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This is the supplementary material for our paper “Objects can move: 3D Change
Detection by Geometric Transformation Consistency”. The source code of the
paper can be found at at https://github.com/katadam/ObjectsCanMove. In Sec-
tion 1, we discuss more quantitative results for the task of 3D object discovery,
and provide a more thorough investigation of the calculated transformations.
In Section 2, more visual results of our method and the baselines are shown.
We showcase corner cases where our output is inconsistent with the dataset’s
ground-truth annotation. We discuss in Section 3 why 3RScan [16] is the most
appropriate dataset for evaluating 3D change detection and 3D object discovery,
and we also evaluate our results on the sub-task of discovering added objects
(Section 4).

1 Quantitative Results

Accuracy of the Computed Transformations. As explained in the main
paper, the computation of the transformations induced by moving objects con-
stitutes an essential component of the proposed method. We extract DGCNN
features [17] and establish correspondences on the whole scene based on nearest
neighbor search. Transformations are then computed using an iterative RANSAC
procedure [2]. We further evaluate the accuracy of the rigid transformations
with respect to the ground-truth ones. Results shown in Table 1, are evaluated
in terms of recall, capturing the percentage of correctly calculated transforma-
tions. We also provide the Mean Translation (MTE) and Mean Rotation (MRE)
Error, for all the correctly retrieved 3D rigid transforms. As in [16], we consider
a transformation as successfully calculated, if the alignment errors for the trans-
lation t∆ and rotation R∆ are lower than 10cm, 10◦ and 20cm, 20◦ respectively.

We compare our approach with handcrafted and learned descriptors for es-
tablishing correspondences. The baseline methods follow the object instance re-
localization protocol of the 3RScan dataset [16]: having access to an instance
segmentation of the reference scan, they only need to find correspondences for
3D parts belonging to each instance. In contrast, our method does not use this
supervisory signal and performs full matching between the scenes. Thus, the
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Table 1. Transformation evaluation via percentage of poses within given error bounds
on the position and orientation error (Recall), the Median Translation Error (MTE)
(in meters), and the Median Rotation Error (MRE) (in degrees). MRE and MTE are
provided for the correctly retrieved transformations, i.e., when the alignment errors for
the translation t∆ and rotation R∆ are lower than 10cm, 10◦ and 20cm, 20◦ respectively

Method Recall
(<0.10m,

10◦)

MRE(deg) MTE(m) Recall
(<0.20m,

20◦)

MRE(deg) MTE(m)

FPFH [13] 2.61 7.25 0.0645 8.36 10.57 0.0776

SHOT [15] 6.79 5.35 0.0268 12.27 8.18 0.0393

3D-match
dynamic [18]

5.48 5.81 0.0542 13.05 7.30 0.0708

RIO static [16] 9.92 4.33 0.0425 17.75 6.39 0.0545

RIO
dynamic [16]

15.14 4.75 0.0437 23.76 6.08 0.0547

Our method 3.58 3.00 0.0799 18.21 4.25 0.1381

included baselines have access to more information compared to our approach.
As expected, the baselines estimate more precise transformations. However, our
results show that our approach is still competitive with such strong baselines.

Table 2. Mean IoU and mean recall for the proposed method using different number
of computed transformations k to propagate geometrical consistency

Number of trans. IoU(%) Recall(%)

5 68.40% 76.05%

10 64.89% 77.43%

15 65.50% 79.09%

Ablation of the k Transformations Used in the Optimization. One of the
tunable hyperparameters of our method is the number of top k transformations
T used to propagate changes during the optimization. Indeed, sometimes wrong
transformations with few inliers that are caused by imperfect correspondences
are established. We thus ablate the top k transformations with the most inliers
to propagate the change to neighboring regions. Table 2 shows the results for
the proposed method when k = 5, 10, 15 transformations are used. As expected,
using a larger k increases the mean recall (i.e., the percentage of correctly re-
trieved objects) and decreases the mean IoU, as in some cases, the change leads
to oversegmentation. However, there is no substantial difference in the overall
performance of the proposed method correlated with k. This validates the ro-
bustness of our approach.

Accuracy and Completeness of the 3D Discovered Objects. Towards
assessing 3D object discovery, we also deploy the metrics of accuracy and com-
pleteness (on the point level). Per object accuracy refers to the percentage of
correctly predicted 3D points out of all the points forming our discovered ob-
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Table 3. Components of each presented method

Method Init.
Detect.

Comp.
Transf.

Optim.

Palazzolo et al. [12] /Ours bf optim. ✓
Taneja et al. [14] ✓ ✓

Our method ✓ ✓ ✓

Table 4. Mean accuracy and mean completeness for the proposed method and the
published baselines

Method Acc.(%) Compl.(%)

Palazzolo et al. [12] /Ours bf optim. 67.76 % 33.39%

Taneja et al. [14] 65.97% 30.53%

Our method 54.60% 59.20%

Table 5. Mean accuracy and mean completeness for the proposed method and the
ablation study’s baselines

Method Acc.(%) Compl.(%)

Our method 54.60% 59.20%

Ground-truth transforms. 48.79% 74.54%

Mask-RCNN 37.43% 71.39%

RANSAC inliers 52.47% 14.73%

ject. On the other hand, completeness captures how many of the ground-truth
object’s points were correctly retrieved by our solution. Tables 4 and 5 show the
mean accuracy and mean completeness for all objects. After close examination,
it is clear that our proposed method balances the most between the two metrics
when compared with the two published baselines (Palazzolo et al., Taneja et al.).
Table 3 summarizes the different components of each published baselines. Con-
cerning the ablation baseline, having access to the ground-truth transformations
would slightly improve the overall performance. On the other hand, assigning
semantics masks to many parts of the scene (Mask-RCNN), i.e., labeling most
of the scene as foreground objects, results in a high completeness rate. However,
it also leads to poor accuracy as change is wrongly propagated to static regions
with the same label, starting from wrong initial change detections.

2 Qualitative Results

In the following, initial detections of changing regions are depicted along with
the graph cut optimization results and ground-truth annotations. Corner cases
are also discussed.

Initial Detection Results. Results of the initially discovered changing regions
are depicted in Figures 1, 2, and 3. It is important to note here that in most cases,
the rescans constitute only partial observations of the reference scans; thus, the
marked changing regions refer only to the parts visible in the rescan. After close
inspection of Figures 1, 2, and 3, it becomes clear that in most cases, our initial
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detection stage efficiently retrieves the changing regions. Wrong detections are
primarily attributed to slight misalignments between the reference scan and the
rescan.

Results after graph cut Optimization. After graph cut optimization, a 3D
connected component analysis is applied both to the ground-truth annotations
and to the results of our approach. This step aims to turn our detected changing
regions into the final discovered objects. Figures 4, 5, and 6 present the final
output of the proposed method.

Corner Cases. We also present cases where our results conflict with the anno-
tations provided by the dataset. This could be partially attributed to unrecorded
changes in the ground-truth. 3RScan [16] is a dataset built towards assessing ob-
ject instance re-localization and thus does not exhaustively record every change.
Typical examples are shown in Figures 6 and 9, where the non-rigid change of
the curtain is not recorded. However, there are also cases where rigid transfor-
mations are not included in the ground-truth annotations (cf. the refrigerator in
Figure 9). In all the above-mentioned cases, the proposed method successfully
detected these changes.

The main limitation of our method is handling misalignments between scans.
Indeed, differences in voxel occupancy and depth values occur when the reference
scan and the rescan are not correctly registered. Thus, regions are falsely labeled
as changing during our method’s initial detection step. A typical example is
Figure 8, where parts of the floor are wrongly retrieved as changing due to
the misalignment. Post-processing steps such as matching against a 3D object
database, can eliminate these false detections.

Baseline Comparisons. As stated in the Section 4 of the main paper, we com-
pare our method against two published baselines, Palazzolo et al. [12] and Taneja
et al. [14]. We also compare against three baselines in the form of an ablation
study (Ground-truth transforms, Mask-RCNN, RANSAC Inliers). Qualitative
results for the two published baselines and the ablation baselines (Ground-truth
transforms and Mask-RCNN) are depicted in Figure 7.

The main paper explains that Palazzolo et al. [12] is equivalent to our method
before the optimization step, i.e., it predicts change through depth comparison.
The depicted visual results prove the need for a more sophisticated solution
rather than simply relying on inconsistencies between 2D projections. On the
other hand, Taneja et al. [14] performs a graph cut optimization, where the
binary term ensures photoconsistency. This constraint seems to perform well on
objects with homogeneous texture, such as the chair in Figure 7, but fails when
the same object has multiple textures (cf. the cabinet in Figure 7).

Moving on to the ablation study, the baseline using the ground-truth trans-
formations provided by the dataset seems to work better than the presented
method. This is expected since our method firstly computes transformations
and then discovers objects. Thus, for the proposed method, the uncertainty of
the calculated transformations is propagated to the results of the graph opti-
mization step. Finally, it is evident that when Mask-RCNN is used, a lot of
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Table 6. Applicable datasets for change detection/ object discovery

Method Scans Rescans Instance
Seg.

Annotation Available

Finman et al.[4] 2 67 ? ? —

Langer et al.[10] 1 4 — — —

Katsura et al.[8] 2 10+? ? ? —

Herbst et al.[7] 4 24 ✓ ✓ —3

Mason et al.[11] 1 67 — — ✓4

Ambrus et al.[1] 1 88 — —5 ✓
Fehr et al.[3] 3 23 — — ✓

Wald et al.[16] -
3RScan

478 1482 ✓ ✓ ✓6

Halber et al.[6] 13 45 ✓ — ✓
Langer et al.[9] 5 31 — ✓ ✓

background regions are labelled as changing, since they were wrongly extracted
as foreground in the RGB-D images (i.e., they were incorrectly assigned a se-
mantic mask). Moreover, it completely fails in regions that were not detected as
a foreground object (cf. cabinet in Figure 7 ), due to the lack of relevant training
data for these concepts. In contrast, our method does not rely on any predefined
notion of what an object should look like.

3 Datasets

The 3RScan dataset [16] is a dataset built towards assessing object instance re-
localization under rigid transformations. Thus, the dataset provides information
about the transformations induced by moving objects, along with an instance
segmentation of each scene. It also provides information about non-rigid changes
in some instances. Hence, we generate the ground-truth annotations by (i) ex-
tracting all the information about rigid and non-rigid movements as provided
by the dataset, and (ii) by comparing the instance segmentation of the reference
scan and rescan to discover objects that have been added or removed.

As stated above, even though 3RScan is not directly designed for 3D change
detection/ 3D object discovery, ground-truth information can be generated with-
out manual labeling. It is also a very large and diverse dataset, and thus, to the
best of our knowledge, the most appropriate dataset for our needs. Table 6
summarizes the characteristics of the adopted dataset, against other applicable
datasets that were not suitable for our scenario.

As shown in Table 6, there is no widely available dataset appropriate for
evaluating 3D indoor change detection and 3D object discovery. Each work eval-
uates its efficiency on tailor-made datasets, some of which [4,10,8,7] are not

3 The provided URL is not valid
4 Data available upon request
5 Inconsistent and incomplete annotation
6 With our provided code
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publicly available. Concerning the public datasets, [11] provides a relative large
amount of rescans. However, only a single environment is considered. Moreover,
its objects are not annotated so it cannot be used for quantitative evaluation.
Similarly, [1] consists of data captured by a robot in an office setting. The diver-
sity of the provided scenes is thus limited. The annotation is mostly inconsistent,
since some selected objects are annotated as new while other objects that are
physically new in a scene are not. In a similar vein to our used dataset [16], [3]
uses a hand-held Google Tango device to capture three rooms (reference scans)
and 23 rescans. Taking into account that the dataset is much smaller and less
diverse and its complete lack of annotations, we have decided not to use it. The
authors of [9] have created their own dataset, for evaluating added small objects
(from the YCB dataset [5]) in the scene. [10] provides ground-truth annotation
only for novel objects and not for moved ones, which makes the quantitative
evaluation of our task hard as not all the cases we are interested in can be di-
rectly tested. Finally, [6] aims at tracking instance segmentation across temporal
changes. Thus, a ground-truth instance annotation is provided for every rescan,
but no annotations concerning moving/static objects.

4 Novel Objects

Novel objects are also of broad interest to multiple robotic applications. Since
existing works in the research community [10,9] focus on novel added objects, we
have decided to create a subtask of discovering all added objects in the scene. To
this end, we have prepossessed 3RScan to create a new ground truth including
only the novel objects, and we also decided to compare our algorithm against [10].
Originally, [10] detects only small objects on the floor. We modified this work to
discover objects regardless of their size and position for a fair comparison. Table 7
shows the results in terms of IoU and recall at the voxel level, to capture the
volumetric overlap between ground truth and predictions. After close inspection
of Tab. 7, it is clear that our method outperforms the most competitive baseline
in the sub-task of discovering added objects.

Table 7. Metrics of the proposed method and [10] on novel objects of the 3RScan
dataset

Method IoU(%) Recall(%)

[10] 73.85% 64.25%

Our method 75.08% 76.70%
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T1

T2

(a) Reference scan (b) Rescan

T3

non-rigid

(c) Overlaid scans (d) Ground-truth annotations              (e) Initial detections

Fig. 1. Reference scans (a) and re-scans (b) of multiple scenes with highlighted occurred
changes (T1, T2, etc. refer to the ground-truth transformations between moving ob-
jects). Overlaid meshes of reference scan and rescan in red and blue (c). Ground-truth
changed regions of the point clouds (in red) overlaid on the reference scan (in blue) (d).
Initial change detection results of the point clouds (in red) overlaid on the reference
scan (in blue) (e)
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(a) Reference scan (b) Rescan

T1

T2

T3

T4 T5

added

(c) Overlaid scans (d) Ground-truth annotations              (e) Initial detections

Fig. 2. Reference scans (a) and re-scans (b) of multiple scenes with highlighted oc-
curred changes (T1, T2, etc. refer to the ground-truth transformations between moved
objects). Overlaid meshes of reference scan and rescan in red and blue (c). Ground-
truth changed regions of the point clouds (in red) overlaid on the reference scan (in
blue) (d). Initial change detection results of the point clouds (in red) overlaid on the
reference scan (in blue) (e)
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(a) Reference scan (b) Rescan

T2

T3

added

added

T4
non-rigid

T1

(c) Overlaid scans (d) Ground-truth annotations              (e) Initial detections

Fig. 3. Reference scans (a) and re-scans (b) of multiple scenes with highlighted occurred
changes (T1, T2, etc.. refer to the ground-truth transformations between moved ob-
jects). Overlaid meshes of reference scan and rescan in red and blue (c). Ground-truth
changed regions of the point clouds (in red) overlaid on the reference scan (in blue) (d).
Initial change detection results of the point clouds (in red) overlaid on the reference
scan (in blue) (e)
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(a) Reference scan (b) Rescan

T1

T2

T3

non-rigid

non-rigid

(d) Ground-truth connected components (e) Our connected components(c) Ground-truth instance annotation

Fig. 4. The meshes of the reference scan (a) and the rescan (b). Ground-truth instance
segmentation of the point cloud of the rescan (c). Ground-truth connected components
of the point cloud (d), compared with the connected components of our solution in (e)
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(a) Reference scan (b) Rescan

T1

T2

T3

T4 T5

added

(d) Ground-truth connected components (e) Our connected components(c) Ground-truth instance annotation

Fig. 5. The meshes of the reference scan (a) and the rescan (b). Ground-truth instance
segmentation of the point cloud of the rescan (c). Ground-truth connected components
of the point cloud (d), compared with the connected components of our solution in (e)
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(a) Reference scan (b) Rescan

T2

T3

added

added

T4
non-rigid

T1

(d) Ground-truth connected components (e) Our connected components(c) Ground-truth instance annotation

Fig. 6. The meshes of the reference scan (a) and the rescan (b). Ground-truth instance
segmentation of the point cloud of the rescan (c). Ground-truth connected components
of the point cloud (d), compared with the connected components of our solution in (e)
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(a) Reference scan (b) Rescan

T1

T2

T3

non-rigid

non-rigid

(d) Palazzolo et al.(c) Ground-truth solution

(e) Taneja et al. (f) Our Method

non-rigid

(h) Mask-RCNN(g) Ground-truth transf.

Fig. 7. The meshes of the reference scan (a) and the rescan (b). Ground-truth solution
(c). Results of the published baselines in (d) and (e). Results of the proposed method
in (f). Results of the ablation study’s baselines in (g) and (h)
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(a) Reference scan

(d) Initial detection

(b) Rescan

(c) Overlaid scans

Fig. 8. Slight misalignment between reference scan (a) and rescan (b). Overlaid refer-
ence scan and rescan (depicted in blue and red respectively) in (c). Initial detection
results in (d)

(a) Reference scan (b) Re-scan

added

added

T1

(c) Reference scan and Re-scan (d) Ground-truth (e) Final solution

Fig. 9. Changes not recorded in the ground-truth. The mesh of the reference scan is
depicted in (a), and the green bounding boxes underline unrecorded changes. The mesh
of the rescan in (b). Recorded changes in the ground-truth are underlined in red color.
The meshes of the two scans overlaid in red and blue color, respectively (c). Ground-
truth annotations (in red) overlaid on the point cloud of the reference scan in blue
(d), and our graph cut optimization results (in red) overlaid on the point cloud of the
reference scan in blue (e). The rigid change of the refrigerator and the non-rigid change
of the curtain that were not recorded in the ground-truth are successfully detected by
our method


	Supplementary Material for Objects Can Move: 3D Change Detection by Geometric Transformation Consistency

