
Supplementary Material for GraphCSPN:
Geometry-Aware Depth Completion via

Dynamic GCNs

1 Overview

In this supplementary material, we first present a video demonstration of our
model on KITTI Depth Completion dataset [12]. An example of the video frame
can be found in Figure 1. We also provide additional analysis on spatial propa-
gation networks from the physical perspective to demonstrate the advantages of
our model over previous methods [8, 3, 2, 9]. In addition, more experiments and
additional visualization results on indoor and outdoor datasets are also provided
in this material.

2 Anisotropic Diffusion Process

Spatial propagation networks originate in anisotropic diffusion which is a phys-
ical transport process and can be formulated by Fick’s law :

j = −D · ∇u (1)

This equation describes the equilibration process during which a concentration
gradient ∇u causes a flux j to compensate for this gradient. And D denotes the
diffusion tensor. The case where j and ∇u are not parallel is called anisotropic
diffusion. By imposing continuity restrictions, the diffusion equation can be de-
rived as follows:

∂tu = div(D · ∇u) (2)

The simple case where the diffusion tensor D is not changed during the diffusion
process is called linear diffusion. Previous methods [8, 3, 2, 9] only models the
linear diffusion process, and both the neighbors and affinity matrix are fixed
during the spatial propagation. Linear diffusion process dislocates edges and
blurs important features [13] which can easily lead to inaccurate predictions.
Our graph convolution based spatial propagation network models the nonlinear
diffusion process where the diffusion tensor is a function of the differential struc-
ture of the evolving image itself. And our method casts the diffusion process in
a more realistic manner and can effectively avoid those shortcomings of previous
approaches. Furthermore, the spatial propagation of our method is performed
between geometrically relevant neighbors in 3D space rather than in 2D plane of
previous methods, and can impede the propagation of errors during the iterative
refinement, as described in the main paper.
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Fig. 1. An example frame of the video demonstration on KITTI Depth Com-
pletion dataset. From top to bottom, the frame consists of three parts, which are
input RGB image, predicted dense depth map and the corresponding 3D reconstruc-
tion. The dense depth map and 3D reconstruction are generated using our method.
(Best viewed in color.)

3 Implementation Details

The proposed model is implemented with the Pytorch framework [10] and trained
on NVIDIA 3090 GPUs. During training, we adopt the ADAM optimizer [6] with
β1 = 0.9, β2 = 0.99, and the initial learning rate is set to 0.001 which is reduced
to half every 10 epochs. We train the model for 50 epochs and use a batch
size of 32 and 16 for NYU-Depth-v2 dataset and KITTI dataset, respectively.
The weights of the ResNet in the encoding layers are initialized with models
pretrained on the ImageNet dataset [4].

4 Complexity Analysis

Since computation overhead is important for real-world applications, we make a
comparison of model size and inference time for different methods:

method CSPN CSPN++ NLSPN GraphCSPN

# params (M) 256.08 26.21 25.84 24.90

runtime (s) 1.00 0.20 0.23 0.14

Runtime is taken from the official KITTI benchmark website. Our model can
attain high performance with light-weight backbone which largely reduces the
model size. As for the propagation part, the computation complexity is irrelevant



GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs 3

Variants Time (ms) RMSE ↓ REL ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑
pixel 103.4 0.114 0.018 99.2 99.8 99.9

patch (2,2) 40.2 0.098 0.015 99.4 99.8 99.9

patch (4,4) 12.5 0.090 0.012 99.6 99.9 100.0

patch (2,8) 14.8 0.095 0.013 99.5 99.9 100.0

patch (8,8) 7.1 0.105 0.016 99.3 99.8 99.9

dense 20.6 0.102 0.016 99.4 99.9 100.0
Table 1. Quantitative evaluation on the NYU-Depth-v2 dataset with different choices
of graph construction.

to the number of neighbors, but grows linearly with the number of nodes and
feature dimensions. And our patch-wise graph construction greatly decreases the
size of graph, thus reducing the overall computation overhead.

5 More Ablation Studies

5.1 Graph Construction

As stated in the main paper, the core of graph construction is to convert affinity
maps A ∈ RH×W×C into a sequence of features Aseq ∈ RN×L. To do so, we
first convert A into a sequence of patches Apatch ∈ RN×Ph×Pw . And (Ph, Pw) is
set to (4, 4) in the experiments. In this ablation study, we first change the size
of the patch and see how it would affect the performance and inference time of
our model. The results are shown in Table 1. When we set Ph = Pw = 1, the
graph is pixel-wise constructed and the total number of nodes equals to H×W .
In this case, the inference process is much slower, because the computation com-
plexity of graph propagation increases quadratically with the number of nodes
N . When we increase the patch size, the inference time decreases, and the per-
formance first gets better and then becomes worse if the patch size is too large.
By our patch-wise construction, prior knowledge about local correlations can be
established, so the performance is improved. However, it fails to capture details
of local structures with large patch size, thus leading to poor performance. We
also change the shape of the patch to rectangle and find that there is a small
decrease of performance. So the default patch size is set to (4, 4). In addition,
we study how the performance would change if we construct a dense graph like
a Transformer [5], where the neighbors of each node are all the other nodes.
In this way, the densely connected graph makes the propagation inefficient, be-
cause most of the neighbors are geometrically irrelevant. And as a result, the
performance drops as can be seen in Table 1.

5.2 Propagation Steps

In the main paper, experiments are conducted to study the impact of differ-
ent number of steps on spatial propagation. In this supplementary material, we
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Fig. 2. Impact of different number of propagation steps and neighbors on the prediction
accuracy on NYU dataset.

want to explore the full capacity of our model by applying more propagation
steps. However, unlike CNNs, making GCNs deep is not trivial and there are
inherent over-fitting and over-smoothing problems with deep GCNs [1]. In order
to construct a deeper GCN, we use the methods proposed in [7] and exploit
residual connections and dilated convolutions to alleviate those inherent prob-
lems. As can be seen in Figure 2, we find the model can converge quickly with a
small number of steps and neighbors, which validates our proposed framework
is propagation-efficient. Besides, the performance can be steadily improved with
increasing number of steps and neighbors, which offers flexible choices given
different requirement of performance and budget of computation resources in
real-world applications.

6 Additional Visualization Results
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(a) RGB (b) Ground Truth (c) SPN

(d) CSPN (e) NLSPN (f) Ours
Fig. 3. Comparison of different methods using per-pixel error maps. A higher
error is visualized with a darker red color.

(a) RGB (b) Depth (c) CSPN [3] (d) GraphCSPN (e) GT

Fig. 4. Depth completion results on the NYU-Depth-v2 dataset [11].
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Fig. 5. Depth completion results on the KITTI Depth Completion
dataset [12]. (a) RGB, (b) Ground truth, (c) GraphCSPN.
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