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1 Outline

The following document is constructed in the following way. Section 2 de-
scribes how to access our model’s code, and Section 3 provides additional media,
namely figures that have not been included in the main paper due to page limi-
tation, and a description of video files that are available at our project page1. In
Section 4 we describe an improvement in the skeleton structure, and in Section 5
we detail the internals of our architecture. Section 6 thoroughly describes the
datasets and various data aspects of our work, and finally, Section 7 presents
technical details related to camera parameters.

2 Code

Our code, together with usage instructions, is available on our project page1.
The reader is encouraged to run the code and witness the reproducibility of our
model.

3 Additional visualizations

On our project page1, the reader can find attached video files. The reader is
encouraged to browse the video files in full-screen size. Here is their description:

– A clip describing our work: clip.mp4

– Video files showing our results on the Human3.6M dataset: Human36M*.mp4

– Video files showing our results on the KTH multi-view Football II dataset:
KTH football.mp4

– Video files comparing MotioNet (single-view) and Iskakov et al . [9] results
versus ours: MotioNet comparison.mp4 and Iskakov comparison.mp4, respec-
tively.

⋆ equal contribution.
1 Project page: https://briang13.github.io/FLEX
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Note that we present only results that use input obtained by 2D estimation
(as opposed to ground truth). Thus, our input is affected by occlusion and blur.
Yet, we are able to mitigate the noisy input by exploiting multi-view data, in an
ep-free fashion.

Fig. 1: Our algorithm is able to grasp fine details. The player’s left hand cannot
be seen in the center view and is blurred in the left views. Yet, our model
accurately reconstructs it.

In Figure 1 we show how our algorithm is able to grasp fine details. The
player’s left hand cannot be seen in the center view and is blurred in the left
views. Yet, our model accurately reconstructs it.

In Figures 8 and 9, we show additional results on the Human3.6M and KTH
Football multi-view II datasets. Each row depicts three views of one time frame.
To the right of each image we place a reconstructed rig. Figures 10 to 12 are
enlarged versions of the figures shown in the main paper.

Figure 2 shows our recording setup for creation of synthetic data. Note the
depicted cameras, that dynamically move in the scene.

In Figure 3 we depict qualitative results for a scene with two macarena
dancers. We emphasize several viewpoints where the 2D backbone attains large
errors. Yet, FLEX is able to compensate for these errors by fusing multi-view
information. Figures 13 and 14 depict 2D joint locations estimated by the Alpha-
Pose [7] backbone. A close look at these figures shows that many of the estimated
locations are inaccurate, e.g., a hand of one subject is confused with the hand of
the other subject. Even though the number of 2D errors is large, our algorithm
is able to reconstruct the characters correctly.
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Fig. 2: Our ”synthetic studio” created using Blender [5] software with Mixamo [1]
3D characters. Two interacting characters are captured by multiple dynamic
cameras and rendered into multiple video streams.

4 Skeleton

To better reconstruct the motion in a given video stream, we modify the skele-
ton connectivity used in our baseline [15] (Figure 4). The root and neck joints
of the baseline skeleton are both rigidly attached to the three bones neighbor-
ing each of them. This rigid connectivity constrains the skeleton, e.g., a motion
where each shoulder moves forward and the neck moves to the right is impossi-
ble. In order to remove this constraint we add joints that overlap the root and
the neck, hence enabling the neighboring bones to move independently of each
other.

The new skeleton connectivity better matches the Human3.6M rotation an-
gles ground-truth, thus, it better matches the way the dataset motions were cap-
tured. The new skeleton improves the mean per joint position error (MPJPE)
both in the multi-view setting and the monocular case. The improvements are
by ∼4mm and ∼6mm for monocular and four cameras setting, respectively.

5 Architecture details

The architectural blocks in our implementation are the multi-view feature
fusion layers FS and FQ, the two encoders, ES and EQ, a forward kinematics
layer FK and a discriminator D. Our discriminator D is a linear component
that contains two convolution layers and one fully connected layer. We base it
on Kanazawa et al . [10]). The FK layer is based on Villegas et al . [17].

There are two novel building blocks contained in the new fusion layers, FS

and FQ. The first is a multi-view convolutional layer; that is, a convolution that
is aware of features stemming from multiple views as well as multiple frames.
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Fig. 3: Our results on multi-person synthetic videos, picturing two Macarena
dancers. Some of the 2D joints, used as input to our method, are severely inac-
curate. However, our method is able to reconstruct correct 3D motion. In the
following examples, let white dancer and orange dancer denote the dancer wear-
ing a white and an orange shirt respectively. Several 2D based skeleton error
examples are depicted in the zoomed-in circular insets: (a) Wrong pose estima-
tion of the left arm of the orange dancer; (b) The right arm of the orange dancer
is occluded hence detected erroneously; (c) The nose tip of the orange dancer is
erroneously detected as the nose tip of the white dancer; (d) Erroneous 2D pose
estimation of the white dancer’s right hand.

This convolutional layer is used in FQ only. The second is a multi-head attention
layer, used in both FS and FQ. A standard attention mechanism looks at the data
as a sequence of embeddings. In our mechanism, the views form the sequence,
and the channels form the embeddings. Our attention layer is based on the
LiftFormer [12]. While the LiftFormer attends to time, we attend to views. The
embedding size is 1024, and we use 64 heads (see Table 1), so for the Query, Key
and Value (each), we have 64 learned linear filters of size K × 16, where K is
the number of views and 16 is the result of 1024/64.

A key architectural choice in our fusion layers, FS and FQ, is at which stage
to fuse the input views. In Figure 5 we depict the conceptual idea of fusing. Each
fusing scheme has its own advantages and disadvantages. Following the insight
that early convolutional layers yield coarse features and late ones yield semantic
features, we observe early fusion as generating all features (coarse and semantic)
when a network is aware to all input branches, and observe middle fusion as
first generating coarse features that are distinct for each branch, and only then
fuse the coarse features together to generate common semantic features. When
applying late fusion, the network creates distinct coarse and semantic features
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Fig. 4: Skeletal connectivity changes, demonstrated on the neck joint. Left: orig-
inal connectivity, where shoulders and head are rigidly connected, yielding poor
reconstruction. Right: new connectivity, with extra degrees of freedom.

Fig. 5: Fusion schemes. Left: early fusion; Middle: late fusion; Right: middle
fusion. Yellow and blue blocks symbolize features from distinct input branches,
and green blocks represent fused data. Each block stands for a tensor of features.

for each branch and only then fuses them together. During the development of
our model, we have experimented with different fusion schemes, and found out
that for our setting the early fusion works best.

Figure 6 depicts diagrams of the multi-view fusion layers and the encoders.
The input to both fusion layers is Vs,q,r ∈ RT×3J×K (described in the Architec-
ture section of the main paper). In order to make the diagram more intuitive,
we sketch V as K temporal sequences. Each temporal sequence is a 2D tensor,
where channels are formed by the joints. The fusion layer first streams these
temporal sequences through an expansion layer, increasing their channel size.
Next, our fusion layer concatenates the expanded data and obtains a 3D tensor,
on which it applies multi-view convolutional filters. These filters consider the
data from all views. At the next stage we apply a multi-head attention layer
that attends to views. Our network uses the attention layer output to create
a 2D tensor representing one ’fused’ view. The features are then passed to the
encoder. The encoder block EQ consists of three parallel 1D convolutional lay-
ers of different kernel sizes, followed by a final additional 1D convolution. The
encoder ES starts with an adaptive max pooling to collapse the time dimension
and then runs a final 1D convolution. After each convolution block, we apply
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Fig. 6: Architecture in detail. The upper and lower parts are the rotations and
bones branches, respectively. (a) Channel-wise expansion layer; (b) View con-
catenation; (c) Multi-view convolutional filters; (d) Cross-view attention layer
(detailed in Figure 7); (e) Single-view convolutional filters; (f) Channel-wise
shrinkage layer.

Fig. 7: Cross-view attention layer (Figure 6(d)) in detail. Our attention mech-
anism processes each frame separately, attending the multi-view features and
fusing them to a single output per frame. (a) Process each temporal frame
independently. Add a learned token [6] that forms a fusion view ; (b) Linear
layer; (c) Split the channels to H attention heads; (d) Multi-Head attention [16];
(e) Concatenate the attention heads; (f) Drop features from the original views.
Collect fusion view features from all the frames in the temporal sequence.
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Table 1: FLEX structure. J denotes the number of joints,K the number of views,
and L denotes the number of limbs. k and s denote kernel width and the stride,
respectively. → denotes parallel convolutions while ↓ denotes sequential ones.

Name Layers k s in / out

FQ 1D-Conv + BatchNorm + LReLU + Dropout 1 1 3J / 1024
→ 2D-Conv + BatchNorm + LReLU + Dropout + Adap AP 5 3 1024 / 1024
→ 2D-Conv + BatchNorm + LReLU + Dropout + Adap AP 3 1 1024 / 1024
→ 2D-Conv + BatchNorm + LReLU + Dropout + Adap AP 1 1 1024 / 1024

Multi-head Attention layer (64 heads) − − 1024 / 1024

EQ → 1D-Conv + BatchNorm + LReLU + Dropout + Adap AP 5 3 1024 / 1024
→ 1D-Conv + BatchNorm + LReLU + Dropout + Adap AP 3 1 1024 / 1024
→ 1D-Conv + BatchNorm + LReLU + Dropout + Adap AP 1 1 1024 / 1024

1D-Conv 1 1 1024/4(J−1)+4K

D 1D-Conv + ReLU 1 1 4J / 1024
↓ 1D-Conv + ReLU + Adap AP 1 1 1024 / 24J

Linear − − 24J / J

FS 1D-Conv + BatchNorm + LReLU + Dropout 1 1 J3 / 1024
1D-Conv + BatchNorm + LReLU + Dropout 5 1 1024 / 1024

↓ 1D-Conv + BatchNorm + LReLU + Dropout 3 1 1024 / 1024
1D-Conv + BatchNorm + LReLU + Dropout 1 1 1024 / 1024
1D-Conv + BatchNorm + LReLU + Dropout 5 1 1024 / 1024

↓ 1D-Conv + BatchNorm + LReLU + Dropout 3 1 1024 / 1024
1D-Conv + BatchNorm + LReLU + Dropout 1 1 1024 / 1024
Multi-head Attention layer (64 heads) − − 1024 / 1024

ES Adaptive MP − − −
1D-Conv 1 1 1024 / L

batch normalization, a leaky rectified linear unit and dropout. Finally, we run
a shrinking filter to decrease the number of channels to the desired output size.
Table 1 describes the weight parameters of each layer.

In Figure 7 we zoom into the attention block (item (d) in Figure 6). Each
slice of one temporal frame is separately forwarded through this block. Such a
slice contains features from all the views. Within the attention block, we con-
catenate an additional view, which we call the fusion view. This additional view
is a learned token [6], in which the attention mechanism combines significant
information from all views. Our model attends to all views, including the added
one. After exiting the attention block we omit the data related to the given views
and keep the learned fusion view only. This fusion view is then concatenated with
the outputs of the other temporal frames.

6 Data

6.1 Train and Evaluation

We train our model on the Human3.6M dataset [8,3]. We evaluate FLEX
on the Human3.6M and the KTH Multi-view Football II [11] datasets, and on
synthetic multi-person video streams captured by dynamic cameras.
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Human3.6M [8,3] is a dataset of 3.6 Million accurate 3D Human poses, ac-
quired by recording the performance of 5 female and 6 male subjects, under 4
different viewpoints. This dataset holds a diverse set of motions and poses en-
countered as part of 17 typical human activities such as talking on the phone,
walking, and eating. As recommended on the Human3.6M dataset page, we use
subjects S1, S5, S6, S7, and S8 for training and subjects S9 and S11 for testing.
This dataset grants licenses free of charge that are limited to academic use only.
More information and access to raw data are provided on the dataset webpage1.

KTH Multi-view Football II [11] is a dataset of video streams from three
synchronized cameras with 800-time frames per camera. The streams depict two
different players (in separate streams), where each player has two sequences in
varying levels of scene complexity. This dataset is unique in the sense that the
cameras are dynamic, hence the approximation of camera extrinsic parameters is
very challenging. We adjust the skeleton topology of the KTH dataset to match
the topology of Human3.6M in the following way. KTH extracts 14 joints (top-
head, mid-head, shoulders, hips, knees, feet, elbows, and hands). We create root
(pelvis) and neck joints by averaging the hips and the shoulders respectively and
then create a spine joint by averaging the root and the neck. Then we draw bones
according to the Human3.6M skeleton topology. The raw data can be accessed
and downloaded from the dataset webpage2. This dataset may only be used for
academic research and not for commercial use.

Ski-Pose PTZ-Camera [14] is a 6 cameras’ multi-view pant-tilt-zoom-camera
(PTZ) dataset. It features competitive alpine skiers performing giant slalom runs.
It holds 20K images, with a single skier in each. The cameras can rotate, but
their locations are fixed. This dataset provides labels for the skiers’ 3D locations
in each frame, their projected 2D locations, and per-frame calibration of the PTZ
cameras. In the dataset webpage3 there are more descriptions of the dataset as
well as download instructions.

Our synthetic videos are generated using Mixamo [1] and Blender [5]. We
maintain two scenes with two interacting subjects in each. One scene illustrates
a boxing arena, and one shows Macarena dancers. We create as many cameras
as we wish, with full control on each camera’s dynamic motion trajectory. Each
synthetic camera outputs a video of the scene, taken from its view. To evaluate
FLEX on these videos, we use a network that has been trained on the Hu-
man3.6M dataset, introducing satisfactory generalization abilities of our model.

6.2 Input data

The input to our network is 2D joint locations per frame, accompanied by a
confidence value. We train our network with several variations of input data.

Ground truth 2D pose Obviously, training with ground truth input data
yields the best possible results. We use the 2D labeling provided by the Hu-
man3.6M dataset.

1 https://vision.imar.ro/human3.6m/
2 https://www.csc.kth.se/cvap/cvg/?page=footballdataset2
3 https://www.epfl.ch/labs/cvlab/data/ski-poseptz-dataset/

https://vision.imar.ro/human3.6m/
https://www.csc.kth.se/cvap/cvg/?page=footballdataset2
https://www.epfl.ch/labs/cvlab/data/ski-poseptz-dataset/
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Estimated 2D pose To simulate dynamic capture environments, where 2D
labels are not available, we use several state-of-the-art 2D pose estimators as 2D
backbones. In our ablation studies we demonstrate the dependency on a good
estimator. The estimators that we use are OpenPose [2], CPN [4], and the one
used by Iskakov et al . [9] (who base their 2D estimation on the ”simple baselines”
architecture [18]). OpenPose and Iskakov et al . provide confidence values that
we add to the network input. CPN does not provide these values, hence we
assign identical confidence values for all joints when using it. While OpenPose
and CPN are dedicated 2D pose estimators, Iskakov et al .’s 2D estimator is part
of a 3D pose estimator. To extract the 2D pose we retrain their model using its
given code and save intermediate values. The 2D pose estimation computed by
Iskakov et al . [9] uses camera distortion parameters. In addition to being free
of extrinsic camera parameters, we are strict about not using the intrinsic ones
as well (see Section 3 in the main paper); hence, we retrain Iskakov et al . [9]
without those parameters.

Skeleton topology may vary between the aforementioned 3D datasets and 2D
poses predicted by backbone algorithms. To mitigate this, we make adjustments
to the predicted 2D joints. Openpose [2] extract 16 joints (root, neck, mid-head,
top-head, shoulders, hips, knees, feet, elbows, and hands). These joints exist in
the aforementioned datasets as well. In addition, a spine joint, which exists only
in the 3D datasets, is artificially added (calculated as the 2D spatial average
between the root and the neck joint). For the CPN [4] 2D prediction, we simply
use the values computed by Pavllo et al . [13] and provided in their project page,
which already possess the requested topology. Lastly, Iskakov et al . [9] predict
the exact joints required by the aforementioned 3D datasets.

At inference time, when videos from the wild are used, we use a network that
was trained using an estimated 2D pose and make sure that during inference,
the exact 2D backbone that was used for training, is applied.

6.3 Ground truth

During train time we use 3D joint location ground truth per view, plus ro-
tation ground truth for the discriminator. In contrast to location ground truth,
rotation ground truth is required only once, no matter how many views we have.
During test time we need none of the above.

7 Camera Parameters

We next formulate the notion of camera parameters. Consider a pinhole cam-
era model. Such a model possesses two types of parameters, extrinsic and intrin-
sic. Extrinsic parameters correspond to

– A rotation matrix R: a matrix of size 3× 3 characterizing the rotation from
3D real world axes into 3D camera axes.

– A translation vector T : a vector of size 3 representing the translational offset
of the camera in the 3D scene.
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Intrinsic parameters, stored in a 3 × 3 matrix K, are specific to a camera. K
consists of the focal length fx, fy, the camera optical center cx, cy and a skew
coefficient sk:

K =

fx sk cx
0 fy cy
0 0 1

 . (1)

We denote the mapping from 3D world coordinates into a 2D image plane by a
3 × 4 matrix P . P is sometimes called camera matrix or projection matrix. To
calculate P , both camera extrinsic and intrinsic parameters are used:

P = K ×
[
R | T

]
. (2)

Fig. 8: Additional results on videos from the Human3.6M dataset.
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Fig. 9: Additional results on videos from the KTHMulti-view Football II dataset.
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Fig. 10: Enlarged results on the Ski-Pose PTZ-Camera dataset (from main pa-
per).
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Fig. 11: Enlarged results on the Human3.6M dataset (from main paper).
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Fig. 12: Enlarged results on the KTH Football II dataset (from main paper).

Fig. 13: 2D joint locations estimated on a multi-person synthetic video of boxers.

Fig. 14: 2D joint locations estimated on a multi-person synthetic video of dancers.
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