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(a) Image (b) Optical Flow (e) Our Residual Flow(d) RCVD Residual Flow(c) GT Mask

Fig. 7. Residual flow results. Given input image (a), we show its optical flow towards
next frame (b) and DAVIS GT segmentation (c). Residual flow of RCVD and ours is
shown in (d) and (e) respectively. GT segmentation is shown in grey and pixels outside
the mask should show small errors.

Movement Mask Comparison. The movement maps Mi are more sensitive
and specific than using semantic segmentation as a proxy for motion segmentation,
as shown in Fig. 8. Since the semantic segmentation is ignorant of motion cues,
it may exhibit different types of failures compared to ours.

Depth and reprojection. We show qualitative results on depth and 3D re-
construction in Fig. 9. For 3D reconstruction, we use the predicted depths and
camera poses as input to KinectFusion[12] to generate a mesh. To exclude moving
objects from this mesh, we threshold our estimated movement map at 0.5, and
use semantic segmentation for RCVD as described by the authors [16]. Our depth
maps are more plausible than RCVD. Our fusion results are cleaner as well,
suggesting our estimated camera poses and depth maps agree with each other
better than RCVD.

5 Discussion and Limitations

Our method provides high-quality camera poses and dense depth maps for a
broad range of casual videos. Compared with previous work, the method is simple
and robust: it does not require semantic labeling of moving regions, handles
videos with large and small camera motion.

There are several avenues to improve results. One is in the depth prior itself:
if the prediction of the depth CNN is particularly poor, the optimization cannot
recover (Fig. 10(b)). The MiDaS network is very powerful, but is vulnerable to
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Under segmentation

Over segmentation

Semantic instead of motion-based

(a) Frame 1 (b) Frame 2 (e) Our Movement Map(d) DAVIS GT Mask(c) Semantic Mask

Fig. 8. Learned movement map vs. alternatives. From an RGB input (a)(b), the
movement prediction network produces a map of moving regions (e), blue: not moving,
red: moving). We show three cases where semantic segmentation (c) is not accurate:
under segmentation (top), over segmentation (middle), and segmentations (or lack
thereof) of objects that are not actually moving (or moving) in the scene (bottom).

errors for unusual camera angles such as the roll present in the TUM dataset. A
more robust depth prior would similarly make our method more robust.

Currently, the camera model is a pinhole camera with a constant focal length
for the entire video. However, wide-angle, zoom, and even fisheye lenses are com-
mon in casual videos (including the DAVIS dataset; see supplemental material).
While unconstrained optimization for per-frame, multi-parameter intrinsics may
be unstable, recent work proposed CNNs for intrinsics prediction [19, 4, 17] that
could optimized similarly to our depth prior.

When the camera moves very rapidly, or when a moving object covers most
of the frame, our method can lose tracking (Fig. 10(a)). Improved uncertainty
map estimation, possibly using semantic features, may allow the optimization
maintain a consistent track across such interruptions.

Finally, our method relies on the depth prior for depth estimation in moving
regions, which may be inaccurate (Fig. 10(c)). Dynamic Video Depth [37] has
shown improved depth maps in moving regions by using an explicit estimate of
sceneflow and using it to apply multi-view constraints to moving objects, and
this approach could likely be integrated with ours.

6 Acknowledgement
The authors would like to thank Jian-bin Huang for providing the official results
of RCVD[16].



14 Authors Suppressed Due to Excessive Length

(a) Video (b) Depth, RCVD (e) Fusion, Ours(d) Fusion, RCVD(c) Depth, Ours

Fig. 9. Qualitative Results on Davis. (a) Input video. (b) Depth maps from Robust
CVD [16]. (c) Depth maps from CasualSAM (ours). (d) KinectFusion results [12] using
RCVD estimated depth maps, camera poses and motion masks (semantic segmentation).
(e) KinectFusion results using our estimated depth maps, camera poses and movement
maps.

Image 3D Reprojection

(a) Lost Tracking

(b) Failed Depth Prior
Image Movement Map 3D Reprojection

(c) Depth of Large, Fast-Moving Objects

Image Initial Depth Our Depth Image Dynamic Video DepthOur Depth GT Depth

Movement Map

Fig. 10. Limitations of our method. (a) movement estimation may fail and camera
tracking may be lost if a moving object dominates the frame (note movement map
switches between bike and background). (b) Initial depth may fail due to an unusual
camera angle, such as heavy roll. (c) Depth of moving objects may be inaccurate, as
our method relies on the depth prior in those cases.



Structure and Motion from Casual Videos 15

References

1. Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large.
In: European conference on computer vision. pp. 29–42. Springer (2010)
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