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Abstract. Translation averaging methods use the consistency of input
translation directions to solve for camera translations. However, trans-
lation directions obtained using epipolar geometry are error-prone. This
paper argues that the improved accuracy of translation averaging should
be leveraged to mitigate the errors in the input translation direction esti-
mates. To this end, we introduce weights for individual correspondences
which are iteratively refined to yield improved translation directions. In
turn, these refined translation directions are averaged to obtain camera
translations. This results in an alternating approach to translation aver-
aging. The modularity of our framework allows us to use existing trans-
lation averaging methods and improve their results. The efficacy of the
scheme is demonstrated by comparing performance with state-of-the-art
methods on a number of real-world datasets. We also show that our ap-
proach yields reasonably good 3D reconstructions with straightforward
triangulation, i.e. without any bundle adjustment iterations.

Keywords: Structure from Motion, Translation Averaging, Reweight-
ing Correspondences

1 Introduction

In Structure-from-Motion (henceforth SfM) [16], given point correspondences
across many images, we solve for the corresponding camera motions and 3D
scene structure. Many SfM pipelines incrementally grow the solution by adding
one camera at a time [27,30,35]. While they work well, incremental methods suf-
fer from drift and have a significant computational load owing to the repeated use
of Bundle Adjustment (henceforth BA) [32]. In contrast, batch or global methods
[31] determine the absolute poses of the cameras simultaneously (also known as
motion averaging [14,15]). Typically one solves for rotations, followed by trans-
lations using rotation and translation averaging respectively. Subsequently, we
estimate 3D structure given the camera motions, often with a final BA refine-
ment. In this paper, we address the problem of translation averaging.

Using epipolar geometry, we can only recover the translation direction ow-
ing to an inherent scale ambiguity which has a number of serious implications.
Firstly, it makes translation averaging a challenging problem since we need to
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Fig. 1: Schematic diagram of our framework for a viewgraph of camera-camera
relationships. Each vertex represents a camera. The multiedges on the left in-
dicate correspondences between camera-camera pairs whereas the edges on the
right indicate a relative translation estimate between camera pairs. Weight es-
timation for point correspondences (resulting in refined translation directions)
and translation averaging are alternately carried out in our framework

use relative translation directions to solve for absolute camera translations. Ex-
isting methods [13,25,34,36] adopt a variety of approaches to tackle the scale
estimation problem inherent to translation averaging. Secondly, in contrast to
rotation averaging, determining the feasibility of solutions for a given translation
averaging problem is related to the non-trivial issue of parallel rigidity [2,26]. Fi-
nally, translation directions recovered from point correspondences using epipolar
geometry can be of poor quality owing to the presence of noise and outliers or
when the baseline is narrow.

All translation averaging methods solve for camera translations by exploiting
consistency relationships the input translation directions should satisfy. In this
paper, we argue that while this is useful, the poor quality of input translation
directions obtained from epipolar geometry imposes limitations on the accuracy
of translation averaging solutions. A key observation of our paper is that instead
of using a single estimate of translation directions, we can refine them by intro-
ducing weights for individual correspondences. We schematically illustrate our
approach in Fig. 1.

Given an initial set of translation directions, we use averaging to obtain cam-
era translations. The translation directions obtained from translation averaging
estimates are superior to the original pairwise epipolar geometry based estimates
as the averaged solution is based on global consistency. Hence we can use the
estimates obtained from translation averaging to refine the weights ascribed to
individual point correspondences between a camera pair (shown as multiedges
in Fig. 1). Subsequently, the multiedges give us an estimate of translation direc-
tions (i.e. edges in a graph) which are averaged to obtain an improved translation
estimate.
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We emphasize that our reweighting of individual correspondences is based on
a global view of geometric consistency and not the standard approach of robust-
ness based on a limited view of two camera epipolar geometry. Our approach
is modular in nature and can use different translation averaging and weighting
schemes. Thus, our method can take a translation averaging approach and im-
prove it by refining the weighting of individual point correspondences.

The paper is organized as follows: Sec. 2 reviews existing approaches. Sec. 3
presents the formulation and details of our proposed approach. Sec. 4 presents
an extensive set of experiments to demonstrate the superiority of our approach
compared to the state-of-the-art methods. We provide a discussion of some as-
pects of our method in Sec. 5 and a brief conclusion in Sec. 6.

2 Related Work

2.1 Rotation Averaging

Translation averaging presumes the availability of rotation estimates, often ob-
tained using rotation averaging which is a well studied problem. Intrinsic meth-
ods like [15] exploit the Lie group structure of SO3. Robustness was incorpo-
rated in [4,5,17]. Extrinsic methods like [6,12,22] solve for a relaxed version of
the problem. Readers are referred to [10,28,29] and the references therein for
recent developments.

2.2 Translation Averaging

Most translation averaging approaches are based on the structure of the es-
sential matrix and trifocal tensor [16]. Govindu [14] proposed to minimize the
cross-product between the observed directions and the estimated relative camera
translations. Arie-Nachimson et al. [1] set up a linear system of cross product
constraints based on epipolar geometry. Moulon et al. [24] formulated a trifocal
tensor with known rotations which converted the problem to aligning triplets
instead of pairs.

Jiang et al. [18] used camera triplets which converted pairwise constraints
into constraints on a triangle. Wilson et al. [34] compared the observed and esti-
mated heading directions. They added camera-to-point constraints to make the
problem stable and relied on a pre-processing step to remove outliers. Tron et al.
[33] compared squared relative displacements and used it in a distributed fash-
ion. The Least Unsquared Deviations (LUD) method [25] proposed by Ozyesil
et al. extended [33] by using L1 loss for robustness and posed the problem as
a convex program. Arrigoni et al. [3] proposed to minimize the squared error
of the orthogonal projection of the estimated relative translations onto observed
directions. In a similar spirit, Goldstein et al. [13] proposed ShapeFit/ShapeKick
that minimized the orthogonal projection using ADMM but with an L1 loss for
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robustness. Cui et al. [8] used feature tracks to construct a linear system and
also solved the problem using ADMM. Cui et al. [7] used sin-length ratio con-
straints between cameras and points to estimate camera-to-camera scales and
then solved a linear system. Although [7,8] used point correspondences in their
method, all correspondences were treated equally. Moreover, multiple estimates
of scales with different feature tracks were handled carefully to avoid the influ-
ence of outliers. Zhuang et al. [36] proposed a Bilinear Angle-based Translation
Averaging (BATA) scheme comparing the estimated heading directions from
camera translations to that of the observed directions relaxing the cost in [34].

Other related approaches include similarity averaging [9], averaging of essen-
tial and fundamental matrices [19,20] and exploiting the structure of the matrix
generated from pairwise camera displacements [11].

3 Proposed Method

In this section, we define some preliminaries and develop our proposed algorithm
for translation averaging. Let G = (V, E) be a viewgraph, where V and E denotes
the set of vertices and edges in G respectively. To each vertex i, we assign a
3D rotation Ri ∈ SO(3) and translation Ti ∈ R3 that denotes its motion with
respect to a global frame of reference. Each edge (i, j) ∈ E denotes the relative
rotation and translation (Rij ,Tij) between camera vertices i and j. We note
that owing to the scale ambiguity of epipolar geometry we can only recover the
relative translation upto an unknown scale factor, i.e. the unit norm translation
direction vectors tij ∈ S2, resulting in the relationships:

Rij =RjR
−1
i ,

tij =
Rj(Ti −Tj)

∥Rj(Ti −Tj)∥2
(1)

→ vij =−R−1
j tij =

Tj −Ti

∥Tj −Ti∥2
(2)

where the unit vector vij is the translation direction represented in the global
frame of reference and is defined for simplicity of notation. We assume that
the rotations Ri for i ∈ V are either known or estimated using rotation aver-
aging. Thus, the translation averaging problem of interest is one of recovering
the absolute translations Ti for i ∈ V given the relative translation directions
tij for (i, j) ∈ E . For each edge (i, j) ∈ E , we associate a number of point
correspondences between cameras i and j. We denote these correspondences as
{(pk

i ,q
k
j )|k ∈ Iij} where p and q denote the homogeneous representation of

correspondences in camera i and j respectively which are normalized to unit
vectors, Iij is the set of point indexes for the edge (i, j) ∈ E , and k is the point
index. We can now write the epipolar constraint between cameras i and j for
the k-th point correspondence as(

qk
j

)T (
tij ×Rijp

k
i

)
= 0 (3)
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Denoting p̃k
i = R−1

i pk
i and q̃k

j = R−1
j qk

j , the epipolar constraint of Eqn. 3
can be rewritten as (

qk
j

)T (
tij ×RjR

−1
i pk

i

)
= 0

⇒
(
qk
j

)T
Rj

(
R−1

j tij ×R−1
i pk

i

)
= 0 (4)

⇒
(
R−1

j qk
j

)T (
−vij ×

(
R−1

i pk
i

))
= 0

⇒
(
mk

ij

)T
vij = 0 (5)

where mk
ij = q̃k

j × p̃k
i . Eqn. 4 is obtained using the relationship a × Sb =

S−T (S−1a × b) (upto scale) for any invertible matrix S ∈ R3×3 and a,b ∈ R3

(Appendix A4.2 in [16]). Collecting the relationships in Eqn. 5 for all k ∈ Iij
we get Mijvij = 0 where the k-th row of Mij is mkT

ij . Further, to account for

our confidence in each observation, we assign a scalar weight wk
ij to every point

correspondence (pk
i ,q

k
j ). We normalize these weights for each edge (i, j) ∈ E

such that
∑

k w
k
ij = 1. We define a diagonal matrix Wij where the k-th entry

on the diagonal is wk
ij . Finally, we denote the set of all the translations as T =

{T1, · · · ,TN} where N = |V| is the number of cameras.

3.1 Our Framework for Translation Averaging

When Eqn. 5 is not exactly satisfied due to noise, the least squares solution
for vij is the smallest right singular vector of the matrix Mij . Analogously, the
weighted least squares solution is the smallest right singular vector of WijMij .
While this holds for a single camera pair (i, j) ∈ E , in translation averaging,
we seek a global solution that is most consistent with the observations on each
individual edge. Thus we formulate our optimization problem as

min
T

∑
(i,j)∈E

∥WijMijvij(T)∥22 (6)

where we denote vij(T) to emphasize that it is a function of the global camera
translations T. C corresponds to the constraint set to fix origin and scale ambi-
guity in the problem. It will be immediately noted (from Eqn. 2) that Eqn. 6
is a highly non-linear problem and is challenging to solve for large-scale SfM
datasets. When robust estimators are used, such as IRLS, the weights wk

ij are
iteratively updated based on a robust loss minimization. In contrast, as stated
earlier, we wish to refine our weights based on the global consistency of the
translation directions. In our approach, after initialization, we solve for transla-
tion directions (given translations) and then solve translation averaging (given
translation directions). This is repeated till convergence. We note that our al-
ternating approach is akin to Expectation Maximization (EM) [23] where the
weights for point correspondences play the role of latent or unobserved variables.
Specifically, we have the following alternating steps:
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Algorithm 1: Correspondence Reweighted Translation Averaging
(CReTA)

1 Initialize global translations T
2 while not converged do

3 Update weights ∀(pk
i ,q

k
j )

4 Estimate {vij |∀(i, j) ∈ E}
5 Solve Translation Averaging using {vij}
6 end

– Weights Update: Given the current estimate of global translations T, for
each point correspondence (pk

i ,q
k
j ), we compute the residual error using

Eqn. 5, i.e. ekij = mkT
ij vij(T). We map these errors ekij into weights wk

ij using
a suitable function to denote our current confidence in that correspondence.

– Translations Update: Given the weights defined above, the minimization
problem in Eqn. 6 is completely defined. Directly minimizing Eqn. 6 is in-
feasible for large-scale datasets owing to the very large number of correspon-
dences involved and the non-linear nature of the problem. Instead, we use a
two-step procedure as follows: For each edge (i, j) ∈ E , we solve for the trans-
lation direction vij as the null space of WijMij . As described below, we use
these estimated vij as inputs for a translation averaging method to solve for
the global translations T. As noted in [36], this is akin to functional lifting
since we solve for vij for all edges and then average them in terms of the
smaller number of camera translations. This approach makes our optimiza-
tion using point correspondence weights tractable with lower computation
requirements than directly solving Eqn. 6. We also note that the modular
nature of our formulation allows us to use any translation averaging scheme.

Choice of Translation Averaging Method: In an excellent discussion, [36]
shows that the weakness of the LUD formulation of [25] is its use of an inequal-
ity constraint to remove scale ambiguity and prevent the collapse of camera
translations to a point. They further show that this problem can be mitigated
by revising the scale constraint, resulting in a Revised-LUD or RLUD method,
which is shown to have a minimum identical to that of Shapefit/ShapeKick [13].
For the remainder of this paper, LUD refers to the original formulation in [25]
and RLUD refers to the Revised-LUD modification given in [36]. We provide
below the formulations for RLUD and BATA which we use in our experiments.

RLUD:

min
Ti,i∈V ,λij,(i,j)∈E

∥Tj −Ti − λijvij∥2 (7)

s.t.
∑
i∈V

Ti = 0,
∑

(i,j)∈E

⟨Tj −Ti,vij⟩ = 1, λij ≥ 0, ∀(i, j) ∈ E
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BATA:

min
Ti,i∈V ,γij,(i,j)∈E

ρ (∥ (Tj −Ti) γij − vij∥2) (8)

s.t.
∑
i∈V

Ti = 0,
∑

(i,j)∈E

⟨Tj −Ti,vij⟩ = 1, γij ≥ 0, ∀(i, j) ∈ E

The zero centroid and dot product constraints in Eqns. 7 and 8 remove the inher-
ent origin and scale ambiguity. ρ denotes a robust loss function. λij and γij are
non-negative variables that are ideally equal to baseline and inverse baseline for
the edge (i, j) respectively. It can be seen that RLUD compares the relative dis-
placements (by also computing the translation scales λij) while BATA compares
the heading directions. In other words, RLUD and BATA are representative of
the two approaches feasible for translation averaging, i.e. comparing directions
or comparing translation vectors.

Implementation details: We provide a high level description of our ap-
proach in Algorithm 1. In order to remove outlier or low quality correspon-
dences, after the initial estimate of translations, for each edge (i, j), we compute
the weights for each correspondence pair and remove the bottom 25% of such
correspondences. In every iteration, edges are pruned when the estimated vij

deviates by more than 40◦ from the equivalent derived from the global transla-
tions estimated in the previous iteration. In the Weights Update step, we use the

function wk
ij =

α2

α2+ek2
ij

, with α = 0.01. Other weighting functions are also feasible

here. Estimation of vij involves resolving its sign ambiguity which can either be
done using chirality constraint or comparing with the directions from the current
estimate of global translations. The latter one is used in our implementation. In
our experiments, we use RLUD and BATA for translation averaging and denote
our corresponding methods as CReTA-RLUD and CReTA-BATA respectively.
For CReTA-RLUD, we remove edges with negative scale factors λij in each it-
eration. Algorithm 1 is run till the absolute fractional change of the translation
averaging cost function is less than 10−5 or mean change in translations is less
than 10−6 or the maximum number of iterations Nmax is reached. For CReTA-
RLUD and CReTA-BATA, Nmax equals 50 and 10 respectively1. In addition,
both RLUD and BATA are themselves iterative methods run for 20 iterations
each. Finally, for BATA, we use a Cauchy loss with scale β = 0.1, as used by
the authors in [36].

4 Experiments

In this section, we provide experimental comparisons of our method with state-
of-the-art methods for translation averaging on synthetic and real datasets. For
camera rotations, we use the rotation averaging solution obtained using the code

1 For large datasets with number of cameras greater than 2000, Nmax equals 30 and
5 for CReTA-RLUD and CReTA-BATA respectively.
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provided by [5]2. For all experiments, the maximal parallel rigid component of
the viewgraph is extracted based on [21]. We note that although the translation
directions change for each iteration in our approach, we do not recompute par-
allel rigidity as the maximal component does not change significantly over the
iterations. We use LUD implemented in Theia [31] and BATA’s code provided by
the authors3. Our method is implemented in MATLAB. To quantitatively evalu-
ate the performance of different schemes, the estimated camera translations are
robustly aligned to the ground truth using the code provided by [34]4. All exper-
iments are performed on a PC with Intel Xeon Silver 4210 processor with 128
GB RAM. Finally, in each table, the best performing method for each dataset
is highlighted in bold, µ and µ̂ imply mean and median errors respectively.

4.1 Synthetic Data

We carry out experiments with synthetic data to study the comparative be-
haviour of different methods in the presence of noise and outliers. To validate
the usefulness of weighting every point correspondence based on global con-
sistency, RLUD and BATA are compared to our methods, CReTA-RLUD and
CReTA-BATA. For creating synthetic data as close to the real data as possible,
we use the ground truth from two 1DSfM datasets [34], i.e. Montreal Notre Dame
(450 nodes, 52340 edges) and Tower of London (467 nodes, 23777 edges). We
chose these datasets as they have a similar number of cameras but a different
number of edges. We refer to these synthetic datasets as MNDsyn and TOLsyn.
For these synthetic datasets, we create point correspondences by projecting the
ground truth 3D points onto the cameras using the ground truth poses and then
applying camera calibration as provided in the dataset. Only the point features
within the image dimensions and with a positive depth in the camera coordi-
nate frame are retained. For every edge, a maximum of 1000 correspondences
generated in this fashion are retained. This creates a perfectly clean dataset
with real-world camera motions and 3D structure. Now we perturb the image
points with Gaussian noise N (0, σ2) with σ ∈ {1, 3} pixels. 10 instances of both
datasets are generated for the two noise levels. To generate outliers, 30% of
the correspondences in each edge are perturbed with Gaussian noise N (0, σ2

o)
with σo = 10 pixels. For every dataset, relative translations are computed in a
RANSAC loop using epipolar geometry with rotations set to ground truth. This
removes the effect of rotation errors from the problem. For these realizations,
we extract the corresponding maximal parallel rigid graph, which are used as
inputs in our experiments.

To evaluate the accuracy of camera translations, we use the normalized root
mean square error (NRMSE) as in [25] and [36]. Let Tgt

i be the set of ground
truth camera translations and Tavg

i estimated from different methods, then

2 https://ee.iisc.ac.in/cvlab/research/rotaveraging/
3 https://bbzh.github.io/document/BATA.zip
4 https://github.com/wilsonkl/SfM_Init

https://ee.iisc.ac.in/cvlab/research/rotaveraging/
https://bbzh.github.io/document/BATA.zip
https://github.com/wilsonkl/SfM_Init
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Table 1: Camera translation errors (in meters) for synthetic datasets. The re-
ported values are averaged over 10 instances each (wo: with outliers)

Dataset RLUD BATA CReTA-RLUD CReTA-BATA

µ µ̂ µ µ̂ µ µ̂ µ µ̂

MNDsyn, σ = 1 1.64 1.10 0.17 0.06 0.12 0.07 0.13 0.05
MNDsyn, σ = 1, wo 1.61 1.09 0.15 0.06 0.14 0.08 0.11 0.06
MNDsyn, σ = 3 1.55 1.04 0.25 0.12 0.18 0.11 0.22 0.14

MNDsyn, σ = 3, wo 1.49 0.97 0.29 0.14 0.19 0.11 0.25 0.16
TOLsyn, σ = 1 12.78 2.56 2.88 1.75 7.38 0.46 1.19 0.52

TOLsyn, σ = 1, wo 12.36 2.13 2.56 1.56 7.51 0.63 1.64 0.92
TOLsyn, σ = 3 12.44 2.64 2.50 1.46 7.76 1.00 2.06 1.11

TOLsyn, σ = 3, wo 12.47 2.73 2.72 1.40 7.89 0.99 2.52 1.20

Table 2: Comparison of input and output relative translation directions (in de-
grees) on synthetic data. The reported values are averaged over 10 instances
each (RMS: root mean square error; wo: with outliers)

Dataset Input CReTA-RLUD CReTA-BATA

µ RMS µ RMS µ RMS

MNDsyn, σ = 1 0.33 3.80 0.17 1.45 0.23 1.45
MNDsyn, σ = 1, wo 0.52 5.35 0.18 1.20 0.22 1.20
MNDsyn, σ = 3 1.50 8.17 0.72 3.03 0.89 3.00

MNDsyn, σ = 3, wo 2.00 10.34 0.77 3.12 0.94 3.09
TOLsyn, σ = 1 0.79 7.13 0.37 1.55 0.30 1.53

TOLsyn, σ = 1, wo 1.27 9.55 0.44 2.48 0.34 2.46
TOLsyn, σ = 3 2.74 13.56 1.00 3.95 1.00 3.89

TOLsyn, σ = 3, wo 3.60 16.15 1.05 3.92 1.07 3.88

NRMSE =
√∑

i∈V ∥Tgt
i −Tavg

i ∥22. Both Tavg
i and Tgt

i are normalized such

that
∑

i∈V Ti = 0 and
∑

i∈V ∥Ti∥22 = 1. The evaluation is also done in terms of
mean and median errors of camera translations (after aligning the solutions to
ground truth) and comparing the input and output relative translations.

In Table 1, we show the translation errors for each datasets with differing
scenarios (σ = {1, 3}, with and without outliers) averaged over 10 instances.
As can be clearly seen, our CReTA methods are significantly better in accuracy
compared to LUD and BATA. In Fig. 2, we show the distribution for NRMSE
for different methods for the 10 instances when σ = 3 and with outliers. We show
the results for only one setting of noise and outliers for visual clarity (other set-
tings are shown in the supplementary material). The large leftward shift of the
distributions for our methods clearly demonstrates a significant improvement in
performance over the corresponding translation averaging methods used. Fur-
ther, in Table 2, we compare the quality of input to that of output relative
translations for different methods. It is seen that relative translation directions
are substantially improved in our framework.
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(a) MNDsyn, σ = 3 with outliers (b) TOLsyn, σ = 3 with outliers

Fig. 2: Comparison of the histograms of NRMSE in 10 instances for two syn-
thetic datasets. The leftward shift for our methods clearly indicates a significant
improvement in performance

Table 3: Camera translation errors (in meters) on 1DSfM [34] datasets (|V |:
number of nodes, |E|: number of edges)

Dataset |V| |E| LUD [25] ShapeFit [13] BATA [36] CReTA-RLUD CReTA-BATA
(Ours) (Ours)

µ µ̂ µ µ̂ µ µ̂ µ µ̂ µ µ̂

Alamo (ALM) 586 81437 2.7 0.5 0.9 0.5 2.0 0.6 2.0 0.5 2.0 0.5
Ellis Island (ELS) 229 14728 6.9 3.6 12 1.9 6.7 3.2 6.0 2.9 6.2 3.3

Gendarmenkmart (GMM) 686 27145 31.2 11.3 - - 31.3 11.4 31.0 11.2 31.5 11.1
Madrid Metropolis (MDR) 325 11995 8.4 1.9 81 6.0 6.9 1.6 7.6 1.7 6.1 1.6

Montreal Notre Dame (MND) 461 45737 0.9 0.5 1.7 0.8 0.8 0.5 0.9 0.5 0.7 0.4
Notre Dame (ND) 552 80647 1.2 0.3 1.5 0.2 1.0 0.2 2.1 1.1 1.0 0.2

NYC Library (NYC) 337 14365 2.2 0.8 162 1.4 2.1 1.7 2.0 0.7 2.0 0.7
Piazza del Popolo (PDP) 334 20974 3.8 2.8 5.9 3.6 3.4 2.0 4.5 3.4 3.8 2.5

Piccadilly (PIC) 2362 201600 2.8 1.3 15 1.2 3.2 1.1 2.8 1.1 3.0 1.1
Roman Forum (ROF) 1069 54207 11.9 3.3 25 4.3 8.3 2.0 13.3 3.3 7.7 1.7

Tower of London (TOL) 474 19252 14.9 3.2 164 2.3 9.3 3.0 13.3 3.1 9.0 3.0
Trafalgar (TFG) 4900 542480 8.4 5.3 - - 7.9 4.2 8.0 4.4 7.5 4.1

Union Square (USQ) 825 19899 10.6 6.1 47 8.9 10.2 5.6 10.6 5.4 10.5 4.9
Vienna Cathedral (VNC) 826 82793 5.1 2.1 11 1.9 12.0 2.1 6.5 2.2 6.7 1.9

Yorkminster (YKM) 430 22692 7.6 1.8 - - 5.1 1.3 7.0 1.6 6.0 2.0

4.2 Real World Data

In this subsection, we present results on real unordered image datasets provided
by the authors of 1DSfM [34]. These datasets are pre-processed in a manner
similar to that suggested in [25]: Rotation averaging is performed and inconsis-
tent edges with an error greater than 10◦ are removed. Subsequently, the initial
translation directions are estimated using the epipolar geometric relationship
(Eqn. 5) in a RANSAC loop. The results for our methods CReTA-RLUD and
CReTA-BATA are shown in Table 3 along with other state-of-the-art methods.
Since ShapeFit provides multiple results, the overall best results are cited. It
can be seen that CReTA has the best performance or is similar in quality to the
best solution for most of the datasets. In particular, the improvement in mean
errors is significant for many datasets when compared to the respective transla-
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Table 4: Camera translation errors (in meters) on 1DSfM datasets using the
initialization provided

Dataset LUD BATA CReTA-RLUD CReTA-BATA

µ µ̂ µ µ̂ µ µ̂ µ µ̂

ALM 5.0 2.8 3.4 0.6 2.4 0.6 2.1 0.5
ELS 9.7 3.7 11.6 1.4 7.1 2.9 8.3 3.0
GMM 46.6 20.5 45.6 23.4 44.5 22.8 41.8 20.9
MDR 19.0 9.2 23.2 2.8 12.7 2.2 11.9 1.7
MND 1.6 0.9 1.3 0.6 2.6 1.4 1.5 0.7
ND 4.1 1.6 2.1 0.3 1.7 0.5 1.1 0.2
NYC 4.5 2.2 3.5 0.7 2.6 0.7 2.3 0.7
PDP 6.3 1.9 6.7 1.6 5.6 1.2 5.4 1.2
PIC 6.2 3.8 5.1 1.3 4.4 2.3 3.4 1.3
ROF 25.1 14.6 11.3 1.6 18.2 9.4 9.3 1.8
TOL 24.9 8.7 17.6 2.0 19.5 2.6 16.8 2.9
TFG 16.7 13.3 11.7 4.4 9.9 6.2 9.1 5.7
USQ 12.2 7.6 13.3 4.8 11.6 6.2 10.5 5.0
VNC 14.2 7.0 10.5 2.1 8.5 2.4 5.8 1.8
YKM 15.6 6.8 9.4 1.3 7.3 1.5 5.2 1.5

(a) ELS (b) MDR (c) PIC (d) VNC

Fig. 3: Cumulative error distributions (in degrees) for relative translation direc-
tions for inputs and CReTA estimates

tion averaging scheme used, i.e. CReTA-RLUD vs. LUD and CReTA-BATA vs.
BATA.

The 1DSfM datasets [34] also provide an estimate of the translation direc-
tions tij which are of inferior quality compared to that estimated and used in the
above experiment. To assess the performance of the methods with low quality
inputs, we supply the translation directions given in the 1DSfM datasets [34] to
different methods and compare the camera translation accuracies in Table 4. It
can be seen that even when the initial input translation directions are of inferior
quality, our CReTA approach is able to obtain better accuracies with consider-
able improvement in the mean errors when compared to the respective transla-
tion averaging scheme used. To further illustrate the improvement obtained, in
Fig. 3, we compare the cumulative error distributions of the relative translation
directions obtained using CReTA and the input translation directions. As can
be seen, our approaches significantly improve upon the initial directions. These
results suggest that weighting point correspondences with global consistency in-
formation can improve the performance of the translation averaging methods
even with low quality input translation directions.
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Table 5: Reprojection errors (in pixels) and number of 3D points (Np × 103)
reconstructed after triangulation

Dataset LUD BATA CReTA-RLUD CReTA-BATA

µ µ̂ Np µ µ̂ Np µ µ̂ Np µ µ̂ Np

ALM 6.6 5.4 83 7.7 6.7 120 3.0 1.7 223 3.5 2.3 221
ELS 8.3 7.3 37 7.6 6.3 56 4.5 3.2 62 4.7 3.6 69
GMM 7.1 6.5 54 6.8 5.7 99 5.1 3.6 146 5.5 4.2 159
MDR 7.1 7.0 11 7.7 6.8 38 4.9 3.5 60 5.1 3.8 74
MND 8.2 7.1 87 7.3 5.9 123 3.6 2.3 178 3.8 2.5 184
ND 7.9 6.9 53 8.2 7.0 117 4.8 3.2 232 5.4 3.8 240
NYC 8.0 7.6 32 7.5 6.5 65 3.9 2.5 107 4.5 3.1 113
PDP 7.6 6.5 34 7.2 5.9 40 3.8 2.4 64 4.5 3.1 65
PIC 7.3 6.5 121 7.2 6.1 187 5.3 3.7 298 5.6 4.1 318
ROF 7.2 6.4 87 7.4 6.3 204 4.5 3.0 347 5.0 3.6 373
TOL 5.9 4.8 63 6.7 5.4 95 5.1 3.4 180 5.5 3.8 189
TFG 7.1 6.1 308 7.0 5.9 416 4.9 3.3 649 5.5 3.9 654
USQ 7.8 6.8 34 7.5 6.5 38 6.3 4.9 62 6.5 5.1 66
VNC 7.8 6.9 124 7.6 6.4 194 4.8 3.3 341 5.0 3.6 354
YKM 7.6 6.9 56 7.4 6.3 96 5.1 3.6 153 5.7 4.2 171

Impact on 3D Reconstruction: In Tables 3 and 4, we compare the qual-
ity of translation estimates based on the available pseudo ground truth. But we
believe that comparing the mean and median errors for translation estimates are
inadequate since, in SfM, we are also interested in estimating 3D scene struc-
ture. In order to understand this aspect of camera motion estimation, we carry
out the following experiment. For all datasets used, we extract a large number
of correspondences using COLMAP [27]. We use the camera motions obtained
in the experiment in Table 4 and carry out triangulation using Theia [31]. This
allows us to assess the quality of the different translation solutions in terms of
their impact on 3D reconstruction. The reprojection errors, shown after trian-
gulation using the different translation solutions in Table 5, are independent
of the pseudo ground truth and indicate the quality of reconstruction. As can
be seen, our methods yield significantly lower reprojection errors. Specifically,
CReTA-RLUD has the least mean and median reprojection errors followed by
CReTA-BATA. The Theia package removes triangulated points with a repro-
jection error larger than 15 pixels. We note that our methods yield many more
triangulated points with CReTA-BATA producing the highest number of 3D
points for all datasets except ALM.

In Fig. 4 we illustrate the quality of translation estimation using our reweight-
ing scheme by visualizing the 3D reconstructions obtained. We show the re-
constructions obtained by triangulation using our CReTA-RLUD solution, with
additional reconstructions provided in the supplementary material. The corre-
sponding point clouds obtained using full BA are shown for reference. As can
be seen, we obtain reasonably good quality reconstructions by straightforward
triangulation without having to carry out any bundle adjustment refinements.
The high quality of our triangulations indicate that our translation estimates
are consistent with the point correspondences.
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Fig. 4: Reconstructions obtained with triangulation using our CReTA-RLUD
translation estimate (first row) compared to bundle adjustment (second row)

5 Discussion

As we have shown in Sec. 4, using our refined weighting of point correspondences
improves the quality of the translation estimates. In this section, we briefly con-
sider some other issues of significance.

Ablation Study: As indicated earlier, in our implementation, we remove
some of the point correspondences from each edge (i, j) ∈ E after the first trans-
lation averaging estimate. This is especially useful when the input relative trans-
lations are inferior as the translation averaging steps improve the overall solution,
and correspondences with low weights indicate that they are low in quality with
respect to the translation averaging solution. For this study, we do not prune
edges to understand the effect of removing point correspondences exclusively.
Table 6 shows that removing point correspondences in the first iteration results
in an improvement in our CReTA results for almost all datasets, with significant
improvements for ELS, MDR, USQ and VNC datasets.

Computation Time: While RLUD and BATA are based on a single op-
timization, CReTA methods carry out repeated optimizations with refined in-
put translation directions in each iteration increasing the computation load of
CReTA as shown in Table 7. We believe that the additional computation time
for our approach can be significantly reduced with a C++ implementation.

Limitations: Finally, we note that our improvement on translation averag-
ing leverages the image correspondences in the dataset. We may not get as sig-
nificant an improvement in performance over the translation averaging method
used if there are very few point correspondences or if they have high noise and
outlier ratios. Further, our method cannot be used if only the translation direc-
tion estimates are available without access to the correspondences.
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Table 6: Impact of removing low quality correspondences in 1DSfM datasets after
first iteration. Entries marked in bold shows improvement of a given method
and not comparing all variants (woRC: without Removing Correspondences)

Dataset CReTA-RLUD CReTA-RLUD CReTA-BATA CReTA-BATA
woRC woRC

µ µ̂ µ µ̂ µ µ̂ µ µ̂
ALM 2.2 0.6 2.2 0.6 2.3 0.7 2.4 0.5
ELS 28.3 3.3 9.5 3.0 21.0 3.9 12.2 3.0
GMM 45.1 21.3 43.9 20.8 44.1 20.7 44.1 21.3
MDR 16.4 2.7 14.9 2.3 19.8 2.8 13.9 1.9
MND 2.3 1.2 1.9 1.0 1.2 0.6 0.8 0.4
ND 1.2 0.3 1.1 0.3 1.7 0.6 1.3 0.2
NYC 4.3 1.0 2.8 0.9 3.1 0.9 2.9 0.7
PDP 6.4 1.2 6.2 1.3 6.8 1.8 6.2 1.3
PIC 4.0 2.0 4.0 2.3 4.2 1.5 3.3 1.2
ROF 12.1 4.0 11.7 3.6 8.6 2.0 8.2 1.8
TOL 19.6 2.8 20.0 2.6 13.4 3.2 14.8 3.0
TFG 13.6 10.0 10.2 7.1 13.7 7.8 8.9 5.1
USQ 26.3 9.1 15.9 5.5 17.9 7.3 13.0 5.7
VNC 11.4 4.0 7.3 2.0 14.0 2.7 8.2 1.8
YKM 6.7 1.5 6.3 1.5 12.9 1.5 8.7 1.5

Table 7: Computation time (in seconds) for different schemes
Dataset RLUD BATA CReTA-RLUD CReTA-BATA

ALM 42 54 225 145
ELS 6 10 33 28
GMM 14 25 84 71
MDR 7 14 45 32
MND 9 29 128 83
ND 46 56 285 188
NYC 6 14 44 31
PDP 8 16 42 43
PIC 211 249 747 521
ROF 24 52 172 128
TOL 9 19 60 43
TFG 543 862 1996 1271
USQ 8 17 63 50
VNC 54 74 283 176
YKM 11 16 74 53

6 Conclusion

This paper presents CReTA, a modular framework that iteratively refines the
input translation directions by weighting individual point correspondences. The
modularity of our approach allows us to use a translation averaging method
and improve upon its performance. This improvement is reflected in the quality
metrics for comparing translation estimates. Also of significance is the fact that
our approach yields reasonably good reconstructions with triangulation when
compared with BA results.
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