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Abstract. In this paper, we propose a two-stage omnidirectional depth
estimation framework with multi-view 360◦ cameras. The framework
first estimates the depth maps from different camera pairs via omni-
directional stereo matching and then fuses the depth maps to achieve
robustness against mud spots, water drops on camera lenses, and glare
caused by intense light. We adopt spherical feature learning to address
the distortion of panoramas. In addition, a synthetic 360◦ dataset con-
sisting of 12K road scene panoramas and 3K ground truth depth maps is
presented to train and evaluate 360◦ depth estimation algorithms. Our
dataset takes soiled camera lenses and glare into consideration, which is
more consistent with the real-world environment. Experimental results
show that the proposed framework generates reliable results in both
synthetic and real-world environments, and it achieves state-of-the-art
performance on different datasets. The code and data are available at
https://github.com/nju-ee/MODE-2022
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1 Introduction

Image-based depth estimation is a long-lasting and fundamental task in com-
puter vision. Recently, omnidirectional depth estimation has attracted attention
in many applications such as autonomous driving and robot navigation for its
efficient perception of the 360◦ environment. Many algorithms have been pro-
posed to estimate 360◦ depth, including monocular [28,14] and binocular [29,18]
methods. However, these existing methods either extract spherical features with
conventional planar convolution [28,14,29] or do not simplify the spherical epipo-
lar constraint [18]. Apart from this, the monocular and binocular methods cannot
obtain reliable depth maps when 360◦ cameras installed on vehicles are soiled
by mud spots, water drops or dazzled by intense light (see Fig. 8).
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Fig. 1. Overview of the proposed multi-view omnidirectional depth estima-
tion framework. (a) shows the multiple 360◦ camera rig. (b) shows the result of our
method on the proposed synthetic dataset. The first two rows show the panoramas
captured by the four cameras and the last row shows the predicted depth map and cor-
responding point cloud. (c) shows the results on the real-world environment, from top
to bottom: reference panorama, predicted depth map and corresponding point cloud

Won et al. proposed multi-view methods SweepNet [30] and OmniMVS [31,32]
to estimate 360◦ depth maps from four fish-eye cameras. However, these meth-
ods also use planar convolution to extract spherical features, and the blind areas
of fish-eye cameras introduce discontinuity in the spherical cost volume.

In this paper, we decompose the multi-view omnidirectional depth estimation
into two stages. In the first stage, we choose several camera pairs from different
views for omnidirectional stereo matching and obtain disparity maps. In the
second stage, we convert disparity maps to aligned depth maps and fuse them
to estimate the final depth map. The information fusion of different stereo pairs
improves the accuracy and robustness of the final depth map. In addition, the
two parts of the framework can be trained and fine-tuned independently with
lower hardware demands. We use Cassini projection [2] to simplify the epipolar
constraint of omnidirectional stereo matching and propose a spherical feature
extraction module to overcome the distortion of panoramas1.

Moreover, a large-scale synthetic outdoor omnidirectional dataset, Deep360,
is proposed in this work. To evaluate the performance of different 360◦ depth
estimation methods when camera lenses are soiled by mud spots, water drops or
dazzled by glare, we also provide a soiled version of the dataset.

Fig. 1 illustrates the overview of the proposed multi-view omnidirectional
depth estimation (MODE) framework. It estimates accurate depth maps from
four 360◦ cameras. Experimental results demonstrate that our method generates
reliable depth maps in various scenes and achieves state-of-the-art (SOTA) per-
formance on different datasets, especially the one with soiled panoramas. This

1 We use the terms omnidirectional, 360◦, spherical and panorama interchangeably in
this document.
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validates the robustness of our proposed framework and shows that the frame-
work can be extended to arbitrary 360◦ multi-camera setups.

In summary, the main contributions of this work are as follows:

– We propose a flexible 360◦ depth estimation framework called MODE to
obtain reliable depth maps against soiled camera lenses or glare. MODE
also achieves SOTA performance.

– We introduce the spherical convolution to address panorama distortions in
360◦ stereo matching. We prove that using an appropriate projection to
simplify the epipolar constraint is essential for this problem and introduce the
Cassini projection. We adopt the training detail of removing image cropping
for 360◦ stereo matching.

– We present a large-scale synthetic outdoor dataset, Deep360, that contains
both high-quality and soiled panorama images.

2 Related Work

2.1 Deep Learning-based Stereo Matching Methods

Deep learning methods report much improved performance in stereo match-
ing. Zbontar and Lecun [36] propose MCCNN that extracts features by CNNs
and computes disparity via conventional matching cost aggregation. GCNet [15]
builds cost volume with feature maps and obtains disparity maps through 3D
CNN blocks. PSMNet [4] adopts spatial pyramid pooling in feature extraction
and uses the stacked hourglass architecture in regression to improve the per-
formance. GA-Net [37] proposes the local-guided and semi-global aggregation
layers to capture local and whole-image dependencies respectively. AANet [33]
adopts an adaptive aggregation algorithm and replaces the costly 3D-CNN for
an efficient architecture. Lipson et al. [19] proposes RAFT-Stereo which adopts
multi-level GRU modules to estiamte the accurate disparity maps. CFNet [25]
proposes a network based on the cascade and fused cost volume to improve the
robustness in stereo matching. DispNet [20] and CRL [22] compute left-right
feature correlation and then estimate disparity maps.

Multi-view stereo (MVS) has developed rapidly in recent years as well. Yao
et al [35]. proposed the end-to-end MVSNet that builds cost volume by warping
feature maps of different views into front-parallel planes of the reference camera
to obtain depth maps. Point-MVSNet [5] adopts the feature augmented point
cloud to refine the depth map iteratively. Cascade-MVS [10] and CVP-MVS [34]
improve the performance with multi-scale coarse-to-fine architectures.

These stereo matching methods are designed for perspective cameras with
normal field-of-view (FoV) and do not consider the property of panoramas.

2.2 Omnidirectional Depth Estimation

Recently, some learning-based algorithms have been proposed for omnidirec-
tional depth estimation. Zioulis et al. propose two monocular networks using
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supervised learning [39], and adopt the extra coordinate feature in CoordNet
[38] for learning context in the equirectangular projection (ERP) domain. Wang
et al. [28] propose BiFuse for monocular depth estimation which combines the
ERP and CubeMap projection to overcome the distortion of panoramas. Jiang et
al. [14] develop BiFuse and propose UniFuse which achieves better performance
via a more efficient fusion scheme. Cheng et al. [6] regard omnidirectional depth
estimation as an extension of the partial depth map. Wang et al. [29] propose
the 360SD-Net which estimates omnidirectional depth in the ERP domain for
up-down stereo pairs. CSDNet [18] focuses on the left-right stereo and uses Mesh
CNNs [13] to solve the spherical distortions. However, these methods either ex-
tract spherical features with planar convolution [39,28,14,29] or do not simplify
the spherical epipolar constraint [18].

There are also some methods for obtaining omnidirectional depth maps based
on multi-view fish-eye cameras. Won et al. propose SweepNet [30] which builds
cost volume via spherical sweeping and estimates spherical depth by cost aggre-
gation. They further improve the algorithm and propose the end-to-end Omn-
iMVS [31,32] architecture to achieve better performance. However, these meth-
ods also use planar convolution to extract spherical features and the blind areas
of fish-eye cameras introduce discontinuity in the spherical cost volume.

2.3 Omnidirectional Depth Datasets

Large-scale datasets with high variety are essential for training and evaluat-
ing learning-based algorithms. Recently released omnidirectional depth datasets
can be divided into two categories according to the input images, one with the
panoramas, and the other with the fish-eye images. These datasets are mainly
collected from public available real-world and synthetic 3D datasets by repur-
posing them to omnidirectional by rendering.

For datasets with panoramas, Wang et al. [27] collect an indoor monocular
360◦ video dataset named PanoSUNCG from [26]. De La Garanderie et al. [16]
provide an outdoor monocular 360◦ benchmark with 200 images generated from
the CARLA autonomous driving simulator [8]. MP3D and SF3D [29] are indoor
binocular 360◦ datasets collected from [3,1]. 3D60 by Zioulis et al. [38] is an
indoor trinocular (central, right, up) 360◦ dataset collected from [3,1,26,11].
For datasets with fish-eye images, Won et al. [30,31,32] present three datasets:
Urban, OmniHouse and OmniThings. All three datasets are virtually collected
in Blender with four fish-eye cameras.

The fish-eye images need complementary information to estimate an omni-
directional depth map, which means discontinuity and requirements for camera
directions. In contrast, the panoramas record all 360◦ information continuously
without blind areas. However, as summarized above, the datasets with stereo
panoramas [29,38] consist of indoor scenes only. A detailed summary of omnidi-
rectional depth datasets can be found in Table 2.
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3 Multi-view Omnidirectional Depth Estimation

3.1 Multi-view Omnidirectional Camera System

Camera System Settings In this paper, we use the camera rig shown in
Fig. 1(a) to implement the proposed framework. Four 360◦ cameras are arranged
on a horizontal plane to form a square with side length B. The cameras are
numbered from 1 to 4. Any two of the cameras can form a stereo pair, so there
are 6 (C2

4 ) pairs in total. We mark the different stereo pairs with the numbers of
the cameras, which are 1-2, 1-3, 1-4, 2-3, 2-4 and 3-4(i.e. 1-2 denotes the image
pair of cameras 1 and 2).

Fig. 2. Cassini projection and spherical epipolar geometry of the omnidi-
rectional images. (a) illustrates the spherical coordinate system of omnidirectional
left-right stereo cameras. (b) illustrates the angular disparity of spherical images. (c)
shows the linear epipolar constraint in Cassini projection domain. The matching points
are located in the same row of the left and right images. (d) shows the nonlinear epipo-
lar constraint in ERP domain. The matching points are located on curves with the
same color

Spherical Projection and Epipolar Constraint As shown in Fig. 2(a),
we define the spherical coordinate system (ρ, ϕ, θ) as follows: ρ is the distance
between the camera optic center O and the point P ; ϕ is the angle between
line OP and the plane yOz; and θ is the angle between line OP ′ and positive
z, where P ′ is the projection of P on yOz. Thus, the transformation between
Cartesian coordinates and the Cassini spherical coordinates is:

x = ρ sin(ϕ)

y = ρ cos(ϕ)sin(θ),

z = ρ cos(ϕ)cos(θ)


ρ =

√
(x2 + y2 + z2)

ϕ = arcsin(
x

ρ
)

θ = arctan(
y

z
)

(1)

where ϕ ∈ [−π

2
,
π

2
], θ ∈ [−π, π].

As demostrated in [18], the spherical epipolar lines are projected to sinusoidal
curves on the widely used ERP images (shown in Fig. 2(d)), which makes stereo
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matching difficult in ERP domain. While in Cassini projection [2] domain, the
epipolar lines are projected to horizontal lines with the mapping function:

u = (ϕ+
π

2
) · W

π

v = (θ + π) · H
2π

(2)

where (u, v) denotes the image pixel coordinates in Cassini projection and H,W
denote the height and width of the image (see Fig. 2(c)). We adopt the Cassini
projection in this work to achieve the linear epipolar constraint for omnidirec-
tional stereo matching.

Fig. 2(b) illustrates the angular disparity of the spherical stereo. Since the
matching points have the same θ, the angular disparity d is defined as the dif-
ference of ϕ : d = ϕl − ϕr. The depth of P to the left camera is computed as:

ρl = B ·
sin(ϕr +

π

2
)

sin(d)
= B ·

sin(ϕl +
π

2
)

tan(d)
− cos(ϕl +

π

2
)

 . (3)

3.2 Network Architecture

Stage 1: 
Omnidirectional  
Stereo Matching

Stage 2: 
Multi-view 

Depth Fusion

Disparity maps

Confidence maps

Depth maps Conversion
and Alignment

6 pairs of  
stereo images 

Fig. 3. The architecture of the proposed MODE

As shown in Fig. 3, the proposed MODE consists of two stages. In the first
stage, six pairs of left-right panoramas are fed into the omnidirectional stereo
matching network to estimate the disparity maps and confidence maps. The
disparity maps from different stereo pairs are converted to depth maps and then
aligned to the same viewpoint. In the second stage, we estimate the final depth
map through a designed multi-view depth fusion network. The network details
for the two stages are introduced in Sec. 3.3 and Sec. 3.4.

3.3 Omnidirectional Stereo Matching with Spherical Convolution

The rectified left-right panoramas follow the linear epipolar constraint in Cassini
projection, but the distortion of panoramas still affects the results of stereo
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matching. The regular convolution kernel suffers distortions of the 360◦ images
near the poles. Therefore, we propose an omnidirectional stereo matching net-
work with spherical convolution.

Spherical Feature Extraction

3D Stacked Hourglass

Regular Dilated Conv2d ResBlock

shared weights

Cost Volume

R
eg

re
ss
io
n

Regular Conv2d ResBlock Sphere Conv2d ResBlock

Regular Conv2d Layer

Concatenation

Left Image

Right Image

Disparity Map Confidence Map

Fig. 4. The architecture of the proposed omnidirectional stereo matching
network. We propose a spherical feature extraction module with spherical convolution
to overcome the distortion in panoramas

As shown in Fig. 4, we first build a spherical feature extraction module with
spherical convolution to overcome the distortions. We follow [7] to implement the
spherical convolution operator and accelerate it with CUDA. The kernel sam-
pling pattern of the spherical convolution and the comparison with the regular
convolution are shown in Fig. 5.

(a) (b) (c)

Fig. 5. The kernel sampling pattern of the sphere convolution in proposed
omnidirectional stereo matching network. Red points in (a) and (b) show the
sampling pattern on the sphere and the ERP image, respectively. (c) illustrates the
comparison of the sphere convolution (red) and the regular convolution (yellow) on the
Cassini projection image

The proposed spherical feature extraction module contains four sets of resid-
ual blocks [12]. The parameters are detailed in Table 1. The dilated convolution
is applied in ResBlock3 for larger receptive fields. We apply spherical convolution
in the last residual block to learn the high-level semantic and context features on
spherical images. We concatenate the output of ResBlock2, ResBlock3 and Res-
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Table 1. Parameters of the Spherical Feature Extraction Module

Name Layer Settings Output Dimension

Input - H ×W × 3

Conv0
7× 7, 32
3× 3, 32
3× 3, 32

1

2
H × 1

2
W × 3

ResBlock1

[
3× 3, 64
3× 3, 64

]
× 3

1

2
H × 1

2
W × 64

ResBlock2

[
3× 3, 64
3× 3, 64

]
× 8

1

4
H × 1

4
W × 64

ResBlock3

[
3× 3, 128
3× 3, 128

]
× 4,dila = 2

1

4
H × 1

4
W × 64

ResBlock4

[
3× 3, 128
3× 3, 128

]
× 8, spherical

1

4
H × 1

4
W × 128

Concatenation [ResBlock2,ResBlock3,ResBlock4]
1

4
H × 1

4
W × 256

featureFusion
1× 1, 256
3× 3, 128
1× 1, 32

1

4
H × 1

4
W × 32

Block4 and fuse these feature maps extracted by different kinds of convolutions
through the feature fusion layers.

After spherical feature extraction, the feature maps of the stereo panoramas
are shifted and concatenated to build the cost volume. Then, the omnidirectional
disparity map is regressed through the 3D stacked hourglass as in [4]. The smooth
L1 loss function is applied to train the network.

Moreover, many stereo matching algorithms [4,33] take a random crop of im-
ages as the network input. However, different crop areas on spherical projection
images have different distributions in the high-level feature space due to the im-
age distortions. Thus, we use the full omnidirectional images without cropping
as the input of the proposed network to achieve better performance.

3.4 Multi-view Depth Map Fusion

The second stage of the proposed framework is depth map fusion with the in-
corporation of confidence maps and reference panoramas. The confidence map
is used to estimate the reliability of disparity maps in many recent works. [23]
reviews developments in the field of confidence estimation for stereo matching
and evaluates existing confidence measures.

We first convert the omnidirectional disparity maps to depth maps according
to Eq. 2 and Eq. 3. Then, all the depth maps are aligned to the same viewpoint
based on the extrinsic matrix and visibility.

Considering that the stereo matching network computes each disparity value
through a probability weighted sum over all disparity hypotheses, the probability
distribution along the hypotheses thus reflects the quality of disparity estimation
[35]. We compute the confidence for each inferred disparity value by taking a
probability sum over the three nearest disparity hypotheses, which corresponds
to the probability that the inferred disparity meets the 1-pixel error requirement.
Then, we add the confidence map into the second stage of MODE to provide
extra information for the depth map fusion since higher confidence implies higher
fusion weight.
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Conv 33, Batch Norm, ReLU

Max Pool 22, Conv 33, Batch Norm, ReLU

Transpose Conv 22, Batch Norm, ReLU

Conv 11, Sigmoid, Multiplied by Max Depth

Concat

Fig. 6. The network architecture of multi-view depth map fusion. Input multi-
view depth maps with confidence maps and reference panoramas are fed into two
independent 2D encoder blocks. The final fused depth map output is regressed through
one decoder block with skip connections between encoder and decoder blocks at each
scale. ‘×n’ denotes n times the block repeats

The architecture of the proposed depth map fusion network is illustrated
in Fig. 6. In general, the network design follows the architecture of [24], which
consists of an encoder-decoder path for global context extraction and skip con-
nections between the two blocks for the transmission and localization of precise
depth values. In addition to depth maps and corresponding confidence maps,
we add reference panoramas to provide accurate boundary information for the
fused depth map. To extract boundary features from panoramas independently,
we separate the encoder block for panoramas from that for depth and confidence
maps (shown at the bottom left of Fig. 6). Then, these two kinds of feature maps
are fused through a designed feature fusion block at multi-scale to form a more
informative feature map. The final fused depth is computed as

ŷ(θ, ϕ) = dmax · 1

1 + e−D(θ,ϕ)
, (4)

where dmax is the given maximum depth and D is the normalized depth map
regressed by the decoder block.

For the loss function, we adopt the training loss developed from Scale-Invariant
Error (SILog) [9] as

Loss(ŷ, y⋆) =
1

n

∑
i

d2i −
λ

n2

(∑
i

di

)2

(5)

di = log ŷi − log y⋆i , (6)
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where ŷ is the predicted depth map, y⋆ is the ground truth and λ ∈ [0, 1]. We
follow [9] to set λ = 0.5 in the experiments, which averages the scale-invariant
depth error and absolute-scale error [9].

4 Datasets

As summarized in Sec. 2.3, although many datasets have been proposed for om-
nidirectional depth estimation, no 360◦ stereo dataset for outdoor road scenes is
available due to the difficulty of acquiring 360◦ outdoor 3D datasets in the real
world. Therefore, we create a public available 360◦ multi-view dataset Deep360
based on the CARLA autonomous driving simulator [8]. Fig. 7 shows some ex-
amples of the dataset. Each frame consists of six pairs of rectified panoramas,
which cover all the pairwise combinations of four 360◦ cameras, six correspond-
ing disparity maps and one ground truth depth map. All these images and maps
have a resolution of 1024× 512.

Fig. 7. Examples of the proposed Deep360 dataset. Each row shows an outdoor
road scene. From left: four panoramas captured by 360◦ cameras, two disparity maps
of 1-2 and 3-4 camera pairs, and one ground truth omnidirectional depth map

To acquire realistic 360◦ outdoor road scenes with high variety, we make the
car with 360◦ cameras in CARLA drive automatically in six different towns and
spawn many other random actors (pedestrian and vehicles).

We also provide a soiled version of the Deep360 dataset, which can be used
to train and evaluate 360◦ depth estimation algorithms under the harsh circum-
stances in autonomous driving. The Deep360 (Soiled) dataset contains panora-
mas soiled or affected by three common outdoor factors: mud spots, water drops
and glare. Fig. 8 shows the three kinds of soiled panoramas in our dataset.

An overview of the proposed dataset and other published 360◦ datasets is
listed in Table 2.
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Fig. 8. Soiled panoramas in Deep360 (Soiled) and corresponding real-world
examples. Left Four: synthetic panoramas; Right Four: real-world panoramas. Top
Left: clear panoramas; Top Right: panoramas soiled by mud spots; Bottom Left:
panoramas soiled by water drops; Bottom Right: panoramas dazzled by glare

Table 2. Overview of the proposed datasets and other published datasets

Dataset
Scene
Category

Input
Image

#
Viewpoints

# Training
Frames

# Test
Frames

# Validation
Frames

Won et al. [30,31,32]
Urban outdoor fish-eye 4 700 300 -
OmniHouse indoor fish-eye 4 2048 512 -
OmniThings random objects fish-eye 4 9216 1024 -

De La Garanderie et al. [16] - outdoor panorama 1 - 200 -

Wang et al. [29]
SF3D indoor panorama 2 800 203 200
MP3D indoor panorama 2 1602 341 431

Zioulis et al. [38] 3D60 indoor panorama 3 7858 2190 1103

Ours
Deep360 outdoor panorama 4 2100 600 300
Deep360 (Soiled) outdoor panorama 4 2100 600 300

5 Experiments

5.1 Experimental Settings

Datasets We train and evaluate the proposed framework on Deep360 and the
widely-used 3D60 [38] because these two datasets cover the outdoor and indoor
scenes. For Deep360, panoramas from all four views are used to validate the
performance of MODE on a multi-view setup. For 3D60, panoramas from two
of three views are used to validate the performance of MODE on a binocular
setup. More training details can be found in the supplementary material.

Evaluation Metrics For quantitative evaluation of the proposed framework,
we use MAE (mean absolute error), RMSE (root mean square error), Px1,3,5
(percentage of outliers with pixel error > 1, 3, 5), D1 [21] (percentage of outliers
with pixel error > 3 and > 5%) to evaluate the disparity results, and use MAE,
RMSE, AbsRel (absolute relative error), SqRel (square relative error), SILog
[9] (scale-invariant logarithmic error), δ1, 2, 3 [17] (accuracy with threshold that

max( ŷ
y⋆ ,

y⋆

ŷ ) < 1.25, 1.252, 1.253) to evaluate the depth results.



12 M. Li et al.

5.2 Experimental Results

We first evaluate the omnidirectional stereo matching network of MODE on the
dataset Deep360. We compare it with the excellent stereo matching algorithms
PSMNet [4] and AANet [33], and the omnidirectional algorithm 360SD-Net [29].
Because 360SD-Net is designed for up-down 360◦ stereo, we modified part of
the model for left-right stereo matching. For PSMNet and AANet, we use the
pre-trained models from the authors and follow their hyper-parameters to fine-
tune on Deep360. The quantitative results in Table 3 illustrate that our stereo
matching network with spherical feature learning achieves SOTA performance
on 360◦ stereo matching.

Table 3. Quantitative results of stereo matching on the proposed Deep360
dataset. The metrics refer to disparity errors

Methods
Metrics

MAE(↓) RMSE(↓) Px1(% ↓) Px3(% ↓) Px5(% ↓) D1(% ↓)
AANet [33] 0.5057 2.2232 7.7282 2.0914 1.1887 1.7929

360SD-Net [29] 0.4235 1.8320 6.6124 1.9080 1.0885 1.7753

PSMNet [4] 0.3501 1.8244 4.3798 1.3559 0.8398 1.2973

Ours 0.20730.20730.2073 1.23471.23471.2347 2.60102.60102.6010 0.87670.87670.8767 0.52600.52600.5260 0.86520.86520.8652

Then we evaluate the whole framework by comparing it with SOTA omnidi-
rectional depth estimation methods. To present the performance of SOTA works
on Deep360, we test different types of methods, including monocular UniFuse
[14], binocular CSDNet [18], 360SD-Net [29], and multi-view OmniMVS [31]. All
these models are fine-tuned with the pre-trained models from the authors. As
shown in Table 4 and Fig. 9, our MODE framework performs favorably against
SOTA omnidirectional depth estimation methods on different datasets, espe-
cially the one with soiled panoramas. Moreover, the consistent performance on
datasets with different 360◦ multi-camera setups validates the extensibility of
the framework. There is no result of OmniMVS on 3D60 since it can only take
fish-eye images as input. We make a fish-eye version of our Deep360 dataset to
implement the training and evaluation of OmniMVS. We evaluate and present
the results of 360◦ depth estimation in ERP domain.

5.3 Ablation Studies

Table 5 shows the ablation studies of the omnidirectional stereo matching net-
work. The results show that using panoramas without cropping and applying
spherical convolution improve the performance. Table 6 illustrates the ablation
studies of the depth map fusion network. The results show that the fusion stage
improves the quality of depth maps. The rows of the table gradually show the
improvement of adding each component into the network.
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Table 4. Quantitative comparisons of omnidirectional depth estimation
methods on different datasets. The metrics refer to depth errors

Datasets Methods
Metrics

MAE(↓) RMSE(↓) AbsRel(↓) SqRel(↓) SILog(↓) δ1(% ↑) δ2(% ↑) δ3(% ↑)

Deep360

UniFuse [14] 3.9193 28.8475 0.0546 0.3125 0.1508 96.0269 98.2679 98.9909
CSDNet [18] 6.6548 36.5526 0.1553 1.7898 0.2475 86.0836 95.1589 97.7562
360SD-Net [29] 11.2643 66.5789 0.0609 0.5973 0.2438 94.8594 97.2050 98.1038
OmniMVS [31] 8.8865 59.3043 0.1073 2.9071 0.2434 94.9611 97.5495 98.2851
MODE 3.24833.24833.2483 24.939124.939124.9391 0.03650.03650.0365 0.07890.07890.0789 0.11040.11040.1104 97.963697.963697.9636 99.098799.098799.0987 99.468399.468399.4683

Deep360
(Soiled)

UniFuse [14] 5.4636 37.4313 0.1119 4.8948 0.1810 95.2379 97.8686 98.7208
CSDNet [18] 7.5950 38.4693 0.1631 3.7148 0.2521 86.7329 95.3295 97.7513
360SD-Net [29] 22.5495 97.3958 0.1060 1.1857 0.4465 90.5868 94.1468 95.6262
OmniMVS [31] 9.2680 62.1838 0.1935 22.6994 0.2597 94.7009 97.3821 98.1652
MODE 4.46524.46524.4652 31.712431.712431.7124 0.04950.04950.0495 0.17780.17780.1778 0.14580.14580.1458 96.350496.350496.3504 98.571898.571898.5718 99.210999.210999.2109

3D60 [38]

UniFuse [14] 0.1868 0.3947 0.0799 0.0246 0.1126 93.2860 98.4839 99.4828
CSDNet [18] 0.2067 0.4225 0.0908 0.0241 0.1273 91.9537 98.3936 99.5109
360SD-Net [29] 0.0762 0.2639 0.0300 0.0117 1.4578 97.6751 98.6603 99.0417
MODE 0.07130.07130.0713 0.26310.26310.2631 0.02240.02240.0224 0.00310.00310.0031 0.05120.05120.0512 99.128399.128399.1283 99.784799.784799.7847 99.925099.925099.9250
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Fig. 9. Qualitative comparisons of omnidirectional depth estimation meth-
ods on different datasets. Red dotted boxes indicate the failed depth estimation
caused by mud spots or glare
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Table 5. Ablation studies for omnidirectional stereo matching on Deep360.
We compare the performance of the proposed stereo matching network with and with-
out Input Image Cropping (cr) and Spherical Convolution (SC). The metrics refer to
disparity errors

Network setting MAE(↓) RMSE(↓) Px1(% ↓) Px3(% ↓) Px5(% ↓) D1(% ↓)
w/ cr 0.3220 1.7425 3.9787 1.3042 0.8049 1.2588

w/o cr 0.2109 1.2408 2.6509 0.8967 0.5377 0.8846

w/o cr + SCw/o cr + SCw/o cr + SC 0.20730.20730.2073 1.23471.23471.2347 2.60102.60102.6010 0.87670.87670.8767 0.52600.52600.5260 0.86520.86520.8652

Table 6. Ablation studies for the multi-view depth map fusion network on
Deep360 (Soiled). The first row shows the results without fusion(w.r.t the results of
stereo matching stage). The network in the second row is the baseline in this study,
which consists of stacked 2D convolution layers. Different components used by our
depth map fusion network are denoted as: Encoder-Decoder and Skip Connection ar-
chitecture (En-De-SC); incorporation of reference panoramas (img); incorporation of
confidence maps (conf). The metrics refer to depth errors

Network Setting MAE(↓) RMSE(↓) AbsRel(↓) SqRel(↓) SILog(↓) δ1(% ↑) δ2(% ↑) δ3(% ↑)
w/o fusion 15.2145 77.5905 0.1230 6.3135 0.5466 93.2377 96.0349 97.1837

Baseline 6.8699 50.1859 0.0586 0.8880 0.1996 95.7078 97.9644 98.6917

En-De-SC 6.2548 45.8603 0.0516 0.2702 0.1831 95.9953 98.1431 98.8211

En-De-SC+img 4.20714.20714.2071 32.0112 0.0710 0.2443 0.1554 95.1875 98.4766 99.1773

En-De-SC+img+confEn-De-SC+img+confEn-De-SC+img+conf 4.4652 31.712331.712331.7123 0.04950.04950.0495 0.17780.17780.1778 0.14580.14580.1458 96.350496.350496.3504 98.571798.571798.5717 99.210999.210999.2109

6 Conclusions

In this paper, we propose a two-stage framework, MODE, for multi-view omnidi-
rectional depth estimation from 360◦ cameras. We adopt the Cassini projection
to achieve the linear epipolar constraint of left-right 360◦ cameras, which im-
proves the performance of omnidirectional stereo matching. The use of spherical
convolution effectively overcomes the distortion of panoramas. The multi-view
depth fusion improves the robustness of the framework through redundant de-
sign. The experimental results show that the proposed MODE achieves state-of-
the-art performance on both indoor and outdoor datasets, and it is robust against
soiled camera lenses and glare. Moreover, the framework is compatible with arbi-
trary 360◦ multi-camera setups. Apart from these, we also provide a large-scale
synthetic road scene dataset with both high-quality and soiled panoramas. Fi-
nally, we test the proposed framework on the real-world environment with the
model trained on synthetic data to validate the generalization and robustness of
our framework.
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