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Appendix

A Encoding signals

Embedding Image type PSNR

ReLU Natural 20.42
Tanh Natural 16.91

SoftPlus Natural 16.03
SiLU Natural 17.59

Gaussian Natural 33.43
Laplacian Natural 33.01
Quadratic Natural 32.90

Multi-Quadratic Natural 33.11
ExpSin Natural 32.99

Super-Gaussian Natural 33.12

ReLU Text 18.49
Tanh Text 16.19

SoftPlus Text 15.77
SiLU Text 17.43

Gaussian Text 36.17
Laplacian Text 36.29
Quadratic Text 35.55

Multi-Quadratic Text 36.20
ExpSin Text 35.89

Super-Gaussian Text 35.57

ReLU Noise 10.82
Tanh Noise 9.66

SoftPlus Noise 9.71
SiLU Noise 11.21

Gaussian Noise 11.78
Laplacian Noise 11.01
Quadratic Noise 11.67

Multi-Quadratic Noise 11.29
ExpSin Noise 11.45

Super-Gaussian Noise 11.33
Table 2. Quantitative comparison between activations in 2D signal encoding
on [27] after 3000 epochs. The proposed activations yield high PSNRs. The noise
signals are difficult to be encoded with high fidelity due to limited redundancy.

B Norms of the layer outputs.

Our empirical results strongly suggested that the coordinate networks control
the local Lipschitz constant of the encoded signal primarily via the angle between
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Fig. 10. Qualitative examples of 2D signal encoding using the proposed activations on
the natural images by [27].
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Fig. 11. A qualitative comparison between ReLU and Gaussian activations (w/o po-
sitional embedding) in 3D view synthesis.

Fig. 12. A qualitative comparison between ReLU and Gaussian activations (w/ posi-
tional embedding) in 3D view synthesis.

Fig. 13. ∥Jf (x)∥F convergence as the training progresses.
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Fig. 14. 1D signal encoding using Gaussian activated MLPs.

the layer outputs. In this section, we conduct another experiment to validate this
behavior further. We measure the deviations of the layer output norms within
patches of images (Fig. 15). As shown, within a local area, the norms of the layer
outputs do not significantly deviate from their maximum, which backs up our
previous experiments.

Fig. 15. The norms of the layer outputs remain approximately locally con-
stant. For each patch obtained via an overlapping sliding window over an image, we
measure ∥max(ϕ(x))−min(ϕ(x))∥

∥max(ϕ(x))∥ . The above measure is then averaged over all the patches,

layers, and a subset of 10 images to obtain ∆(∥ϕ(x)∥) while training. As depicted, the
norms of the vectors do not significantly deviate from their maximum within a subset.

In Sec 3.4, the desired properties of the activations are derived under the
restriction that the norms of the outputs of the layers remain approximately
constant over a local subset. However, even in the case where the vector norms
are not approximately constant, our conclusions still hold: First, let us formally
define the local Lipschitz smoothness.

Definition 1. A function f : Rm → Rn is locally Lipschitz around x0 ∈ Rm if
for all x ∈ Bmδ there exists a constant C such that ∥f(x)− f(x0)∥ ≤ C∥x− x0∥
where x0 is the center x0 of Bmδ . Then, the smallest C for which the above
inequality is satisfied is called the Lipschitz constant of f around x0, and is
denoted as Cx0,δ(f).

A hidden-layer is a composition of an affine function g and a non-linearity
ψ. Hence, the composite local Lipschitz constant of a hidden-layer is upper-
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bounded with Cx0,δ(ψ ◦ g) ≤ Cx0,δ(g)Cx0,δ(ψ). We study these properties as δ
approaches zero. As shown in Sec.3.4, the affine transformation g cannot vary
the local Lipschitz smoothness across the signal. Thus, we focus on the activation
function ψ. Since ψ is a continuously differentiable function, applying the Taylor
expansion gives

ψ(x) = ψ(x0) + J(ψ)x0
(x− x0) +Θ(∥x− x0∥), (10)

where Θ(∥x − x0∥) is a rapidly decaying function as x → x0. Rearranging
Eq. 10 we get

∥ψ(x)− ψ(x0)∥ ≤ ∥J(ψ)x0
∥o∥(x− x0)∥+ ∥Θ(∥x− x0∥)∥, (11)

lim
δ→0

[
sup
x∈Bm

δ

∥ψ(x)− ψ(x0)∥
∥x− x0∥

]
≤ lim
δ→0

[
∥J(ψ)x0

∥o +
∥Θ(|x− x0|)∥

∥x− x0∥

]
. (12)

The left-hand side of Eq. 12 is the point-wise Lipschitz constant of ψ(·) at

x0 by definition. Again, the quantity lim
δ→0

∥Θ(|x−x0|)∥
∥x−x0∥ is zero by deifinition. Thus,

denoting the point-wise Lipschitz constant of ψ(·) at x0 as Cx0
(ψ), we get

Cx0
(ψ) ≤ ∥J(ψ)x0

∥o. (13)

Consider,

∥J(ψ)x0∥o = sup
Bm
δ ∋∥x∥=1

∥J(ψ)x∥

Here the operator norm is defined with the vector-norm on the vector space
of x. Further, the Frobenius norm and the vector-norm are the same for vectors.
Therefore,

∥J(ψ)x0
∥o = sup

Bm
δ ∋∥x∥=1

∥J(ψ)x∥F

Frobenius norm is submultiplicative. Thus,

∥J(ψ)x0
∥o ≤ sup

Bm
δ ∋∥x∥=1

∥J(ψ)∥F ∥x∥F

= sup
Bm
δ ∋∥x∥=1

∥J(ψ)∥F ∥x∥

= ∥J(ψ)∥F sup
Bm
δ ∋∥x∥=1

∥x∥

= ∥J(ψ)∥F .

Hence, with Eq. 13, we have
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Cx0
(ψ) ≤ ∥J(ψ)x0

∥F . (14)

.
Since J(ψ) is diagonal,

Cx(ψ) ≤
√
D(max

x∈R
ψ′(x))2, (15)

WhereD is the width of the network layer. One can see that in order to have a
larger Lipschitz constant over some interval, the maximum first-order derivative
of the activation should be higher over the same interval. Furthermore, in order to
obtain varying local Lipschits smoothness, the maximum first-order derivatives
of the activation within finite intervals should vary across the domain.


