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Abstract. Coordinate-MLPs are emerging as an effective tool for mod-
eling multidimensional continuous signals, overcoming many drawbacks
associated with discrete grid-based approximations. However, coordinate-
MLPs with ReLU activations, in their rudimentary form, demonstrate
poor performance in representing signals with high fidelity, promoting
the need for positional embedding layers. Recently, Sitzmann et al. [24]
proposed a sinusoidal activation function that has the capacity to omit
positional embedding from coordinate-MLPs while still preserving high
signal fidelity. Despite its potential, ReLUs are still dominating the space
of coordinate-MLPs; we speculate that this is due to the hyper-sensitivity
of networks – that employ such sinusoidal activations – to the initializa-
tion schemes. In this paper, we attempt to broaden the current under-
standing of the effect of activations in coordinate-MLPs, and show that
there exists a broader class of activations that are suitable for encoding
signals. We affirm that sinusoidal activations are only a single example
in this class, and propose several non-periodic functions that empir-
ically demonstrate more robust performance against random initializa-
tions than sinusoids. Finally, we advocate for a shift towards coordinate-
MLPs that employ these non-traditional activation functions due to their
high performance and simplicity. 1
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1 Introduction

Despite the ubiquitous and successful usage of conventional discrete representa-
tions in machine learning (e.g. images, 3D meshes, and 3D point clouds etc.),
coordinate MLPs are now emerging as a unique instrument that can repre-
sent multi-dimensional signals as continuously differentiable entities. Coordinate-
MLPs – also known as implicit neural representations [24] – are fully connected
networks that encode continuous signals as weights, consuming low-dimensional
coordinates as inputs. Such continuous representations are powerful compared
to their discrete grid-based counterparts, as they can be queried up to extremely
high resolutions. Furthermore, whereas the memory consumption of grid-based

1 Code available at https://github.com/samgregoost/Beyond periodicity
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representations entails exponential growth rates against the dimension and the
resolution of data, neural representations have displayed a much more compact
relationship between the above factors. Consequently, this recent trend has in-
fluenced a proliferation of studies in vision-related research including texture
generation [7, 14, 7, 30], shape representation [4, 5, 28, 6, 1, 12, 15], and novel view
synthesis [11, 13, 21, 25, 31, 17, 17, 19, 10, 29, 16].

Notwithstanding the virtues mentioned above, coordinate MLPs, in their
fundamental form, exhibit poor performance in encoding signals with high-
frequency components when equipped with common activation functions such
as ReLUs. An elemental reason behind this has shown to be the spectral bias
of MLPs [2, 18]. That is, the corresponding neural tangent kernel (NTK) of
MLPs are prone to high-frequency fall-offs, hampering their ability to learn high-
frequency functions. The prevalent work-around to this problem involves apply-
ing a positional embedding layer prior to the MLP, where the low-dimensional
inputs are projected to a higher-dimensional space using Fourier features [27].

In contrast, Sitzmann et al. [24] recently portrayed that MLPs with sinu-
soidal activation functions are naturally suited for encoding high-frequency sig-
nals, eliminating the need for positional embedding layers. Despite its potential,
much of the research that involve coordinate-MLPs still prefer positional embed-
dings over sinusoidal activations. We postulate that this could be for two reasons.
First, Sitzmann et al. mainly attributed the success of sinusoidal activations to
their periodicity, although the evidence for this relationship still remains scant.
Consequently, this lack of understanding obfuscates some of the fundamental
principles behind its effectiveness and hampers faithful usage in a wider range
of applications. Second, sinusoidal activations are highly sensitive to the initial-
ization of the MLP, showcasing significant performance drops in cases where the
MLP is initialized without strictly adhering to the guidelines of Sitzmann et al.
The above drawbacks have heightened the need for a more rigorous analysis that
facilitates more effective usage of activation functions in coordinate-MLPs.

Contributions: We offer a broader theoretical understanding of the role of
activation functions within coordinate-MLPs. In particular, we show that the
efficacy of a coordinate-MLP is critically bound to its Lipschitz smoothness and
the singular value distribution of the hidden-layer representations, and the op-
timal values of these metrics depend on the characteristics of the signal that
needs to be encoded. We further show that the above properties are inherently
linked to each other, and by controlling one property, the other can be implicitly
manipulated. We further derive formulae to connect the Lipschitz smoothness
and the singular value distribution to the properties of the activation functions.
The significance of this finding is two-fold: (i) providing guidelines for tuning the
hyper-parameters of an activation function based on the given signal and, (ii)
enabling a practitioner to theoretically predict the effect of a given activation
function when used in a coordinate-MLP, prior to practical implementation.
We further show that sinusoidal activations are simply a single example that
fulfills such constraints, and the periodicity is not a crucial factor that deter-
mine the efficacy of an activation function. Consequently, we propose a much
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Fig. 1. ReLU vs Gaussian activations (ours). Gaussian activations achieve bet-
ter results with ∼ 50% less parameters. These non-periodic activations also allow
embedding-free architectures (see Fig.3), and are robust to different random initial-
izations of coordinate-MLPs than the sinusoid activations advocated in SIREN [24].

broader class of non-periodic activation functions that can be used in encod-
ing functions/signals with high fidelity, and show that their empirical properties
match with theoretical predictions. We further illustrate that the newly pro-
posed activation functions are robust to different initialization schemes, unlike
sinusoidal activations. Further, picking one such proposed activation – Gaussian
– as an example, we demonstrate that coordinate-MLPs with such activation
functions enjoy better results, faster convergence rates, and shallower architec-
tures in comparison to ReLU-MLPs. Finally, we show that these activations
allow positional-embedding-free architectures to be used in complex tasks such
as 3D view synthesis. To our knowledge, this is the first instance coordinate-
MLPs have successfully been employed in such experiments in the absence of
positional embeddings.

2 Related works

In recent years, there has been an increasing interest in parameterizing signals
using neural networks – commonly referred to as coordinate-MLPs [26] or im-
plicit neural functions [24] – largely owing to the seminal work by Mildenhall
et al. [11]. The usage of coordinate-MLPs are somewhat different from con-
ventional MLPs: i) conventional MLPs typically operate on high dimensional
inputs such as images, sounds, or 3D shapes, and ii) are primarily being used
for classification purposes where the decision boundaries do not have to preserve
smoothness. In contrast, coordinate-MLPs are used to encode the signals as
weights where the inputs are low-dimensional coordinates and the outputs have
to preserve smoothness [32]. One of the most remarkable aspects of Milden-
hall et al.’s work includes demonstrating the generalization properties of such
neural signal representations, i.e. once trained with a handful of view points,
the coordinate-MLP can reconstruct the photometric view projection from an
arbitrary angle with fine-details. This ground-breaking demonstration caused a
ripple of studies that include neural signal representations as the core entities
across many applications including shape representation [4, 5, 28, 6, 1, 12, 15], and
novel view synthesis [11, 13, 21, 25, 31, 17, 17, 19, 10, 29, 16]. However, for optimal



4 Ramasinghe et al.

performance, these coordinate-MLPs have to use positional embeddings, which
allow them to encode high-frequency signal content. In contrast, Sitzmann et
al. [24] proposed sinusoid activations that enabled coordinate-MLPs to encode
signals with higher quality without positional embeddings. But, sinusoid acti-
vations have been shown to be extremely sensitive to the initialization scheme
of the MLPs. A further limitation to the framework developed by Sitzmann et
al. is its confinement to periodic activations. In contrast, our work generalizes
the current understanding on the effect of activations in coordinate-MLPs and
thereby propose a class of non-periodic activations that is robust under ran-
dom initializations. Recently, Liang et al. [9] proposed a novel class of activation
functions that can approximate target functions with a smaller number of pa-
rameters. However, our framework differs from theirs in two important aspects:
1) They mix multiple activation types to expand the class of functions that
can be approximated. However, NNs with any non-polynomial activation – thus
all activations we propose – are universal approximators [8]. Thus, our setup is
simpler while being more expressive. 2) Mixing activations leads to poor control-
lability of memorization/generalization tradeoff, which depends on the problem
domain. For instance, it is unclear how to control the coefficients of polynomials
(and also other functions, when mixed together) to this end. In contrast, our
framework provides a much more clear interpretation of this tradeoff, and shows
compelling generalization properties in complex settings as NeRF.

3 Methodology

Notation. The set of real n−dimensional vectors are denoted by Rn. The vectors
are denoted by bold lower-case letters (e.g., x). The set of m × n dimensional
matrices are denoted by Rm×n, and the matrices are denoted by bold upper-case
letters (e.g., A). ∥·∥ denotes vector norm, ∥·∥F denotes the Frobenius norm, and
∥ · ∥o is the operator norm. Bnr represents the n− dimensional ball with radius
r. Further, g(f(x)) = g ◦ f(x) where ◦ is the compositional operator.

3.1 Rank and memorization

The efficacy of a coordinate-MLP largely depends on its ability to memorize
training data. The objective of this section is to identify the key factors that
affect memorization. To establish the foundation for our analysis, we first revisit
the formulation of an MLP.

An MLP f with k − 1 non linear hidden-layers can be described by,

f : x → gk ◦ ψk−1 ◦ gk−1 ◦ · · · ◦ ψ1 ◦ g1(x), (1)

where gi : x → Ai ·x+bi is an affine projection with trainable weights Ai ∈
Rdim(xi)×dim(xi−1), bi ∈ Rdim(xi) is the bias, and ψi is a non-linear activation
function. The final layer is a linear transform such that f : x → gk ◦ ϕ(x), and
ϕ is a composition of the preceding k − 1 layers within the MLP without the



Beyond Periodicity 5

final linear layer. If the number of training examples is N , we define the total
(training) embedding matrix as

X ∈ RD×N :=
[
ϕ(x1)

Tϕ(x2)
T . . . ϕ(xN )T

]
(2)

where {xn}Nn=1 are the raw training inputs.
Recall that the final layer of an MLP is (typically) an affine projection with-

out any non-linearity. Dropping the bias for simplified notation, we get,

Ỹ = AkX, (3)

where Ỹ ∈ Rq×N are the outputs of the MLP. SupposeY ∈ Rq×N are the ground
truth training outputs the MLP is attempting to learn. Observe that if the MLP
is perfectly memorizing the training set — if Ỹ = Y — then each row of Y is a
linear combination of the rows of X. Assume we have no prior knowledge of Y,
that is, the rows of Y can be any arbitrary vector in RN . If the rows of X are
linearly independent, they form a basis for RN (assuming D ≥ N). Therefore,
if rank(X) = N , it is guaranteed that (assuming perfect convergence) the MLP
can find a weight matrix Ak that ensures perfect reconstruction of Y.

One can raise the valid question: could this conclusion hold in the practical
case where D ≪ N? The answer to this question depends on the nature of the
ground truth signal. Note that although the condition rank(X) = N is sufficient
to ensure perfect memorization for any signal, it might not always be necessary
since natural signals are typically redundant – that is of limited bandwidth. The
bandwidth of a category of signals can be defined [23] as the number of linearly
independent (normalized) bases required to represent them. Thus, rank(X) can
be less than N for many categories of signals whilst still enjoying perfect signal
recovery by the MLP. Fig. 2 is a perfect example that illustrates the above point.
Note that the stable rank is a lower bound for rank [20]. Better reconstructions
are shown when the stable rank is high, but the measure is bounded by the
network width (D), which is lower than the number of points (N). In contrast,
encoding noise signals which have limited to no redundancy – would require a
larger network width – and yields poorer results with D ≪ N (see Appendix) as
predicted. Rigorously speaking, the analysis so far only considers the penultimate
layer. However, based on the gathered insights, we make the following general
claim: the potential of the hidden-layers to induce high-rank representations –
that is those with very few zero singular values within X – correlates with the
memorization capacity of a coordinate-MLP.

One could also view the above result as a refashioning of the well known
Nyquist-Shannon sampling theory [23] applied to-coordinate MLPs. The result
is important, however, when it comes to the exposition of the rest of this pa-
per. But, a critical component is overlooked in the above analysis. In many
applications that utilize coordinate-MLPs, the ability predict values at unseen
coordinates, i.e., generalization, is important. For instance, in novel view syn-
thesis of a 3D scene, the network only observes a handful of views, in which the
network then has to predict the views from new angles. Therefore, the imme-
diate question arises: is having the ability to induce high-rank representations
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(i.e. very few zero singular values within X) sufficient for both memorization
and generalization? In Section 3.2, we shall see that this is indeed not the case.

3.2 Smoothness and generalization

To show that the rank alone is not sufficient to guarantee good generalization,
we perform a simple thought experiment on 1-D input coordinates x ∈ R and
single channel outputs. Let us construct a very wide layer ϕ : R → RD such that

D = N , and define the layer output ϕ(x) = [e
−(x−x1)2

σ2 , . . . , e
−(x−xN )2

σ2 ], where
x1, . . . , xN are the training points. With extremely small σ, ϕ(·) is equivalent
to one-hot encoding, ensuring rank(X) = N . Then, it is guaranteed that an A
can be found to memorize all the ground truth outputs y1, . . . , yN . However,
all the unseen points will map to 0⃗, and thus, the network will be obtain ex-
tremely poor generalization. In summary, having a higher rank for X will help
in memorization, but, it will not necessarily ensure good generalization.

Moreover, strictly speaking, generalization cannot be measured independently
without context. For instance, given sparse training points a neural network can,
in theory, learn infinitely many functions while fitting the training points. There-
fore, for good generalization, the network has to learn a function within a space
restricted by certain priors and intuitions regarding the ground truth signal. The
generalization then depends on the extent to which the learned function is close
to these prior assumptions about the task. When no such priors are available,
one intuitive solution that is widely accepted for regression (at least from an
engineering perspective) is to have “smooth” interpolation between the training
points [3].

In order to ensure such smooth interpolations (where second order derivatives
are bounded) it is critical to preserve the smoothness across non-linear layers

ϕ(·) locally as ||ϕ(x1)−ϕ(x2)||
||x1−x2|| = C, where C is some constant (since the final layer

is linear). Although the above condition seems overly restrictive, recall that the
embeddings ϕ(·) are learned via hidden-layers, as opposed to being analytically
designed. Therefore, it is enough to reduce the search space of the parameters
accordingly, as opposed to explicitly enforcing the above constraint. Thus, we can
slightly relax the above equality to an inequality interms of the local Lipschitz
smoothness. More precisely, in practice, it is enough to ensure

∥ϕ(x1)− ϕ(x2)∥ ≤ C∥x1 − x2∥, (4)

locally, where C is a non-negative, locally varying constant that depends on
the magnitude of the local first-order derivatives (i.e., frequencies) of the encoded
signal. That is, at intervals where encoding points exhibit large fluctuations, C
needs to be higher, and vise-versa.

Thus far, we have established that the singular values of the X correlates
with the memorization of seen coordinates and the (Lipschitz) smoothness of
ϕ(·) correlates with the generalization performance of an MLP. Thus, it is in-
triguing to investigate if there exists a connection between these two forces at
a fundamental level, as such an analysis has the potential to provide valuable
insights that enable efficient manipulation of these factors.
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3.3 Singular value distribution as a proxy for smoothness

This section is devoted to exploring the interrelation between the smoothness
and the singular value distribution of the hidden representations. Suppose that
for coordinates xi in a given small neighborhood, ϕ(·) is Lipschitz bounded with
a constant C. Then,√

(ϕ(x1)ϕ(x1)T − 2ϕ(x1)ϕ(x2)T + ϕ(x2)ϕ(x2)T )

∥x1 − x2∥
≤ C (5)

With Eq. 5 in hand, let us consider two cases for X.

Case 1. The columns of X are orthogonal and the singular values of X are
identically distributed.

One can see that,√
∥ϕ(xi)∥2 + ∥ϕ(xj)∥2

∥xi − xj∥
≤ C ⇒ lim

∥x1−x2∥→0
C = ∞ (6)

In other words, having (approximately) equally distributed singular values
violates the Lipschitz smoothness of the network.

Case 2. The singular values ofX are non-zero and the angle between the columns
of X are upper-bounded by 0 < α < π

2 .

Consider
x∗
i ,x

∗
j = arg

xi,xi

(∥ϕ(xi)− ϕ(xj)∥
∥xi − xj∥

= C
)
.

Then, we can define an upper bound on C as

C ≤

√
∥ϕ(x∗

i )∥2 + ∥ϕ(x∗
j )∥2 − 2∥ϕ(x∗

i )∥∥ϕ(x∗
j )∥cosα

∥x∗
i − x∗

j∥
,

which can be minimized by decreasing α. Strictly speaking, C can still be
considerable with a small α, if |(∥ϕ(x∗

i )∥−∥ϕ(x∗
j )∥)| is large enough. However, in

practice, we observe that the ∥ϕ(x)∥’s do not deviate from their maximum norm
within the set significantly. That is, within a small sub set of x, the vectors
ϕ(x) approximately lie on a sphere (see Appendix). Therefore, we make the
following claim: the local Lipschitz constant of a network layer can be minimized
by reducing the angles between the output vectors. Below, we justify this claim
from another perspective.

Consider a set of coordinates {xi}Ni=1 and the function ϕ(·) induced by a
hidden-layer of an MLP. Let {λ}Ni=1 be the singular values of X where X =[
ϕ(x1)

Tϕ(x2)
T . . . ϕ(xN )T

]
. Intuitively, if the angles α between the columns of

X are small, most of the energy of the singular values should be concentrated on
the first few components. On the other hand, if α is high, the energies should be
distributed. Therefore, we advocate in this paper that the stable rank, defined

as S(X) =
∑N
i=1

√
λi

max
i

(
√
λi)

[20], can be used as a useful proxy measure for the
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spread (angles) of the column vectors of X, i.e., S(X) is large if the spread is
large, and vise-versa. We empirically demonstrate that MLPs are not able to
obtain a high Lipschitz constant with a small S(X) (see Fig. 2 and Fig. 7). If
our intuition was incorrect (i.e., if the network could obtain a high Lipschitz
constant with a small α by varying the norm of the layer outputs significantly),
we should be able to observe high local Lipschitz constants with small S(X).
Our experimental results in strongly counters this. That is, networks can not
obtain a high Lipschitz constant if S(X) are low. In other words, coordinate-
MLPs primarily try to increase the Lipschitz constant by increasing the angles
between the network outputs.

Based on the gathered insights within this section, we argue that S(X) is a
potentially useful proxy measure for the local Lipschitz smoothness of network
layers. More precisely, if S(X) is larger, then the Lipschitz constant C tends to
become larger, and vice-versa. This is a useful result, as computing the exact
Lipschitz constant of an MLP is an NP-hard problem [22]. Although one can
efficiently obtain upper-bounds for the Lipschitz constant, that requires calcu-
lating the gradients of the function. Instead, we can gain a rough understanding
on the behavior of the Lipschitz smoothness of a particular layer by observing
S at run-time. We should emphasize that these insights are based on intuition
and empirical evaluation. A more rigorous proof on this relationship is outside
the scope of this paper, but the established relationship is sufficient to allow us
to make some useful architectural predictions. In Section 3.4, we will connect
these gained insights to the local Lipshchitz smoothness of the signal and the
properties of activation functions.

3.4 Local Lipschitz smoothness and the activation function

Activation (ψ) Equation parameterized ψ′ ψ′′ R1 R2

ReLU max(0, x) ✗

{
1, if x > 0

0, otherwise
0 ✗ ✗

PReLU

{
x, if x > 0

ax, otherwise
✓

{
1, if x > 0

a, otherwise
0 ✓ ✗

Sin sin(ax) ✓ acos(ax) −a2sin(ax) ✓ ✓

Tanh ex−e−x

ex+e−x ✗ 4e2x

(e2x+1)2
− 8(e2x−1)e2x

(e2x+1)3
✗ ✓

Sigmoid 1
1+e−x ✗ ex

(ex+1)2
− (ex−1)ex

(ex+1)3
✗ ✓

SiLU x
1+e−x ✗ ex(ex+x+1)

(ex+1)2
− ex((x−2)ex−x−2)

(ex+1)3
✗ ✓

SoftPlus 1
a
log(1 + eax) ✓ ecx

1+ecx
cecx

(ecx+1)2
✓ ✗

Gaussian e
−0.5x2

a2 ✓ −xe
− x2

2a2

a2

(x2−a2)e
− x2

2a2

a4 ✓ ✓

Quadratic 1
1+(ax)2

✓ − 2a2x

(a2x2+1)2
2a2(3a2x2−1)
(a2x2+1)3

✓ ✓

Multi Quadratic 1√
1+(ax)2

✓ − a2x

(a2x2+1)
3
2

2a4x2−a2

(a2x2+1)
5
2

✓ ✓

Laplacian e( −|x|
a

) ✓ xe
|x|
a

a|x|
e
|x|
a

a2 ✓ ✓

Super-Gaussian [e
−0.5x2

a2 ]b ✓ − bxe
− bx2

2a2

a2

b(bx2−a2)e
− bx2

2a2

a4 ✓ ✓
ExpSin e−sin(ax) ✓ aesin(ax) cos (ax) −a2esin(ax)

(
sin (ax)− cos2 (ax)

)
✓ ✓

Table 1. Comparison of existing activation functions (top block) against the
proposed activation functions (bottom block). The proposed activations and the
sine activations fulfill R1 and R2, implying better suitability to encode high-frequency
signals.
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Fig. 2. Proposed activations (left block) vs. existing activations (right block)
and their respective stable ranks (S) in image encoding without positional
embeddings. As predicted by Table 1, the proposed activations are better suited for
encoding signals with high fidelity. As Sec. 3.2 stated, the stable ranks of the proposed
activations are higher, indicating larger local Lipschitz constants which allow sharper
edges.

Natural signals have varying local Lipschitz smoothness. For instance, an image
may contain high variations within a particular subset of the pixels and may
consist of constant pixel values within another subset. Since the final layer of
an MLP is linear, the hidden non-linear layers should then have the ability
to construct representations with varying local Lipschitz smoothness for better
signal encoding. In this section, we show that this ability is primarily linked to
the first and second-order gradients of the activation function.

In Sec. 3.3, we established that in practice, the angle between the network
outputs determines the Lipschitz smoothness. It is easy to see that both the
affine transformation and the activation function contribute to the composite
Lipschitz constant of a hidden layer. However, the Lipschitz constant of the
affine transformation is the operator norm of its weight matrix: Let x ∈ Bmδ
with center x0. Then as lim

δ→0
,

∥(Ax+ b)− (Ax0 + b)∥ ≤ Cx0,δ∥x− x0∥ (7)

Cx0,δ = sup
∥x−x0∦=0

∥A(x− x0)∥
∥x− x0∥

, (8)

which is not a local property. In other words, the network can only control
the Lipschitz smoothness of the network via the affine layer globally, which is
not useful in encoding natural signals. Hence, we direct our attention towards
the activation function. However, it is not trivial to establish the connection be-
tween the point-wise activation function ψ : R → R and the composite Lipschitz
smoothness, given that the vector norms stays approximately the same (which
is our empirical observation). Hence, we strive to obtain mathematical intuition
as described next.

Consider an input vector x0 = [x1, . . . , xN ]. Further, let xϵ1 = [x1+ϵ1, . . . , xN+
ϵ1] and xϵ2 = [x1 + ϵ2, . . . , xN + ϵ2]. Our intention is to obtain a measure for
∡(x0,xϵ1)− ∡(x0,xϵ2). Further,

∡(x0,xϵ1) = cos−1
( ψ(x0) · ψ(xϵ1)
∥ψ(x0)∥∥ψ(xϵ1)∥

)
.
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Since the norms are approximately constant, we can use a proxy for ∡(x0,xϵ1)−
∡(x0,xϵ2) as,

|∡̃(x0,xϵ1)− ∡̃(x0,xϵ2)| = |ψ(x0) · ψ(xϵ1)− ψ(x0) · ψ(xϵ2)|

= |
N∑
i=i

(
ψ(xi + ϵ1)− ψ(xi + ϵ2)

)
ψ(xi)|

≤
N∑
i=i

|
(
ψ(xi + ϵ1)− ψ(xi + ϵ2)

)
||ψ(xi)|

≤ Cψ|ϵ1 − ϵ2|
N∑
i=i

|ψ(xi)|,

Fig. 3. Novel view synthesis without positional embedding (zoom in for a
better view). Gaussian activations can completely omit positional embeddings while
producing results with significantly better fidelity. In contrast, the performance of
ReLU-MLPs severely degrade when positional embeddings are not used. We use 8-
Layer MLPs for this experiment.

where Cψ is the local Lipschits constant of the activation function in the
corresponding interval I. We then obtain,

|∡̃(x0,xϵ1)− ∡̃(x0,xϵ2)|
|ϵ1 − ϵ2|

≤ Cψ|
N∑
i=i

|ψ(xi)| (9)

Therefore, the upper-bound on the Lipschitz constant of the angle variation
in a local interval can be increased by increasing the local Lipschitz constant
of the activation function. Further, by definition, the local Lipschits constant
Cψ = sup

x∈I
(|dψdx |). Therefore, we come to the conclusion that in order to encode

signals with high frequencies (large fluctuations), one needs to use activation
functions that contain first-order derivatives with large magnitudes (the con-
verse is also true). Also, it is important to note that the magnitudes of the
local variations depend on the signal. For instance, one can have an extremely
smooth signal which can be encoded using activation functions with smaller
magnitudes of first-order derivatives. However, the same activations would not
be suitable for encoding signals with large fluctuations. Therefore, for better us-
ability across signals with different smoothness properties, activation functions
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need to be parameterized where the first-order derivates can be controlled via
the hyperparameters. We denote this as the requirement 1 (R1)

However, R1 is not necessarily sufficient to ensure good signal fidelity when
considering a particular signal with significantly varying fluctuations across dif-
ferent intervals. Thus, for better performance, activations should consist of vary-
ing first-order derivatives across a considerable interval, and equivalently, non-
negligible second-order derivatives (to obtain varying Lipschitz smoothness). We
denote this as requirement 2 (R2). This gives the affine transformations the abil-
ity to project the points to different regions of the activation function and achieve
varying local Lipschitz smoothness.

Fig. 4. Novel view synthesis with positional embedding (zoom in for a better
view). With Gaussian activations, shallow MLPs can obtain high-fidelity reconstruc-
tions. In contrast, the performance of ReLU-MLPs degrade when the depth of the MLP
reduces. We use 4-layer MLPs for this comparison.

It is interesting to note that most of the commonly used activations in deep
learning do not satisfy above properties. For instance, consider the ReLU acti-
vation ψ(x) = max(0, x). The derivative of the ReLU then cannot be more than
1, which hampers its ability to encode function with large local variations. Ac-
tivations such as Sigmoid, Tanh, GELU also have bounded first-order gradient
magnitudes within a smaller range and are not parameterized, which violates

R1. On the other hand, PReLUs, ψ(x) =

{
x, if x > 0

ax, otherwise
, is a parameterized

activation that can have extremely large derivatives by controlling the hyper-
parameter a. However, this derivative is either 1 or a, which violates R2 and
hampers the network’s ability to obtain varying local smoothness. In contrast,
recently proposed sine activations [24] ψ = sin(ax) satisfy both R1 and R2, and
thus, are suitable for encoding signals. However, we show that the periodicity,
as advocated in [24], is not a crucial requirement, as long as R1 and R2 are sat-
isfied. Instead, we affirm that there is a much broader class of activations that
can be used in coordinate-MLPs, and propose several parameterized activation
functions that originate from the family of infinitely differentiable functions as
examples. Table 1 compares existing and several novel activation functions that
we propose, against R1 and R2. Finally, it is important to note that even with-
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out the restriction that the norms of the vectors are approximately constant, the
above conclusions hold (see Appendix).

Activation Depth PE PSNR SSIM

ReLU 4L ✓ 27.44 0.922
Gaussian 4L ✓ 31.13 0.947

ReLU 8L ✗ 26.55 0.918
Gaussian 8L ✗ 31.17 0.949

ReLU 8L ✓ 30.91 0.941
Gaussian 8L ✓ 31.58 0.951

Fig. 5. Quantitative comparison in
novel view synthesis on the real
synthetic dataset [11]. Gaussian ac-
tivations can achieve high-fidelity recon-
structions without positional embeddings.
When equipped with positional embed-
dings, they demonstrate similar perfor-
mance with ∼ 50% less parameters.

Fig. 6. Qualitative comparison of
convergence when MLPs are initial-
ized without following [24] (after
3000 epochs). Unlike Sine activations,
Gaussian activations are robust to vari-
ous initialization schemes (example shown
used Xavier normal initialization).

4 Experiments

4.1 Comparison of activation functions

We compare the capacity of a coordinate-MLP in encoding signals when equipped
with different activation functions. Fig. 2 illustrates an example where an im-
age is encoded as the weights of an MLP. As shown, newly proposed Gaussian,
Laplacian, ExpSin, and Quadratic activation functions are able to encode the
image with significantly better fidelity with sharper gradients (high Lipschitz
constants), compared to the existing activations such as ReLU, Tanh, SoftPlus,
and SiLU. Also, note that the stable ranks (the energy distribution between the
singular values) of the hidden representations are higher for the proposed acti-
vation functions than the rest. This matches with our theoretical predictions in
Sec.3.2

4.2 Novel view synthesis

Without positional embeddings: We leverage the real synthetic dataset re-
leased by [11] to test the capacity of the Gaussian activations in encoding high-
dimensional signals. Fig. 3 qualitatively contrasts the performance of ReLU vs.
Gaussian activations without the positional embeddings. When the positional
embeddings are not used, the ReLU MLPs demonstrate poor performance in
capturing high-frequency details. On the contrary, Gaussian activations can cap-
ture information with higher fidelity in the absence of positional embedding. We
believe this is an interesting result that opens up the possibility of positional-
embedding-free architectures.
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With positional embeddings: Although suitably chosen activation functions
can omit positional embeddings, the combination of the two can still enable
shallower networks to learn high-frequency functions. Fig. 4 depicts an example
with 4-layer MLPs. As evident, when the network is shallower, ReLU MLPs
showcase reduced quality, while the performance of Gaussian activated MLPs
is on-par with deeper ReLU MLPs. This advocates that practitioners can enjoy
significantly cheaper architectures when properly designed activation functions
are used. Table 5 depicts the quantitative results that include above comparisons.

Fig. 7. Stable rank (S) vs the fidelity
of reconstructions. Having an extremely
high or low stable rank (or equivalently a
Lipschitz constant) hampers the ability of
an MLP in encoding functions with fine
details (Sec. 3.2). Thus, it is important to
adjust the hyper-parameters of an activa-
tion function to tune the above metrics to
a suitable range.

Fig. 8. Distribution of the upper-
bound of the point-wise Lipschitz
constant ∥J(f)x∥F with Gaussian
reconstructions. Having an activation
function with a suitable bound for the lo-
cal Lipschitz constant helps the network to
learn functions with properly distributed
derivatives.

4.3 Convergence

Sitzmann et al. comprehensively demonstrated that sine activations enable MLPs
to encode signals with fine details. However, a drawback entailed with the sine
activations is that they are extremely sensitive to the initialization of the MLP.
In comparison, the proposed non-periodic activation functions do not suffer from
such a problem. Fig. 6 illustrates a qualitative example. When the initialization
method of the MLP does not strictly follow the method proposed in Sitzmann et
al., the sine activated MLPs do not converge even after 3000 epochs. In contrast,
Gaussian activations demonstrate much faster convergence. Fig. 9 illustrates a
quantitative comparison of convergence. We trained the networks on the natural
image dataset released by [27] and the average PSNR value after each iteration
is shown in Fig. 9. As clearly evident, the Gaussian activations enjoy higher
robustness against the various initialization schemes of an MLP.
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Fig. 9. Convergence rates of Gaussian and sine MLPs on natural images by
[27] under different initialization schemes. Gaussian activations are significantly
robust to various initialization methods compared to sine activations. Other proposed
non-periodic activation functions (not shown in the figure) also demonstrate similar
robustness.

4.4 Local Lipschitz smoothness

The local Lipschitz smoothness of a function converges to the Jacobian norm
at the corresponding point (see Appendix). In Section 3.4, we showed that a
good proxy measure for the Lipschitz constant is the range of the first-order
derivative of the activation function. We further affirmed that the Lipschitz
constant should be suitably chosen for better performance i.e. a too high or too
low Lipschitz constant can prevent the network from properly learning a signal.
Fig. 7 illustrates an example that confirms this statement. When σ increases,
Range|ψ′| of the Gaussian activation decreases, decreasing the Lipschitz constant
(see Sec. 3.4). In contrast, when a increases, the Range|ψ′| of the sine activation
increases, increasing the Lipschitz constant. A lower Lipschitz constant results
in blurry edges as it does not allow sharp changes locally. On the other hand, an
extremely large Lipschitz constant allows unwanted fluctuations. Hence, choosing
the parameters to be in a suitable range is vital for better performance. Fig. 8
shows the distribution of local Lipschitz constants after encoding a signal with
Gaussian activations with properly chosen parameters.

5 Conclusion

We seek to extend the current understanding of activation functions that allow
coordinate-MLPs to encode functions with high fidelity. We show that the previ-
ously proposed sinusoid activation [25] is a single example of a much broader class
of activation functions that enable coordinate-MLPs to encode high-frequency
signals. Further, we develop generic guidelines to devise and tune an activation
function for coordinate-MLPs and propose several non-periodic activation func-
tions as examples. The proposed activation functions allow positional-embedding-
free coordinate-MLPs, and show much better convergence properties against var-
ious initialization schemes compared to sinusoid activations. Finally, choosing
Gaussian activations from the proposed list, we demonstrate compelling results
across various signal encoding tasks.
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