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Module Layer type K Sampling rate MLP width
Set conv layer for PCy and PC atlevel [ = 1 32 0.25 [16,16,32]
Hierarchical Point Set conv layer for PC4 and PC) at level [ = 2 24 0.5 [32,32,64]
Feature Abstraction Set conv layer for PCy and PC atlevel | = 3 16 0.25 [64,64,128]
Set conv layer for PC atlevel [ = 4 16 0.25 [128,128,256]
All-to-All All-to-all flow embedding layer 4,256 1 [256,128,128], [256,128]
Point Mixture First set conv layer 8 0.25 [128,128,256]
Second set conv layer 8 0.25 [256,256,512]
Generation of Initial Set upconv layer for initial flow embedding 8 4 [256,256,512],[512]
Flow Embedding and Scene Flow FC for initial scene flow — 1 3]
Attentive flow re-embedding layer 4,6 1 [512,256,256], [512,256]
Flow Refine Layer First set conv layer 1q flow encodmg 16 1 [32,32,32]
for E, and F Second set conv layer in flow encoding 8 1 [16,16,16]
4 4 Scene Flow Predictor for Ey — 1 [512,256,256]
FC for Fy — 1 (3]
Set upconv layer 8 4 [256,128,128], [128]
Attentive flow re-embedding layer 4,6 1 [256,128,128], [256,128]
Flow Refine Layer First set conv layer in flow encodm-g 16 1 [32,32,32]
for Eq and F. Second set conv layer in flow encoding 8 1 [16,16,16]
3 3 Scene Flow Predictor for E3 — 1 [256,128,128]
Hierarchical Flow FC for Fy - 1 [3]
Refinement Set upconv layer 8 4 [256,128,128], [128]
Attentive flow re-embedding layer 4,6 1 [128,64,64], [128,64]
Flow Refine Layer First set conv layer m‘ flow encodm‘g 16 1 [32,32,32]
for By and F. Second set conv layer in flow encoding 8 1 [16,16,16]
or £z @ 2 Scene Flow Predictor for Ey — 1 [256,128,128]
FC for F — 1 [3]
Set upconv layer 8 2 [128,64,64], [64]
Attentive flow re-embedding layer 4,6 1 [64,32,32], [64,32]
Flow Refine Layer First set conv layer in flow cncodm.g 16 1 [32,32,32]
for F, and F Second set conv layer in flow encoding 8 1 [16,16,16]
! ! Scene Flow Predictor for £ 1 [128,64,64]
FC for Fy — 1 [3]

Table 1. Details on our network parameters. K denotes the number of points of K Nearest
Neighbors (KNN) in set conv layer, set upconv layer, and flow embedding layer. Sampling rate
means the ratio of the number of output points to the number of input points for one layer. Multi-
Layer Perceptron (MLP) width means the number of output channels for each layer of MLP. The
variables in the table are defined the same as the main manuscript.

* Corresponding Author. The first two authors contributed equally.
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1 Overview

In this supplementary material, the details about our network parameters are presented
in Sec. 2. Detailed descriptions about the datasets and data preprocess procedure can be
found in Sec. 3. In Sec. 4, the definition of evaluation metrics will be given. Ablation
studies on KITTI Scene Flow dataset [4] will be conducted in Sec. 5 to show the effec-
tiveness of our designs across domain. Progressive ablation studies on FlyingThings3D
dataset [3] are presented in Sec. 6. Runtime and memory consumption are tested in
Sec. 7. We provide more qualitative visualization among different approaches in Sec. 8.
Finally, qualitative results of our different ablated models are given in Sec. 9.

2 Network Parameters

In our network, shared Multi-Layer Perceptron (MLP) is implemented by 1 x 1 convo-
lution with 1 stride and the ReLU activation function is used. Particularly, LeakyReLU
activation function is used in FC layer. The slope for negative values equal to 0.1 in
the LeakyReLU activation function. The detailed layer parameters including K values
in K Nearest Neighbors (KNN), the sampling rate of each layer, and each linear layer
width in MLP are described in Table 1.

When testing the generalization ability of our model on KITTI Scene Flow dataset
[4] in the manuscript, we double the number of input points to our network as 16,384
points. In addition, the set conv layer at level [ = 1 in the Hierarchical Point Feature
Abstraction module is modified to downsample 4,096 points rather than 2,048 points in
the manuscript. The K values of the set conv layers at level [ = 1,2 in the module are
changed to 64 accordingly. The above modification is only for testing on KITTI Scene
Flow dataset [4], and still uses the model trained on FlyingThings3D dataset [3]. We
find that the performance on KITTI Scene Flow dataset [4] can be improved in this way,
similar to the implementation of FlowNet3D [2] on github *.

3 Descriptions about Datasets and Data Preprocess

We conduct our training and evaluation on two versions of FlyingThings3D dataset
[3] and KITTI scene flow dataset [4] prepared by Gu et al. [1] > and Liu et al. [2] 6,
respectively, as mentioned in the manuscript. We provide detailed descriptions on data
preprocess as follows.

FlyingThings3D dataset [3] is originally comprised of RGB images, occlusion map,
disparity map, and ground-truth optical flow. Gu et al. [1] construct the training and
evaluation set through recovering the 3D point cloud and ground-truth scene flow from
disparity map and ground-truth optical flow. Points with depths greater than 35m are
removed and there will be 19,640 pairs of point clouds in the training set and 3,824

* https://github.com/xingyul/flownet3d.
5 Datasets available at https://github.com/laoreja/HPLFlowNet.
® Datasets available at https://github.com/xingyul/flownet3d.
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Table 2. The ablation study results on KITTI Scene Flow dataset prepared by Gu et al. [1].

| Method ||EPE3D Acc3D Strict Ace3D Relax Outliers |[EPE2D Acc2D
(a) | Ours w/o backward validation 0.0355 0.8788 0.9443 0.1778 | 1.3028 0.9311
Ours w/o backward validation and all-to-all mechanism 0.0376 0.8853 0.9593 0.1716 | 1.4732 0.9264
Ours (full, with backward validation and all-to-all mechanism) || 0.0332 0.8931 0.9528 0.1690 | 1.2186 0.9337
(b) | Ours (with product similarity) 0.0460 0.8196 0.9262 0.2116 | 1.7203 0.8943
Ours (with cosine product similarity) 0.0447 0.8261 0.9285 0.2159 | 1.8341 0.8731
Ours (with normalized product similarity ) 0.0405 0.8623 0.9478 0.1843 | 1.5930 0.9175
Ours (full, with concatenated similarity) 0.0332 0.8931 0.9528 0.1690 | 1.2186 0.9337
(c) | Ours (replace Scene Flow Predictor with GRU) 0.0374 0.8864 0.9463 0.1780 | 1.2941 0.9331
Ours (full, with Scene Flow Predictor) 0.0332 0.8931 0.9528 0.1690 | 1.2186 0.9337
(d) | Ours w/o features of PC' in Scene Flow Predictor 0.0365 0.8775 0.9472 0.1736 | 1.3482 0.9158
Ours w/o up-sampled flow embedding in Scene Flow Predictor|| 0.0399 0.8528 0.9396 0.1936 | 1.4745 0.9178
Ours w/o coarse flow in Scene Flow Predictor 0.0352 0.8799 0.9509 0.1709 | 1.2956 0.9296
Ours w/o flow feature in Scene Flow Predictor 0.0402 0.8616 0.9414 0.1864 | 1.4741 0.9099
Ours (full, with complete five inputs in Scene Flow Predictor) || 0.0332 0.8931 0.9528 0.1690 | 1.2186 0.9337
(e) | Ours (with interpolation estimating 2048 points’ flow) 0.0354 0.8837 0.9587 0.1704 | 1.3515 0.9252
Ours (with interpolation estimating 8192 points’ flow) 0.0360 0.8709 0.9452 0.1730 | 1.3808 0.9216
Ours (full, with flow refinement estimating 2048 points’ flow) || 0.0332 0.8931 0.9528 0.1690 | 1.2186 0.9337

pairs in the evaluation set. This version of preparation keeps input points without oc-
clusion, which means one can always find a corresponding point in PCj for each point
in PCy warped by its ground-truth scene flow. Liu er al. [2], however, provide a more
challenging version of preparation, in which points with occlusion are included. They
provide masks indicating occluded points that do not have corresponding points in the
adjacent frame. For the inference of the network, the occluded points are used as inputs
without the help of masks. For the calculation of training loss and evaluation metrics,
masks are included. This version of FlyingThings3D dataset contains 20,006 training
samples and 2,007 test samples.

KITTI scene flow dataset [4] is another broadly used dataset with real-world data
for scene flow estimation. In the preparation of Gu et al. [1], points with depth greater
than 35m are removed, and points with height less than 0.3m are treated as the ground
and therefore removed as well. No occlusion is retained. Since there is no ground-truth
scene flow in the testing set, 142 scenes from the training set are selected for evaluation.
In the preparation of Liu et al. [2], points with depth greater than 35m and ground points
are also removed. There is still occlusion for the input points, but no masks are provided.
150 samples from the training set are included for evaluation in this preparation.

As mentioned in the manuscript, the input point clouds to the network are created
by random sampling in each frame to simulate real-world data, which does not have
direct point-to-point correspondences.

4 Details on Evaluation Metrics

Assume f; be the estimated scene flow and GT'( f;) be the ground-truth scene flow. The
evaluation metrics used in the manuscript are defined as follows:

N
EPE3D(m): - ; Ifi = GT(fi)l2-
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Table 3. The progressive ablation study results on FlyingThings3D dataset prepared by [1].

‘ Method H EPE3D Acc3D Strict Acc3D Relax Outliers ‘ EPE2D Acc2D
(a) | Ours (full, with all investigated beneficial components in ablation studies, best model) || 0.0317  0.9109 09757 0.1673 | 1.7436_0.9108
(b) | Ours (— backward validation from (a)) 0.0332 0.9044 0.9743 0.1766 | 1.8221 0.9065
(c) | Ours (— all-to-all mechanism from (b)) 0.0349 0.9001 0.9725 0.1798 | 1.9819 0.9032
(d) | Ours (— refining 2048 points’ flow replaced with interpolating 2048 points’ flow from (c)) || 0.0375 0.8845 0.9671 0.1944 |2.1268 0.8853
(e) | Ours (— Scene Flow Predictor replaced with GRU from (d)) 0.0396 0.8691 0.9606 0.2007 | 2.2522 0.8696
() |Ours (— flow feature in Scene Flow Predictor from (d)) 0.0384 0.8786 0.9656 0.2046 | 2.1687 0.8805
(g) | Ours (— coarse flow in Scene Flow Predictor from (f)) 0.0390 0.8759 0.9652 0.2071 | 2.2100 0.8797
(h) | Ours (— features of PC in Scene Flow Predictor from (g)) 0.0406 0.8664 0.9639 0.2198 | 2.2771 0.8748
(i) |Ours (— up-sampled flow embedding in Scene Flow Predictor from (h)) 0.0472 0.8169 0.9543 0.2651 | 2.5917 0.8451
(j) | Ours (— concatenated similarity replaced with cosine product similarity from (i)) 0.0553 0.7470 0.9342 0.3314 | 3.1161 0.7893

Table 4. The ablation study results at a poor baseline on FlyingThings3D dataset prepared by [1].

| Method ||EPE3D Ace3D Strict Ace3D Relax Outliers |[EPE2D Acc2D
(a) ‘ Ours (w/o all investigated beneficial components in ablation studies, baseline model) H 0.0553 0.7470 0.9342 0.3314 ‘ 3.1161 0.7893
(b) ‘ Ours (+ all-to-all mechanism with backward validation to (a)) H 0.0494 0.7918 0.9380 0.2885 ‘ 2.7963 0.8045
(c) | Ours (+ interpolating 2048 points’ flow replacing refining 2048 points’ flow to (a)) [ 0.0520  0.7810 09374 0.3038 | 2.9657 0.8033
(d) ‘ Ours (4 four input predictor components with GRU Predictor to (a)) H 0.0449 0.8314 0.9505 0.2501 ‘ 2.5740 0.8363
(e) ‘ Ours (4 four input predictor components with Scene Flow Predictor to (a)) H 0.0439 0.8377 0.9548 0.2466 ‘ 2.5170 0.8403
(f) ‘Ours (+ cosine product similarity replacing concatenated similarity to (a)) H 0.0472 0.8169 0.9543 0.2651 ‘ 2.5917 0.8451

Acc3D Strict: Percentage of f; such that || f;—GT(f;)||2 < 0.05m or W <
5%.

Ace3D Relax: Percentage of f; such that || f;—~GT(fi)]|> < 0.1m or ILZZLUI <

TGT(f)l=
10%.
Outliers3D: Percentage of f; such that || f; — GT'(fi)||2 > 0.3m or W >
10%.

N
EPE2D(pz): & Y. |lofi — GT(of;)||2. GT(of;) denotes the ground-truth optical
i=1

flow, and of; stands for the estimated optical flow projected from PC; and predicted
P CQ via f1

Acce2D: Percentage of of; such that ||of; — GT (of;)||2 < 3px or W <
5%.

5 Ablation Study on KITTI Scene Flow Dataset

In Sec. 5.2 of our manuscript, we conduct ablation studies on FlyingThings3D dataset
[3] prepared by Gu et al. [1] to demonstrate the effectiveness of our proposed network
designs. In this section, we will provide more ablation studies on KITTI scene flow
dataset [4] prepared by Gu et al. [1] to demonstrate the effectiveness of our network
designs across domain. The models are trained on i of the training set (4,910 pairs)
from FlyingThings3D [3], the same way as in the manuscript, and then tested on KITTI
scene flow dataset [4]. The results in Table 2 demonstrate the generalization ability on

real-world data of each design.
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6 Progressive Ablation Study

In the manuscript, we demonstrated the effectiveness of each component by ablation
experiments based on the best model, but this made the improvement for each compo-
nent seem small. We change to the progressive ablation experiment by removing each
component in turn (Table 3). As can be seen, the integration effect of these components
combined yields huge benefits (42.7% improvement).

In addition, we investigate the benefits of each component at a poor baseline by
adding each component without other improvements (Table 4). The experimental results
show that each brings very large benefits (average 14.1% improvement). That is, at a
better baseline, additional improvements will improve the results less than improvement
at a poor baseline. This also explains why the ablation experiment presented in the
manuscript showed a small improvement. The accuracy of this task has been greatly
improved from the previous poorer baselines, because of the effort we put into every
detail.

7 Runtime and Memory

Because our all-to-all is performed on sparse 256 points, it does not increase the con-
sumption of memory and runtime very much (Table 5). The all-to-all cost volume with
1024 points significantly increases the memory and runtime. Therefore, we chose 256
sparse points for our all-to-all initial matching. Compared to other methods, ours has
the lowest runtime and memory cost.

Table 5. The runtime and memory. We test on a single Titan RTX GPU for comparison.

Method Input Point Number | Implementation | Runtime | Memory

HALFlow (TIP 2021) [5] 8192 TensorFlow |111.0ms| 5766M

PV-RAFT (CVPR 2021) [6] 8192 PyTorch 212.0ms | 5323M

Ours (with KNN mechanism w/o backward validation) 8192 PyTorch 40.6ms | 2391M

Ours (with all-to-all mechanism w/o backward validation) 8192 PyTorch 40.9ms | 2789M
Ours (full, with 256 all-to-all mechanism and backward validation) 8192 PyTorch 42.7ms | 3045M
Ours (full, with 1024 all-to-all mechanism and backward validation) 8192 PyTorch 166.4ms | 7845M

8 More Comparison on Visualization

We also provide more visualization comparison between our proposed method and other
methods as shown in Fig. 1. In addition to FlowNet3D [2] and HALFlow [5] that are
used in the manuscript for qualitative comparison, a recent state-of-the-art method, PV-
RAFT [6], is also included here. The results demonstrate that our approach outperforms
previous state-of-the-art methods qualitatively on both FlyingThings3D [3] and KITTI
scene flow [4] datasets.
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KITTI Scene Flow [4] dataset

FlyingThings3D [3] dataset

More visualization results of our proposed method, compared with FlowNet3D [2],

1
HALFlow [5] and PV-RAFT [6], on FlyingThings3D (left) and KITTI scene flow (right) datasets

Fig

PC + F and red points indicate inaccurate predictions (measured by Acc3D Relax).

prepared by Gu et al. [1]. Blue points indicate PC;. Green points indicate accurate predictions

PCy
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9 Qualitative Results of Ablation Study

The qualitative results of ablation study (Fig. 2) show that the ablation components can
improve the scene flow estimation performance of similar structures, repeated patterns,
large motions, fragmented shrubs, etc. The yellow lines show the direction of wrong
predictions.

FlyingThings3D [3] dataset KITTI Scene Flow [4] dataset

Ours w/o backward validation
and all-to-all mechanism

Ours w/o concatenated
similarity replaced with cosine

product similarity

Ours w/o Scene Flow
Predictor replaced with GRU
Predictor

Ours w/o up-sampled flow
embedding in Scene Flow
Predictor

Ours w/o refining 2048 points’
‘low replaced with interpolating

2048 points' flow

Ours (Full model)

Fig. 2. Each of ablation components contributes to performance improvement. Different compo-
nents enhance qualitative results in different details.
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