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Abstract. Recent advances in radiance fields enable photorealistic ren-
dering of static or dynamic 3D scenes, but still do not support explicit
deformation that is used for scene manipulation or animation. In this
paper, we propose a method that enables a new type of deformation of
the radiance field: free-form radiance field deformation. We use a trian-
gular mesh that encloses the foreground object called cage as an inter-
face, and by manipulating the cage vertices, our approach enables the
free-form deformation of the radiance field. The core of our approach is
cage-based deformation which is commonly used in mesh deformation.
We propose a novel formulation to extend it to the radiance field, which
maps the position and the view direction of the sampling points from the
deformed space to the canonical space, thus enabling the rendering of the
deformed scene. The deformation results of the synthetic datasets and
the real-world datasets demonstrate the effectiveness of our approach.
Project page: https://xth430.github.io/deforming-nerf/.
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1 Introduction

Photorealistic free-view rendering has recently received increasing attention for
its various real-world applications such as virtual reality, augmented reality,
games, and movies. Recently, neural scene representations [23, 28, 30, 40] have
shown better capability to capture both geometry and appearance that exceed
traditional structure-from-motion [13, 44] or image-based rendering [4, 10]. The
most representative work is Neural Radiance Field (NeRF) [28], which repre-
sents the static 3D scene as a radiance field and uses a neural network to
encode the volume density and the view-dependent radiance color. With vol-
ume rendering [19], NeRF can achieve photorealistic rendering from an arbi-
trary viewpoint. Subsequent works extended NeRF to support modeling dynamic
scenes [35, 36, 39, 43], dark scenes [27], multi-scale rendering [1]. Manipulable or
editable scene rendering is one of the directions of NeRF extensions that received
attention for its numerous applications such as scene animation or new scene
generation. However, the above-mentioned works focus on modeling the existing
scenes and thus cannot generate scenes that are unseen during the training.

https://xth430.github.io/deforming-nerf/
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For some specific object categories, such as the human body or articulated
objects, recent studies [24,32,33,37,38,41,46] enable the generation of the unseen
scene by controlling the body shape or bone pose. Besides, some works utilize
the idea of compositionality to separate foreground objects in the scene during
training, thus allowing the scaling or moving of objects in the scene [16, 48].
However, the manipulation in these approaches only allows affine transforma-
tions of objects. Although the above methods attempted to develop for radiance
field manipulation, they have a common and clear limitation: they cannot per-
form explicit scene manipulation with details (e.g. torsion or local scaling) for
arbitrary categories of objects.

To address the above issues, we propose a new approach for manipulating
the optimized radiance field. Our method allows free-form deformation of the ra-
diance field, thus enabling explicit object-level scene deformation or animation.
Our idea is an extension of cage-based deformation (CBD), which is originally
proposed for mesh deformation [17,18,22]. Specifically, the deformation of a fine
mesh, or the displacement of its vertices, is driven by manipulating the vertices of
the coarse triangular mesh called cage that enclosed the fine mesh (e.g. Fig. 3(c)).
Such a mesh deformation method is also known as free-form deformation. Ex-
tending cage-based deformation to radiance field deformation while maintaining
the properties of the radiance field such as volumetric representation and view-
dependent radiance is non-trivial and yet unexplored. In this paper, we derive a
novel formulation for applying CBD to the radiance field that satisfies the prop-
erties of the radiance field. However, we find that simply applying the proposed
formulation to achieve radiance field deformation brings a new issue: the volume
rendering process of the radiance field usually requires a huge number of sam-
pling points [28], and CBD is usually accompanied by a high-dimensional tensor
computation, these facts lead to impractical deformation computation times. To
address this specific issue, we also propose a discretization method specifically
suitable for the radiance field that significantly reduces the computation time of
CBD.

We conducted extensive experiments with various types of CBD algorithms
using synthetic datasets and real-world datasets. Reasonable deformation and
photorealistic rendering quality demonstrate the effectiveness of our approach.

In summary, our contributions are listed as follows:

– We proposed a new approach to explicitly manipulate the radiance fields
using a coarse triangular mesh called cage, allowing free-form deformation
of the scene while maintaining photorealistic rendering quality.

– We proposed a discretization method for cage coordinate computation specif-
ically adapted for the radiance field rendering, which achieves a speedup of
several orders of magnitude compared to the naive computation.

– We conducted extensive experiments to deform the radiance field and the
rendering results demonstrate the soundness and effectiveness of our method.
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Fig. 1. An overview of our approach. Our method takes multi-view images capturing
a static scene as input and uses an off-the-shelf algorithm to optimize a radiance field.
Then, we automatically and/or manually generate a cage based on the optimized radi-
ance field. By manipulating the vertices of the cage, the radiance field can be deformed
accordingly. Finally, through volume rendering, the free-view rendering of the deformed
scene can be achieved.

2 Related Work

Neural scene representation. Recently, neural scene representation, which
uses a neural network to encode the 3D scenes, has received a lot of atten-
tion due to its high quality of geometry and appearance modeling compared
to standard 3D representation including voxel [9, 47], point clouds [6, 11] or
textured-mesh [20, 21]. The most representative work is Neural Radiance Field
(NeRF) [28], which shows that representing static scenes with volumetric density
and view-dependent radiance can capture high-resolution geometry and support
photorealistic novel view rendering. An obvious limitation of the original NeRF
is that it can only model static scenes. Subsequent work relaxed this limitation
and enabled the dynamic scene modeling by simultaneously learning the de-
formation fields [35, 39, 43] or introducing high-dimensional representation [36].
While these methods achieved the capture of dynamic scenes, none of them can
generate new dynamics that are unseen in the training.

Manipulable neural scene rendering. Recent work attempted to incorpo-
rate controllability into NeRF to achieve scene manipulation or new scene gen-
eration. For the specific task of human body modeling, various works proposed
to combine NeRF with a parametric human model to enable human body re-
posing [37, 38], shape control [24] or even clothing changes [46]. For the artic-
ulated object, [33, 41] proposed to build NeRF on the local coordinates of the
pre-defined skeleton thus allowing the rendering of the re-posed object, and [32]
proposed to learn the unknown skeleton structure along with NeRF. However,
the above approaches are limited to specific categories of objects and thus cannot
be generalized to the modeling and manipulating of arbitrary objects.

In addition to the above methods of using human model or skeleton to assist
in modeling, another direction of manipulatable scene modeling methods utilize
an idea of compositionality [12, 16, 34, 48]. Specifically, these methods treat the
3D scene as a composition of multiple objects or backgrounds. By modeling each
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object independently, the movement or scaling of each object can be achieved.
However, the controllability of such methods focuses on the location or size
of objects w.r.t. the whole scene, and cannot achieve detailed deformation of
the shape or appearance for individual objects. In contrast to all the above
approaches, our method focuses on object-level deformation for detailed shape
and appearance manipulation.

Concurrent work [50] uses a similar idea of mesh-based deformation for ge-
ometry editing of NeRF, which takes extracted fine mesh as an interface.

Cage-based deformation. Cage-based deformation (CBD) is a volumetric
deformation method that is typically used for fine mesh deformation by manip-
ulating the corresponding cage vertices. Here, cage denotes a watertight mesh
that encloses the target fine mesh to be deformed. The core of CBD is cage coor-
dinates, a generalized form of barycentric coordinates, which is used to represent
the relative positions of spatial points w.r.t. the cage. The new position of a spa-
tial point can be computed from its cage coordinates and the deformed cage.
Previous works proposed several cage coordinates with different properties, in-
cluding mean value coordinates (MVC) [7,18], harmonic coordinates (HC) [5,17],
green coordinates (GC) [22], etc. For example, the computation of MVC and
GC have closed-formulation and thus can be computed in a feedforward man-
ner, while HC does not have a closed-formulation and therefore its computation
requires loop optimization. Specifically, the computation of HC discretizes the
space into grid points and updates the HC value for each grid point by performing
laplacian smoothing with certain boundary conditions. More comparisons and
mathematical preliminaries can be found in [31]. In addition to the traditional
CBD algorithm, recent works proposed to combine CBD with deep learning
algorithm to achieve high-quality mesh deformation [14,49].

All of the above methods are focused on using CBD for mesh deformation.
Our method aims to extend the CBD to the deformation of the radiance field.

3 Method

Our goal is to deform the optimized radiance field by manipulating the cor-
responding cage vertices, thus achieving a photorealistic rendering of the new
deformed scene. An overview of our approach is shown in Fig. 1. The first step
is to optimize a radiance field from the multi-view images (Sec. 3.1). Then, a
cage enclosing the foreground object is generated based on the optimized ra-
diance field (Sec. 3.2). With our proposed cage-based deformation formulation
for the radiance field, the free-form deformation of the radiance field can be
achieved (Sec. 3.3, Sec. 3.4).

3.1 Radiance fields revisited

Neural radiance field (NeRF) [28] uses a neural network to encode the 3D scene
as a continuous neural representation, which receives the spatial position x ∈ R3
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Fig. 2. Rendering process of the deformed scene. To perform volume rendering for the
deformed radiance field Ψ, we map the sampling points on the ray to the canonical
space through cage-based deformation and query the color and density in the canonical
radiance field Ψ(c).

and view direction d ∈ R3 as inputs and computes the RGB color c ∈ R3 and
density σ ∈ R of that point. With volume rendering, photorealistic rendering
of NeRF from an arbitrary viewpoint can be achieved. Recently, some variants
of radiance field representation have been proposed, for example, Plenoxels [8]
use grid representation and directly optimize radiance field without using neural
networks. Without loss of generality, we refer to the 3D scene representation
that can be formulated as Ψ : (x,d) → (c, σ) as radiance field.

As explored in previous studies, given a static scene, a radiance field Ψ(c) can
be optimized from a set of multi-view images with calibrated camera parame-
ters. Here c stands for “canonical”, which denotes the original static scene, to
distinguish it from the later deformed scene.

3.2 Cage generation from radiance fields

In this paper, cage refers to a coarse 3D triangular mesh that strictly encloses the
foreground object. We demonstrate a method for automatically and/or manually
generating a cage from the optimized radiance field. Specifically, the first step is
to convert the radiance field into a fine mesh using surface extraction methods
such as marching cubes [26] (Fig. 3(b)). The second step is to create the cor-
responding cage for the generated mesh (Fig. 3(c)). For scenes containing only
foreground objects (such as those optimized using masked images), we use [45]
to compute the corresponding cage. For scenes containing backgrounds, we use
Blender [3] to manually split the foreground objects from the reconstructed fine
mesh and then apply [45] to compute the cage. However, some cage predictions
may be inaccurate due to the complex shapes or fine details of the scenes. For
these cases, we manually resolve them based on the automatically generated cage
for better manipulation performance. Alternatively, if only a simple deformation
(or moving, scaling) is needed, we can also use 3D software to manually build
a simple cage, such as rectangle or cylinder, by referring to the extracted fine
mesh.
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(a) Radiance field (b) Extracted mesh (c) Cage

Fig. 3. Cage generation process. After extracting a fine mesh from the optimized ra-
diance field, a cage can be generated automatically and/or manually according to the
fine mesh.

3.3 Cage-based deformation

Cage-based deformation (CBD) is originally proposed for deforming a fine mesh
using the cage, which calculates the vertex displacement of the fine mesh caused
by the cage manipulation. Specifically, given a cage C with vertices {vj}, points
x ∈ R3 inside C can be identified with cage coordinates {ωj} which represent
the relative position of x w.r.t. C. Formally, the position of point x is weighted
by the cage vertices as:

x =
∑
j

ωj(x)vj . (1)

Consider that we manipulate the vertices of C and deform it to cage C′ with
vertices {v′

j}. Using the calculated cage coordinate, the deformed position of x
for the deformed cage C′ can be calculated as:

x′ =
∑
j

ωj(x)v
′
j . (2)

Previous studies [17, 18, 22] proposed several kinds of cage coordinates and
achieved promising results on the mesh deformation.

Note that although the above formulation seems simple, the actual derivation
and computation of the cage coordinate {ωj} is complicated and usually accom-
panied by a large tensor computation. For detailed computation, we recommend
referring to the original papers of these cage coordinates [17,18,22].

3.4 Deforming radiance fields

In this section, we introduce a novel formulation that extends the application
of CBD from mesh to the radiance field. Remind that our goal is to deform the
optimized radiance field Ψ(c) for the free-view rendering of the deformed scenes.
Suppose we have a cage C(c) that accompanies Ψ(c) that encloses the foreground
object. Consider that we manipulate the vertices of C(c) and deform it to a new
cage C, and denote the desired radiance field after deformation as Ψ.
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To achieve volume rendering of Ψ, the sampling points are required to be
mapped from the deformed space to the canonical space for color and den-
sity computations, as shown in Fig 2. To describe such deformed-to-canonical
mapping, we reversely treat the cage deformation process as: the new cage C is
deformed to the canonical cage C(c). While contrary to the actual cage manipula-
tion process, such a convention allows us to map the points in the deformed space
back to the canonical space. Specifically, we denote the deformed-to-canonical
mapping of spatial position and view direction as:

ϕx : x → x(c), ϕd : (x,d) → d(c) (3)

Here, x(c) can be simply derived from Eq. (2) and d(c) can be derived from
difference approximation as d(c) = norm((ϕx(x+∆td)−ϕx(x))/∆t). ∆t denotes
a small constant and norm(·) normalizes the vector length to 1. Note that the
above mappings are derived from the simple CBD computation without any
learnable components.

The deformed radiance field Ψ can be divided into three parts depending on
the space that: (1) outside both the canonical cage and deformed cage (2) inside
the canonical cages but outside the deformed cages, (3) inside the deformed
cages. Specifically, it can be formulated as follows:

Ψ(x,d) =


Ψ(c)(x,d), x ∈ R3 \ (V(c) ∪ V)

(0, 0), x ∈ V(c) \ (V(c) ∩ V)

Ψ(c) (ϕx(x), ϕd(x,d)) , x ∈ V

(4a)

(4b)

(4c)

Here, V(c),V ⊂ R3 denotes the space enclosed by C(c) and C, respectively.
Eq. (4a) indicates that the radiance field remains unchanged before and after
deformation for the position outside the cages. For the points inside the canonical
cage, we clear them, namely setting the color and density to zero, as in Eq. (4b).
For the points inside the deformed cage, we map the spatial position and view
direction to the canonical space through Eq. (3) and then query the color and
density from Ψ(c), as in Eq. (4c).

4 Implementation details

4.1 Faster cage coordinates computation

Technically, the rendering of the deformed scene can be achieved by computing
the deformed-to-canonical mapping in Eq. (4) for all the sampling points on
all the rays. However, because of the huge number of sampling points and the
fact that the computation of cage coordinates is usually accompanied by a high-
dimensional tensor computation (as discussed in Sec. 3.3), the above brute-force
computation is usually impractical either in terms of time or memory capacity.
A rough estimation can be given as, rendering images of size (h,w) from N
different viewpoints, with M points sampled on each ray, the number of points
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that require the cage coordinate computation is about h×w×N×M in order of
magnitude1. For instance, for M = 512, rendering 200 images of size (800, 800)
requires about ∼ 1010 orders of magnitude in the times of cage coordinates
computation.

Inspired by the computation process of harmonic coordinates (HC), we pro-
pose to discretize the space into n× n× n grid points for cage coordinates com-
putation, even for the cage coordinates that have their closed-formulations, i.e.
MVC and GC (briefly discussed in Sec. 2). At the inference time, we pre-compute
the cage coordinates for each grid and use trilinear interpolation to calculate the
cage coordinates for arbitrary points. We surprisingly find that such a simple
discretization, however, brings great benefits for the specific nature of volume
rendering of the radiance field. Note that such discretization makes the number
of cage coordinates computation independent of h,w,N,M given above, that
is, once the pre-computation of grid points is completed, there is no increase in
the computation of cage coordinates when we want to render the scene from the
additional new viewpoint or with different image resolution. The only thing to
consider here is the size of n, which requires a trade-off between discretization
resolution and computation speed. Here, the number of points that require cage
coordinates computation is about n3 in order of magnitude1.

We practically use n = 128 in our experiments which gives about ∼ 106

orders of magnitude in the times of computation.

4.2 Cage refinement

The computation complexity of cage coordinates is proportional to the number
of cage vertices. For fast inference, we control the hyperparameters (e.g. discrete
voxel size) in cage generation algorithm [45] to ensure that the number of vertices
is in the range of 30 ∼ 200. For scenes with complex shapes or details, we first
generate a cage with a larger number of vertices (∼ 1000) and then manually
decimate the vertices using Blender [3].

4.3 Radiance fields representation

We use Plenoxels [8] as radiance fields representation, which supports very fast
scene optimization and rendering. Note that our method is not dependent on
specific radiance field representations and thus can be directly applied to other
representations such as NeRF [28] or the latest faster radiance field representa-
tions [2, 29,42].

5 Experiments

In this section, we evaluate the effectiveness of our approach through a variety of
scenes, including synthetic dataset and real-world dataset. We show the results
of extensive ablation studies and then discuss the limitations of our approach.

1 In fact, the actual number is smaller than this approximation since we only compute
for points inside the cage.
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Unless otherwise specified, the deformations of the results are performed with
harmonic coordinate with discretization resolution n = 128. For the canonical
scene optimization, we follow the default setting used in [8]. We use one Nvidia
A100 GPU for all the experiments.

5.1 Datasets

NeRF and NSVF synthetic dataset. We use synthetic dataset in original
NeRF [28] and Neural Sparse Voxel Fields (NSVF) [23] papers. These scenes
contain only foreground objects, and the images are captured from multiple
cameras placed on the hemisphere. We follow the train/test split as in the original
papers.

DTU MVS dataset. We use the real-world DTU MVS dataset [15], which
contains a variety of static objects, and each scene uses 49 or 64 cameras to
capture high-resolution images. We use all available cameras for training, and
create test camera trajectories from camera interpolation for evaluation.

5.2 Results

Since our approach is the first to use a coarse cage as an interface for free-form
deformation of the radiance field, there is no existing method for a direct com-
parison. The ground truth of the deformed scene is also not available, therefore,
we show the qualitative results before and after the deformation for evaluation.

We use Blender [3] to manually deform the generated cage of the canonical
scene with various types of deformations such as bending, stretching, torsion,
scaling, etc. Novel view synthesis results of original/deformed scene on synthetic
dataset and DTU dataset are shown in Fig 4 and Fig 5, respectively. As shown
in the results, our proposed radiance field deformation approach enables explicit
manipulation of the scene while maintaining photorealistic rendering quality. In
addition to the free-form deformation of the entire object with the generated
cage, our approach also allows for local manipulation of the object as in the last
two figures in Fig. 5: all you need is to create a simple cage and deform it, which
can be done with little effort using almost any existing 3D software.

The above features of our approach also support simple radiance field manip-
ulation achieved by existing works [25], such as object movement, duplication,
and scaling. Moreover, as shown in Fig. 6, our method also supports applica-
tions of generating continuous free-view animation from a static scene by cage
interpolation.

5.3 Ablation study

We discuss the impact of different discretization resolutions and different cage
coordinates on the synthesis quality. As introduced in 2, we use three commonly
used cage coordinates for comparison: mean value coordinates (MVC) [18], har-
monic coordinates [17] and green coordinates [22]. We observed that the impact
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Table 1. Computation time in seconds for rendering an image for three cage coordi-
nates with different discretization resolutions. “Precise” means not using discretization,
i.e., computing precise cage coordinates for all the sampling points on the rays. Here,
“MVC” means mean value coordinates [18], “HC” means harmonic coordinates [17],
and “GC” means green coordinates [22]. Please also refer to Sec. 5.3 and Fig. 7.

MVC [18] HC [17] GC [22]

643 0.31 0.23 0.35
1283 0.98 0.90 2.49
2563 5.71 6.32 19.69

Precise 102 N/A 243

of the above two factors on the synthesis quality is subtle, we choose the synthetic
“Lego” scene with relatively obvious distinction for ablation. The computation
time for rendering an image and the synthesis results are shown in Tab. 1 and
Fig 7, respectively.

We use the same settings as assumptions in Sec. 4.1 except for the number
of rendered images, i.e. h = w = 800,M = 512, n = 128 and N = 1. The cage
we used for the synthetic “Lego” scene has 42 vertices.

Impact of discretization resolution. As shown in Tab. 1 and Fig 7, although
643 resolution has a faster computation speed, significant artifacts can be ob-
served in the synthesized results (e.g. blurry or fake shadow). This indicates that
low discretization resolution brings a large error in the deformed-to-canonical
mapping of the sampled points. For 1283 resolution, the artifact is lightened
with an acceptable computation time increase. For 2563 resolutions, it can be
seen that the improvement in synthesized quality is limited, but causes a larger
increase in computation time as well as memory cost. For cage coordinates that
have a closed-formulation (i.e., MVC and GC), although it is impractical due
to the extremely long computation time (about 2 ∼ 4 minutes per scene), we
show the results of the precise computation of cage coordinates without using
discretization as an upper limit for comparison.

Impact of different cage coordinates. Comparison are also shown in Fig 7.
MVC and HC show similar synthesized quality. GC shows a more reasonable
deformation for the long-striped parts in the center of the image, however, the
loss of detail for small parts is also observed.

5.4 Limitations

Cage generation. As noticed in the cage-based mesh deformation, the quality
of the cage greatly affects the deformation quality. However, the method we use
for cage generation shows some difficulties in representing detailed cage shapes
while keeping a small number of cage vertices. For objects with difficult shapes,
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manual refinement of the cage comes necessary, especially for real scenes with
backgrounds. We conducted an extensive survey on the automatic cage genera-
tion from 3D scenes, and to our surprise, this task seems to still be unexplored.
Especially for real scenes, to the best of our knowledge, there is no effective way
to generate a cage automatically. We believe that the automatic generation of
the cage from 3D scenes is a promising direction for future work.

Failure cases. We report some failure cases of our approach in Fig. 8. The first
typical failure case occurs when a part of the scene (usually the background) is
not well modeled due to the occlusion. When deforming or moving the foreground
objects so that the under-modeled part is exposed, obvious artifacts will be ob-
served. However, addressing this issue is very challenging because the traditional
optimization method of the radiance field cannot handle the part unseen dur-
ing the training, which makes other scene manipulation methods [48] also suffer
from the same issue. We assume that the use of occlusion-aware scene modeling
methods or scene completion techniques may help to alleviate this issue.

The second typical failure case may occur when a part of the object gets
drastically deformed, the irrelevant parts may also be affected thus causing ar-
tifacts. This is also a long-standing issue for cage-based mesh deformation. As
discussed in the previous works of CBD [31], we believe that this issue might be
alleviated by generating cages with higher accuracy as mentioned above or by
choosing appropriate cage coordinates.

6 Conclusion

We presented a new method that enables free-form deformation of the radiance
field. We derived a novel formulation to extend the application of cage-based de-
formation to the radiance field. By manipulating the vertices of the cage, we can
explicitly perform free-form deformation of the radiance field while maintaining
photorealistic rendering quality. To address the issue of impractical deformation
computation time that arises in a naive implementation, we propose to use a
discretization method specifically adapted for the radiance field and succeed in
reducing the computation time by several orders of magnitude. Currently, the
quality of the scene deformation is still largely influenced by the quality of the
generated cage, this leaves us with a trade-off between the effort of manual cage
refinement and the deformation quality. A better automatic cage generation al-
gorithm would be a promising direction for future work.

Acknowledgements We would like to thank Daisuke Kasuga, Ryosuke Sasaki,
Tomoyuki Takahata, Haruo Fujiwara, and Atsuhiro Noguchi for comments and
discussions. This work was partially supported by JST AIP Acceleration Re-
search JPMJCR20U3, Moonshot R&D Grant Number JPMJPS2011, CREST
Grant Number JPMJCR2015, JSPS KAKENHI Grant Number JP19H01115
and Basic Research Grant (Super AI) of Institute for AI and Beyond of the
University of Tokyo.



12 T. Xu and T. Harada

Optimized original scene Rendered deformed scene

Fig. 4. Qualitative results on NeRF and NSVF synthetic dataset. The original scene
(left) and the deformed scene (right) are rendered from a novel viewpoint. Disparity
map and corresponding cage are also presented.
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Optimized original scene Rendered deformed scene

Fig. 5. Qualitative results on DTU dataset. The original scene (left) and the deformed
scene (right) are rendered from a novel viewpoint. Disparity map of the foreground
object and corresponding cage are also presented. Arrows illustrate the manipulation
of the cage.

Original DeformedCage interpolation

…

Fig. 6. Qualitative results of cage interpolation. Our approach can generate continuous
free-view animation by interpolating the starting and ending cages.
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Fig. 7. Ablation on different cage coordinates and discretization resolution on synthetic
“Lego” dataset. For more details please refer to Sec. 5.3 and Tab. 1.

Fig. 8. Failure cases. Left: moving the foreground object results in exposing the parts
of the scene that are under-modeled due to occlusion. Right: drastic cage manipulation
may cause the artifacts.
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