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Abstract. The increasing availability of video recordings made by mul-
tiple cameras has offered new means for mitigating occlusion and depth
ambiguities in pose and motion reconstruction methods. Yet, multi-view
algorithms strongly depend on camera parameters, particularly on rela-
tive transformations between the cameras. Such a dependency becomes
a hurdle once shifting to dynamic capture in uncontrolled settings. We
introduce FLEX (Free muLti-view rEconstruXion), an end-to-end ex-
trinsic parameter-free multi-view model. FLEX is extrinsic parameter-free
(dubbed ep-free) in the sense that it does not require extrinsic camera
parameters. Our key idea is that the 3D angles between skeletal parts, as
well as bone lengths, are invariant to the camera position. Hence, learning
3D rotations and bone lengths rather than locations allows for predicting
common values for all camera views. Our network takes multiple video
streams, learns fused deep features through a novel multi-view fusion
layer, and reconstructs a single consistent skeleton with temporally coher-
ent joint rotations. We demonstrate quantitative and qualitative results
on three public data sets, and on multi-person synthetic video streams
captured by dynamic cameras. We compare our model to state-of-the-art
methods that are not ep-free and show that in the absence of camera pa-
rameters, we outperform them by a large margin while obtaining compa-
rable results when camera parameters are available. Code, trained models,
and other materials are available on https://briangl3.github.io/FLEX.

Keywords: Motion reconstruction, Character animation, Pose estima-
tion, Camera parameters, Deep learning.

1 Introduction

Human motion reconstruction is the task of associating a skeleton with tem-
porally coherent joint locations and rotations. Acquiring accurate human motion
in a controlled setting, using motion capture systems with adequate sensors is
a tedious and expensive procedure that cannot be applied for capturing spon-
taneous activities, such as sporting events. Motion reconstruction from RGB
cameras is low-cost and non-intrusive, but is an uncontrolled setup. Thus, while
being simple, it has technical challenges that are worsened by occlusion and
depth ambiguity. Using multiple cameras may alleviate these difficulties as dif-
ferent views may compensate for occlusion and be used for mutual consistency.
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Fig.1: Results on the KTH Multi-view Fig.2: 3D locations vary across axis
Football IT dataset [33], in occluded and  systems while 3D rotation angles
blurry scenes with dynamic cameras. and bone lengths remain identical.

Recently, there has been a significant progress in using deep learning for
pose and motion reconstruction [54A426366I56)36I51]. Most of these methods
work in a monocular setting, but a growing number of works learn a multi-view
setting [29074I58/24T9J60]. However, these approaches depend on the relative
position between the cameras, derived from extrinsic camera parameters, and
assume they are given. In the lack of extrinsic parameters, several works es-
timate them [I6/37], but at the cost of innate inaccuracy of estimated values.
While camera parameters are often given in multi-view datasets, they are rarely
given in dynamic capture environments. We refer to cameras as dynamic if they
occasionally move during video capture, such that their extrinsic parameters and
their inter-camera relative positions are not fixed. An example of such a camera
is the SkyCam [68], commonly used in sports events.

This work introduces an extrinsic parameter-free

(dubbed ep-free) multi-view motion reconstruction g . 4 ’
method, whose setting is illustrated in the inset to the 4
right. Our method builds upon a new conceptual ob- == + 3 ‘
servation that uses the well-known joint rotations and t 2 )

bone lengths, to free us from the burdening depen-

dency on extrinsic camera parameters. Qur approach -
relies on a key insight that joint rotations and bone lengths are identical for all
views. That is, the 3D angle between skeletal parts is invariant to the camera
position. We train a neural network to predict 3D joint angles and bone lengths
without using the extrinsic camera parameters, neither in training nor in test
time. Predicting motion rather than locations is not a novel idea by itself. The
innovation of our work is in the way we use motion to bypass the need for cam-
era parameters. The input from multiple cameras is integrated by a novel fusion
layer that implicitly promotes joints detected by some cameras and demotes
joints detected by others, hence mitigating occlusion and depth ambiguities.

Our model, named FLEX, is an end-to-end deep convolutional network. Its
input is multi-view 2D joints that are either given or extracted using a 2D pose
estimation technique. FLEX employs multi-view blocks with cross-view attention
on top of a monocular baseline [66], and uses temporal information over a video
of arbitrary length, thus obtaining temporal consistency.

We evaluate FLEX qualitatively and quantitatively using the Human3.6M [28/9],
the KTH Multi-view Football II [33] and the Ski-Pose PTZ-Camera [61] datasets.
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Figure [I] demonstrates qualitative results, and more are depicted in Section []
and in the supplementary material. FLEX is also applied on synthetic videos.
We have generated these videos using Mixamo [I] and Blender [18], to mitigate
the lack of a multi-person video dataset that is captured by dynamic cameras,
and created them such that they contain severe inter-person occlusions.

We compare performance with state-of-the-art methods that are not ep-free
and show comparable results. To simulate an ep-free setting, we perturb ground-
truth camera parameters or use works that estimate them. We show that in an
ep-free setting, our model outperforms state-of-the-art by a large margin.

Our main contributions are twofold: (i) a network that reconstructs motion
and pose in a multi-view setting with unknown extrinsic camera parameters, and
(ii) a novel fusion layer with a multi-view convolutional layer combined with a
multi-head attention mechanism over a number of views.

2 Related work

Pose Estimation using a Single View Pose estimation receives signifi-
cant interest in computer vision. Before the deep era, it was approached us-
ing heuristics such as physical priors [62]. The emergence of deep learning and
large datasets [28/1749I33], have led to significant advances. Pose estimation
methods can generally be divided into two groups. The first infers 3D loca-
tions directly from images or videos [B955IR3T2T0IT3I23]. The second, aka
lifting, applies two steps: (i) estimating 2D poses and (ii) lifting them to 3D
space [BOG6I2TI69I42I25l65]. The first group benefits from directly using images,
which are more descriptive compared to 2D joint locations. The second gains
from using intermediate supervision. Recently, transformers and convolutional
graph based methods were shown to improve performance [444TI43[407926153].

Pose Estimation using Multiple Views The growing availability of syn-
chronized video streams taken by multiple cameras has contributed to the emer-
gence of multi-view algorithms. Such algorithms exploit the diversity in camera
views to predict more accurate 3D poses. All works described below predict
pose and many of them analyze each frame individually. On the other hand, our
model, FLEX, reconstructs motion and exploits temporal information.

Most works in the multi-view setting rely on lifting from 2D to 3D space.
Early works [45]7] estimate the input 2D pose from single images, while later
works [T9/58/292437TOIT6I60J30IT5] obtain the 2D pose by running a CNN over
2D poses given in multiple views; resulting in an increase in 2D pose prediction
accuracy. After estimating the 2D poses, most works apply heuristics such as
triangulation or pictorial structure model (PSM). FLEX is one of the few works
[29/74] that present an end-to-end model.

Several methods use multi-view data to improve the 2D pose estimation.
Some use the camera parameters to find the matching epipolar lines such that
features gathered from several cameras are aggregated [6824]. Chen et al. [10]
learn a geometric representation in latent space with an encoder-decoder.

Several works [BTUT6I7773] use self-supervision, hence need no 3D ground-
truth. Their main idea is to project the predicted 3D joints (using real or esti-
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mated camera parameters) and expect consistency with 2D input joints. Recent
techniques [2718T] exploit more sensors, such as IMU, during data capturing.

Current state-of-the-art results are attained by Iskakov et al. [29], Tu et
al. [74] and Reddy et al. [59]. They use end-to-end networks, and present a
volumetric approach, where 2D features are un-projected from individual views
to a common 3D space, using camera parameters. Sun et al. [69] show that
synthetic generation of additional views helps produce more accurate lifting.

At inference time, some of the aforementioned works expect monocular inputs
[6924)10/16] and some, including FLEX, get multi-view inputs [29/74/58]. The
advantage of the first is the use of monocular data that is more common, and of
the second is better results on multi-view settings.

Epipolar Transformers [24] attend to spatial locations on an epipolar line in
a single view and query it using one joint in a query view. A concurrent work,
TransFusion [47], applies a transformer on inter and intra-view features.

In the absence of camera parameters, most of the methods cannot be used.
Some estimate rotation assuming the translation is given [37I2] or engage an
extra effort to estimate the camera parameters [T6I77ITII75I7T]. Such an effort
is not required by FLEX as it uses no camera parameters whatsoever.

Rotation and Motion Reconstruction Pose estimation may suffice for
many applications; however, pose alone does not fully describe the motion and
the rotations associated with the joints. Rotation reconstruction relates to the
prediction of joint rotation angles, while motion reconstruction requires the pre-
diction of bone lengths associated with them. Many works explore the task of
3D shape recovery [A5I3TI38I36I35I80/32122I46/14], focusing on human mesh pre-
diction along with joint rotations. Most of them do not guarantee temporal
coherence, e.g., bone length may vary across time frames.

Other works [5748] focus on motion generation. Given a series of human
motions, they predict future motions, using various techniques such as tempo-
ral supervision and graph convolutional networks (GCN). Similar to us, human
motion reconstruction methods [82I51I66/52] focus on the temporal coherence of
the body, where the bone lengths are fixed over time and rotations are smooth.

3 Extrinsic Parameter-free multi-view model

The premise of our work is that 3D joint rotations and bone lengths are
view-independent values. For example, the 3D angle between, say, the thigh and
the shin, as well as the length of these bones, are fixed, no matter which camera
transformation is used. On the other hand, joint locations differ for each camera
transformation, as seen in Figure 2] Our key idea is to directly predict joint 3D
angles and bone lengths without using the extrinsic camera parameters, during
both training and test time. Fxtrinsic parameters correspond to the rotation and
translation (aka transformation) from 3D real world axes into 3D camera axes.
A formal definition of the camera parameters can be found in the sup. mat.

Our method takes multi-view sequences of 2D poses and estimates the motion
of the observed human. The 2D poses are either given or extracted using a predic-
tion technique. Having multi-view data compensates for the inherent inaccuracy
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of 2D pose estimation algorithms. Many methods estimate view-dependent 2D
joint positions and then lift them to 3D by transforming them into a shared
space. Such transformations require acquaintance of the relative position (rota-
tion and translation) between the cameras, which is derived from the extrinsic
camera parameters. Our model directly predicts 3D rotations and bone lengths,
which are agnostic to camera transformation. The predicted values are shared
by all views, so there is no need for extrinsic parameters information.

Pose estimation methods may mitigate the lack of extrinsic parameters by es-
timating them [T6J37]. Yet, this has two drawbacks: (i) most approaches perform
the estimation in a prepossessing step that breaks the end-to-end computation,
and (ii) the estimated parameters are never exact and typically lead to a perfor-
mance drop, as we show in Section [4]

Our architecture leverages Shi et al. [66] and is illustrated in high-level terms
in Figure |3 FLEX is an end-to-end network that maps 2D joint positions, ex-
tracted from multiple synchronized input videos, into two separate components:
(i) a sequence of 3D joint rotations, global root positions and foot contact labels
(upper branch in the figure); this sequence is skeleton-independent and varies
per frame; and (ii) a single, symmetric, 3D skeleton, represented by its bone
lengths (lower branch in the figure). We can combine these two components into
a complete description of a motion and use it for 3D animation tasks without
further processing or inverse kinematics (IK).

In addition to being free of extrinsic parameters, our model does not use
intrinsic parameters at all, at the cost of an up-to-scale global skeleton posi-
tion. While FLEX removes the need for extrinsics, it uses the common weak
perspective assumption [35] for intrinsics; in particular for mitigating the lack
of focal length. Indeed, some works seek to mitigate the lack of intrinsic param-
eters [6712235] whereas this is not the focus of our work. In Section {4 we show
that using a customary weak perspective we attain an accurate global position.

The terms motion, pose, reconstruction and estimation are used in various
contexts in the literature. To avoid confusion, we define motion as one set of bone
lengths associated with temporally coherent 3D joint rotations, and pose as a
temporal sequence of 3D joint locations. We use the term reconstruction rather
than estimation, as the latter often describes 2D spatial motion. A weakly related
term, pose tracking, associates poses to identities in a multi-person setting.

Motion data, and in particular rotations rather than positions, are required in
animation platforms and game engines. FLEX directly outputs a kinematic skele-
ton, which is a complete, commonly used, motion representation. On the other
hand, methods that predict joint positions, rely on IK to associate a skeleton
with joint rotations. IK is slow, non-unique, and prone to temporal inconsisten-
cies and unnatural postures. Moreover, methods that only predict pose cannot
guarantee the consistency of bone lengths across frames.

3.1 Architecture

We start with a high-level description of the architecture (see Figure [3)).
The inputs are K synchronized video streams of T" frames each. For each video
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Fig. 3: FLEX takes multi-view temporal sequences of 2D poses and their confi-
dence values. It uses two encoders, Eg and Eg, to extracts per-frame 3D rota-
tions and foot contact labels, per-view and per-frame 3D root transformations,
and one static skeleton. A discriminator D monitors the temporal differences of
rotation angles, and a forward kinematic layer, F'K, combines encoders’ outputs
into 3D joint locations. These outputs depict one human, transformed into the
axis systems of K cameras, to be compared with K sets of ground-truth values.

stream, we obtain 2D joints, which are either the ground-truth of a dataset or the
output of a 2D pose estimation algorithm. Our network is agnostic to the way
those 2D joints were obtained. In addition, each estimated joint is associated with
a confidence value. The confidence value plays an important role in balancing
between visible and occluded joints.

Our model takes input from all views, aggregates it, and streams it into two
independent fusion layers Fis and Fg, followed by encoders Eg and Eq, respec-
tively. The two fusion layers differ in some architectural details, but share the
same concept. Both aggregate data of all views and frames and fuse it to ex-
ploit characteristics that recur in views and/or frames. Each fusion layer outputs
view-agnostic features that represent the target human.

The fusion layers consist of two innovative elements, a multi-view convolu-
tional layer and a cross-view attention mechanism, which encodes information
from all views. Our use of attention is unique, as typically attention in other
works is applied mostly over pixels [34] and sometimes over time [444TJ43]. At-
tention over views is a novel approach, which we find only in concurrent works
for other tasks, assessing human shape [84] and rigid objects [78]. The fusion
layers are described in detail in the supplementary material.

The encoder Eg predicts the length of each bone. As the same human is
analyzed along all frames and views, the output is a single set of bone lengths.

The encoder Eg predicts joint rotations, global root positions, and foot con-
tact labels. Since 3D joint rotations and foot contact labels are identical to all
views, g predicts a single set of rotations and contact labels per frame, shared
by all views. One exception is the root (pelvis) joint, whose rotation angle and
position depend on the camera view and not on the human itself. Thus, for the
root joint we predict the rotation angle and position for each frame and view.
Root rotation and position are relative to the camera; hence visualizing the re-
constructed object depicts the filmed person from the camera view, as expected.
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Notice that root rotation and position carry the knowledge of the relative trans-
formation between the cameras. This insight suggests that our algorithm has
the potential to output additional valuable information, e.g., cameras relative
location to each other (left to future work).

At train time, the output of both encoders is combined in K identical for-
ward kinematic (FK) layers. Each FK layer computes the estimated 3D joint
positions related to one view, which in turn are compared to the ground-truth
for loss computation. In addition, temporal differences of the rotations extracted
out of Eq, are fed to a discriminator D [31I], so they get near the manifold of
true rotations in an adversarial way.

Formally, let L denote the number of bones, T the temporal length of the
sequence, J the number of joints, Q the size of the rotations representation vec-
tor, and K the number of cameras. Let P, 4, € RT*37xK denote K temporal
sequences of 3D joint positions generated by a skeleton s € R” with joint rota-
tions q € RT*@x(7=1) "and global root position and rotation r € RT*(G+Q@)xK
Note that ¢ is related to all joints except for the root joint. The rotation of the
root joint, as well as its position, are related to r.

Our approach expects an input V,,, € RT*3/*E denoting K temporal
sequences of 2D joints and a confidence value per joint, related to a skeleton s,
joint rotations ¢, and global root position and rotation r. Each input V is fed into
our deep neural network, which in turn predicts q € RT7*@*(/=1 that captures
the dynamic, rotational information of the motion, § € R, that describes a
single, consistent, skeleton, ¥ € RT*B+TQ)XK that estimates the global position
and rotation of the root along time and along views, and f € {0,1}7*2 that
predicts whether each of the two feet touches the ground in each frame:

§=Es(Fs(Vsgr)), a7, f = Eo(F(Vagr))- (1)

These attributes can be then combined via forward kinematics to estimate K

global 3D pose sequences, 155@; € RT*3IxK gpecified by joint positions:

P:;r = FK(3,q,7). (2)
We employ five loss functions. Our losses are inspired by Shi et al. [66] and
are enhanced to encompass the multitude of views.

Joint Position Loss (the main loss) Lp ensures that joints in the extracted
positions are in their correct 3D positions:

£P = IEPs,q,T»N'P [HFK(ga (L I~'poso) -P

NE 3)

where Py, € RT*3/XK denotes a 3D motion sequence, P represents the
distribution of 3D motion sequences in our dataset, and Tposy, Tpos, Stand for
global position and rotation of the predicted and given root respectively, where
the location is set to (0,0,0), but the rotation is unchanged.

5,0,Tposg

Skeleton Loss Lg stimulates the skeleton branch of the network, Fs and Eg,
to correctly extract the skeleton s:

Lg = EPS,WNP [HES(FS(Vs,q,T)) - S”Q] ' (4)
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Adversarial Rotation Loss Our network learns to output rotations with
natural velocity distribution using adversarial training. To achieve this, instead
of focusing on rotation absolute values, like Kanazawa et al. [31] we focus on the
temporal differences of joint rotations. We create a discriminator D; for each
joint. Note that the loss involving D;-o takes the rotation values from ¢ while
the loss involving Dy takes the rotation values from 7. It reads as

ﬁQfGAN#o :EqNQ [HDJ'(Ath’)”Q] + EPs,q,rN”P “|1 - Dj(AtEQ(FQ((Vs,q,T))qj ||2]
Locan,_y, = Eguo [I1D;(Awgy)I] (5)
+ Ep. o~ 1= Di(AiEo(Fo((Vear))run 7]

where Q stands for the distribution of natural joint angles in the dataset,
Eq(Fq(+))q; denotes the predicted rotations of the jth joint, EqQ(FQ(-))r,..,
represents the predicted rotation of the pelvis joint relative to camera k, and A,
denotes temporal differences.
Global Root Position Loss We estimate the depth parameter, Z,, € RT*X
by minimizing:

Lr =Ep, , 7 [IEQ(FQ(Vsqgr)rp.. — ZelI*] (6)

where Z,. is the depth of the ground-truth root, and Eq(Fq(-))r,,.. is the depth
of the predicted root. Note that Z, consists of values for all views and all frames.

Foot Contact Loss We predict whether each foot contacts the ground in each
frame and train the network via

Ly =Ep, , ~P [|IEQ(Fo(Vsqr)s —£II%] (7)

where Eq(Fg((+)) denotes the predicted foot contact label part (f € {0,1}7%2).
We encourage the velocity of foot positions to be zero during contact frames, by

LFC = ]EPs,q,TN'P ||f’t Z AtFK(gv (17 f‘)fl ||2 ’ (8)
J

where FK(-,-,-)f, € RT*3 and f; denote the positions and the contact labels of
one of the feet joints (i € left, right), and > ; sums the components for all axes.
Altogether, we obtain a total loss of:

L=Lp + AsLsAq ZEQ,GAN]. + Z Lq can,, 9)
370 =0k
+ARLR + ArLp, + ArcLppe-

In most experiments we use Ag = 0.1, \q = 1, Ag = 1.3, Ap = 0.5 and A\pc = 0.5.

In the supplementary material we provide more implementation details, such
as the description of each architectural block; in particular the novel fusion
layers Fg and Fg. We discuss the advantages of early vs. middle and late fusion,
and describe how we improve skeleton topology comparing to our single-view
baseline. We also provide a detailed description of the datasets, a discussion of
2D pose estimators, and a description of the ground-truth we use.
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Table 1: Protocol #1 MPJPE error on Human3.6M. Legend: () is a non ep-
free algorithm. In case parameters are not given, we imitate their computation
by perturbing the GT params by an unrealistically small perturbation amount;
(1) exploit temporal information; (4) extra training data. In blue - best result
when camera parameters are not given, in bold - best result per method group.

Method ‘Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD.Smoke Wait WalkD. Walk WalkT.‘Mean

Monocular methods
Shi et al. [66](t) 47.3 53.1 50.3 53.9 53.5 528 52.0 554 64.2 54.8 66.8 550 50.3 59.1  50.3 54.6
Llopart [44](t) 42.2 445 426 43.0 46.9 539 425 41.7 552 623 449 429 453 31.8 318 44.8

Reddy ef al. [(3)(1) [38.4 46.2 443 432 448 483 529 36.7 45.3 545 634 444 419 462 399 | 446
Li et al. [0)(7) 39.9 434 40.0 409 464 50.6 42.1 398 558 61.6 449 433 449 299 303 43.6
Hu et al. [26](t) 35.5 41.3 36.6 39.1 424 49.0 399 370 519 63.3 40.9 41.4 40.3 29.8 289 41.1

Cheng et al. [I3] () |36.2 38.1 42.7 35.9 38.2 45.7 36.8 42.0 459 51.3 41.8 415 438 331 28.6 |40.1

Multi-view methods, extrinsic camera parameters are given
Tome et al. [T3] (+) |43.3 49.6 42.0 488 51.1 64.3 40.3 433 66.0 952 50.2 522 51.1 439 453 52.8
Kadkhodamohammadi
and Padoy [30]

He et al. [24] 257 27.7 237 248 269 314 249 265 288 31.7 282 264 236 283 235 26.9
Qiu et al. B8] (+) |24.0 26.7 23.2 243 248 228 241 28.6 321 269 31.0 256 250 28.0 244 26.2
Ma et al. [AT)(7) 244 264 234 21.1 252 232 247 338 298 264 268 242 232 261 233 25.8
Iskakov et al. 29] ]19.9 20.0 18.9 185 20.5 194 184 221 225 287 21.2 208 19.7 221 20.2 20.8

Reddy et al. [59)() |17.5 19.6 17.2 18.3 18.2 17.7 18.0 18.0 20.5 20.3 19.4 17.2 189 19.0 17.8 |18.7

39.4 46.9 41.0 427 53.6 548 414 50.0 59.9 788 498 46.2 51.1 405 41.0 | 49.1

Multi-view methods, extrinsic camera parameters are not given
Chu and Pan [I6]() |49.1 63.6 48.6 56.0 57.4 69.6 504 62.0 754 774 572 535 57.7 376 381 | 569

Iskakov ef al. [E](+)

b by g0|302 372 327 332 388 437 207 430 494 67.6 380 331 421 272 203 | 384
param. perturb by

Iskakov et al. B(+) |, o : _
o Dy 30276 30.3 200 294 331 365 27.4 348 391 540 344 307 362 262 284 | 331
param. perturb by 3

Ours(T) 22.0 23.6 24.9 26.7 30.6 35.7 25.1 32.9 29.5 32.5 32.6 26.5 34.7 26.0 27.7 |30.2

4 Experiments and evaluation

We present quantitative results on the Human3.6M [289] and Ski-Pose PTZ-
Camera [61] datasets. We present qualitative results on the Human3.6M, KTH
Multi-view Football II [33] and Ski-Pose PTZ-Camera [61] datasets, and on
synthetic videos captured by dynamic cameras. Detailed description of these
datasets can be found in the supplementary material.

Quantitative results We show quantitative results using the Mean Per Joint
Position Error (MPJPE) [289], and report standard protocol #1 MPJPE (that
is, error relative to the pelvis), in millimeters.

Table [1] presents a quantitative comparison of the MPJPE metric on the
Human3.6M [28] dataset. We present monocular methods, followed by multi-
view ones that are split into ones that are acquainted with camera parameters
and ones that are not. We show that in the absence of camera parameters, our
model outperforms state-of-the-art methods by a large margin, and that even
when camera parameters are available, FLEX is among the top methods. Note
that these achievements are although FLEX aims at a slightly different task,
which is motion reconstruction rather than pose estimation.

Being the only ep-free algorithm, we have no methods to compare to directly.
However, algorithms can mitigate the lack of extrinsic camera parameters by
estimating them. In the following comparisons, we show that when extrinsic
parameters are not given, using estimated ones induces larger prediction errors,
due to the innate inaccuracy of predicted values. On the other hand, FLEX
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is not affected by the lack of extrinsic parameters, since it does not use them
whatsoever. We compare FLEX with two models:

(1) There are two methods that do not use given camera parameters [I6/37]. They
are not ep-free since they use estimated camera parameters, but we can still use
them in settings where camera parameters are not given. Only one of them [16]
publishes MPJPE protocol #1 results, and we significantly outperform it (See
Table . This gap is mostly because of the inaccuracy of parameter prediction
and partially because their model is semi-supervised.

(2) For comparing with the best available method, we have chosen the current
state-of-the-art multi-view algorithm of Iskakov et al. [29] (TesseTrack [59] is
marginally better, but it does not provide code). Since their algorithm is not ep-
free, we imitate parameter estimation by running a controlled perturbation of
the camera parameters. We re-train their method with distorted data to simulate
an environment where camera distortion parameters are unknown. In addition,
we perturb the extrinsic parameters by Gaussian noise with an extremely small
standard deviation of 3% of each parameter’s value. That is, for a parameter p, we
sample p ~ N (p, (0.03p)?) and use p as the input extrinsic parameter. We show
that increasing the standard deviation from 3% to 4% yields a significant increase
in the error, reflecting the sensitivity of non ep-free methods to inaccuracy in
camera parameters. To obtain an equivalent environment, we compare FLEX to
the method of Iskakov et al. [29] after using their own 2D pose estimation. The
lower part of Table [I]shows that FLEX outperforms the non ep-free state-of-the-
art, even when perturbation percentage is extremely small. Their results in that
lower part are grayed out, to emphasize that we simulate an unrealistic setting.
Next, we show that a 3% perturbation, rather than estimation, is fairer toward
the compared method, as estimation induces larger inaccuracy. We estimate the
extrinsic camera parameters with two leading frameworks, COLMAP [64] and
OpenCV-SFM [6], and obtain errors of 5.5% and 8.6%, respectively. The error is
the mean value of 2=2l for all extrinsic values p and their estimation p. Moreover,
the estimation process involves friction: OpenCV-SFM strongly depends on an
initial guess, and COLMAP requires that each pair of cameras observes partially
overlapping images, a limiting factor that prevents its usage in settings where
the cameras face each other.

In addition to the comprehensive Table 2: MPJPE on the Ski-PT7Z
comparison on the Human3.6 dataset, dataset, measured for methods trained
in Table we show a quantitative when extrinsic parameters are not
comparison on the Ski-Pose PTZ- given. (1) is self/weakly-supervised.
Camera. [61] dataset, for methods that Mothod NPIPE
are trained when camera parameters

. CanonPose [77] ()| 128.1
are not given. These methods are com-

. . . Chen et ol. [11] ()| 99.4
parable in settings that lack extrin-

. . Ours 65.5
sic parameters because they estimate
them. However, since they still use (estimated) parameters, they are not ep-free.
FLEX leads the table with a large gap. This gap is mostly because parameter
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Table 3: Smoothness, mea- Table 4: Attention impact.
sured by acceleration error TE: Transformer Encoder.
(mm/s?), on Human3.6M. MHA: Multi-head Attention.
(%): 2D pose from [29]. I: no. of stacked layers.
(e): ground-truth 2D poses. h: no. of attention heads.
Method | Acc. Err. | Method |MPJPE
VIBE[30] 18.3 Conv. layer | 31.9
MEVA[46] 15.3 TE - 11, 64h| 30.9
HMMR[32] 9.1 TE - 21, 64h| 37.8
TCMR[IZ] 5.3 MHA - 1281 30.5
Tskakov[29) 3.9 MHA - 645 | 30.2
Shi[66] | 3.6(x) / 2.0(e) MHA - 32k | 30.6
FLEX |1.6(x) / 0.9(e) MHA - 16h | 30.9

estimation induces an inevitable inaccuracy, and partially because the compared
models are self/semi-supervised.

A known strength of predicting rotation angles rather than locations, is the
smoothness of predicted motion. In Table [3| we show that FLEX’s smoothness
result outperforms others by a large margin. Following Kanazawa et al. [32], we
measure smoothness using the acceleration error of each joint.

Qualitative results In the following figures we show rigs, that is, bone struc-
ture from reconstructed animation videos, selecting challenging scenes. Videos
of the reconstructed motions are available on our project page, presenting the
smoothness of motion and the naturalness of rotations. Figures and [5| show
scenes from the KTH Multi-view Football II [33], the Human3.6M [28/9] and the
Ski-Pose PTZ-Camera [61] datasets, respectively. Each row depicts three views
of one time frame. To the right of each image, we place a reconstructed rig, which
is sometimes zoomed in for better visualization. Notice the occluded and blurry
scenes in the football figure . The KTH Football dataset is filmed using dy-
namic (moving) cameras, a setting where extrinsic parameters are rarely given,
thus disqualifying methods that require camera parameters. Our algorithm is
agnostic to the lack of camera parameters and attains good qualitative results.

In Figure [6] we show qualitative results of FLEX, compared to current non
ep-free multi-view state-of-the-art [29], and to our monocular baseline [66]. Note
that the method in [29] produces unnatural poses such as a huge leg in the first
row and a backward-bent elbow in the last row.

Multi-person captured by dynamic cameras We evaluate our algorithm
on a setting with dynamic cameras, with multi-person scenes introducing severe
inter-person occlusions. Recall that the term dynamic refers to moving cameras
that occasionally change their location and rotation. There are several multi-
view datasets. Most of them are not fully dynamic: Human3.6M [28[9], CMU
Panoptic [17] and TUM Shelf & Campus [3] contain static scenes only, while
Tagging [76] and Ski-Pose PTZ-Camera [6I] contain rotating cameras whose
locations are fixed. KTH [33] is fully dynamic, but it is too blurry and does not
provide ground-truth for all subjects. Despite its limitations, we use the KTH
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Fig.4: Our results on videos from the
Human3.6M dataset.

Fig.5: Our results on videos from the
Ski-Pose PTZ-Camera dataset.
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FLEX (ours)

Iskakov et al.
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Fig.7: Global root
position. Ground-
truth is in thin black.

Fig. 6: Qualitative comparison of our work vs. non ep-
free state-of-the-art (Iskakov et al. [29]) and vs. our
single-view baseline (Shi et al. [66]).

dataset for qualitative analysis, but we cannot use it for thorough research.
To mitigate the lack of a dynamic dataset, we generate synthetic videos using
animated characters downloaded from Mixamo [I], an online dataset of character
animation. Then, we generate video sequences of two interacting characters using
Blender [18], which is a 3D creation suite. The newly created data is available on
our project page. Our ”synthetic studio” is illustrated at the sup. mat., where two
interacting figures are video-filmed by multiple dynamic cameras. Using Blender,
we obtain a rendered video stream from the view angle of each synthetic camera.
Recall that the input to our algorithm is 2D joint locations, hence it is agnostic
to the video appearance, and to whether the input image is real or synthetic.
The 2D backbone we use over the rendered video sequences is Alphapose [20],
a state-of-the-art multi-person 2D pose estimator. Once obtaining the 2D joint
locations, we use a naive heuristic, which is not part of the suggested algorithm,
to associate each detected person with its ID: for each frame, we associate the
detected 2D pose with the one that is geometrically closest to it in the previous
frame. In Figure [§] we depict qualitative results of two boxers. We emphasize
several viewpoints where the 2D estimator attains large errors. Yet, FLEX com-
pensates for these errors by fusing multi-view information. In the sup. mat. we
show additional characters and the predicted 2D pose for all the viewpoints.
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Fig. 8: Results on multi-person synthetic videos. In the zoomed-in circular images
we depict 2D pose estimations, which are erroneous due to occlusion. A matching
circle in the center rectangular image shows that our method reconstructs correct
3D motion although it takes inaccurate 2D joints for input.

Frame A

Frame B

Table 5: Ablation studies: The impact of (a) Number of views; (b) 2D backbone,
and (c) Fusion method (refer to the sup. mat. for details regarding fusion).

(a) (b) (c)

. 2D backbone 2D Method MPJPE
# Views GT [29] backbone MPJPE Averaged K views| 36.4

1 47.7| 56.3 [8] 38.6 Late fusion 31.0

2 33.9 41.4 [12] 31.7 FLEX 22.9

3 26.3 34.6 [29] 30.2

4 22.9| 30.2 GT 22.9

Global position In Figure [7] we draw the global position of the scaled pre-
dicted root joint along time. Ground-truth is depicted using a thin black curve,
and our prediction is an overlay on top of it, changing from light to dark as
time progresses. The start and the end of each trajectory are signaled by the
letters S and E, respectively. Depicted motions are evaluated on the test set of
Human3.6M, on the motions of walking, talking on the phone, and eating. Note
that our predictions almost completely overlap the ground-truth curve. Recall
we use weak perspective to bypass dependency on intrinsic parameters, resulting
in up-to-scale global position accuracy. Quantitatively, our MPJPE on the H36M
validation set is 118mm, outperforming Iskakov et al. [29] (perturbed by 3%)
that attain 123mm. The other ep-free work [16] does not solve global locations.

Ablation study We evaluate the impact of different settings on the perfor-
mance of FLEX using various ablation tests. Table [4 compares different multi-
view fusion architectures. Note that using attention rather than convolution
yields a 2mm improvement. The performance degrades with the transformer en-
coder due to its large number of parameters, which require more data for training
than what is available in our case.

Tablemeasures MPJPE on Human3.6M in several studies. Table a) stud-
ies a varying number of views, where the 2D pose is once given and once esti-
mated. It confirms that a larger number of views induces more accurate results.
Note that the gap between the two columns decreases once the number of views
increases. It shows that using several views compensates for the inaccuracy of
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estimated 2D poses. Table b) compares 2D pose estimation backbones, and
justifies our use of Iskakov et al. [29]. Finally, in Table [5{c) we explore two vari-
ations, both with ground-truth 2D inputs. The first variation runs FLEX as a
monocular method (K=1) and averages the monocular predictions. The second
changes the fusion layers, Fis and Fg, to use late fusion instead of an early one.
We conclude that the configuration used by FLEX is better than both variations.

Generalization We exhibit gener-
alization by training on one dataset
and evaluating on a different, more
challenging one. The train dataset is
Human3.6M, and the evaluation ones e
are the KTH Football dataset, and the synthetlc videos. For quantitative mea-
surement, we train our model on two of the four cameras of the Human3.6M
dataset. We test it using the other two cameras, on which the model has not
been trained. We repeat this process for all possible camera pairs and obtain an
average MPJPE of 148mm. Note that this error is not large compared to the
human body size, and indeed we attain pleasing visual results as shown in the
inset on the right.

Camera | Camera I

5 Conclusions and limitations

We have presented FLEX, a multi-view method for motion reconstruction.
It relies on a key understanding that 3D rotation angles and bone lengths are
invariant to camera view, and their direct reconstruction spares the need for
camera parameters. On a technical viewpoint, we presented a novel fusion layer
with a multi-view convolutional layer and a multi-head attention mechanism
that attends views.

One limitation of our approach is the dependency on 3D joint location
ground-truth, and in particular, the requirement that it is given at the axis
system of the train cameras. Another limitation is the dependency on the 2D
backbone quality, and on the accuracy value associated with each joint. Lastly,
being ep-free, the output 3D joint positions are only relative to the camera,
lacking the transformation with respect to a global axis system.

In summary, FLEX is unique in fusing multi-view information to reconstruct
motion and pose in dynamic photography environments. It is unaffected by set-
tings in which the relative rotations between the cameras are unknown, and can
maintain a high level of accuracy regardless. FLEX offers a simpler setting, where
the correspondence and compatibility among the different views are rather lean,
and thus more resilient to input errors and innate inaccuracies.
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