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Abstract. Structured light-based depth sensors provide accurate depth
information independently of the scene appearance by extracting pat-
tern positions from the captured pixel intensities. Spatial neighborhood
encoding, in particular, is a popular structured light approach for off-the-
shelf hardware. However, it suffers from the distortion and fragmentation
of the projected pattern by the scene’s geometry in the vicinity of a pixel.
This forces algorithms to find a delicate balance between depth predic-
tion accuracy and robustness to pattern fragmentation or appearance
change. While stereo matching provides more robustness at the expense
of accuracy, we show that learning to regress a pixel’s position within the
projected pattern is not only more accurate when combined with classifi-
cation but can be made equally robust. We propose to split the regression
problem into smaller classification sub-problems in a coarse-to-fine man-
ner with the use of a weight-adaptive layer that efficiently implements
branching per-pixel Multilayer Perceptrons applied to features extracted
by a Convolutional Neural Network. As our approach requires full super-
vision, we train our algorithm on a rendered dataset sufficiently close to
the real-world domain. On a separately captured real-world dataset, we
show that our network outperforms state-of-the-art and is significantly
more robust than other regression-based approaches.

Keywords: structured light, depth sensing, CNN, MLP, MLP decision-
tree

1 Introduction

Depth sensing is essential for safe interactions in augmented and virtual reality
applications as well as mobile robotics. Structured light sensors are a partic-
ularly appealing solution for these indoor applications. These sensors predict
depth from the alterations of the light patterns they project in the scene rather
than the scene appearance, thus overcoming the issue of featureless areas. Spa-
tial neighborhood encoding, which encodes the pattern position of every pixel
by creating identifiable structures in the neighborhood of the pixel of interest,
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(a) Structured light (b) Left IR image (c) Default disparity (d) Ours

Fig. 1: Triangulation driven by the principle of spatial neighbourhood encoding
(a) operates on data captured by a camera (left, blue) to match the pattern
projected by a projector (right, red). The pattern needs to encode the projected
direction such that a small region (orange rectangle) around each captured pixel
can unambiguously trace back to the pattern position along the the epipolar line
(transparent red). Given input images such as (b) the internal processing of the
used Occipital Structure Core achieves only spotty depth estimates (c) despite
using the stereo setup of the sensor. Our algorithm, GigaDepth, (d) on the other
hand can derive much denser and more accurate depth due to its knowledge of
the utilized pattern using only one of the cameras (b).

provides a good trade-off between accuracy, cost, and power consumption among
structured light methods. The projector only needs to project a fixed sparse dot
pattern once on the scene rather than encode every captured pixel separately
(fig. 1), or require multiple acquisitions like temporal multiplexing.

Such approaches are, however, very sensitive to pattern distortion, fragmen-
tation and attenuation. In practice the correspondence problem between the
captured image and the projected pattern is solved by stereo matching to a pre-
stored reference pattern as used in the Kinect v1 or PrimeSense Carmine [16],
trading in some robustness and accuracy with the simplicity of matching al-
gorithms. More modern machine learning-based approaches spark the hope to
directly, robustly and accurately decode these spatial encodings, but currently
only deliver either accurate (e.g. [7]) or dense (e.g. [21, 14]) depth-maps.

With GigaDepth, this work contributes a novel neural network architecture
that decodes spatial neighborhood encodings even if the projected pattern is
distorted, fragmented or attenuated by the scene’s geometry and surface proper-
ties. By combining the strengths of Convolutional Neural Networks (CNNs) for
feature encoding with those of regression trees, we are able to extract pattern
positions from captured images with higher accuracy and produce much denser
output. Regression trees are implemented with Multilayer Perceptrons (MLPs)
in a novel weight-selective layer for which we provide an efficient CUDA imple-
mentation. Novel datasets for training and testing this approach are artificially
rendered and captured with the Occipital Structure Core (fig. 1) as well as an
industrial-grade 3D Scanner for ground-truth. Our method outperforms state-of-
the-art dot-pattern structured light approaches and active stereo in applications
where disparity in subpixel accuracy is required.
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2 Related work

CNNs have enabled significant improvements for stereo matching [5, 15, 22], par-
ticularly in featureless regions, multi-view geometry [2, 8, 20, 24] or even depth
completion [11, 23, 25]. Their ability to extract high-level features makes them
very useful in passive stereo setups, that is without a pattern projector, and
even monocular setups [17] that produce depth without using any conventional
principle like triangulation.

To tackle the problems unique to structured light approaches, research has
taken on the problem from multiple directions. Structured light approaches de-
pend on the specific pattern that encodes the depth information. Given hardware
that is able to adjust the projected pattern on-the-fly, approaches such as [18, 6]
demonstrate performance improvements by selecting patterns based on an opti-
mality criterion. Similarly, the work in [9] describes the design of Hamiltonian
encodings to either improve quality or drastically reduce the amount of required
images. This is a stark improvement from the beginnings of temporal multiplex-
ing by Altschuler et al. [1] who apply binary/gray coding or the direct encoding
by Carrihill et al. [3] where the position is encoded in the intensity.

On the other hand, many works improve upon the decoding step while keep-
ing the projected pattern simple. Recent work in profilometry uses CNNs to
(directly regress depth values) capture the topography of a surface from only a
single exposure with one standard sinusoidal fringe pattern [13, 19]. This is espe-
cially noteworthy as the employed high-frequency pattern might be well suited
to resolve small details but does not feature an absolute encoding as the utilized
fringes are equally spaced.

Although the use of CNNs can make encoding absolute position obsolete for
some applications, optimal robustness can only be achieved with adequate en-
codings. Spatial neighborhood encoding like the dot-pattern often require only
a small patch of pixels to regress the pattern position as shown with popu-
lar sensors as the Kinect v1, where simple block matching is executed between
a captured frame and the reference pattern [16]. Learning-based methods can
internalize knowledge about the pattern and the effects of the scene on its ap-
pearance to directly regress pattern positions or depth without lookups in a
reference pattern. This is demonstrated in the work of Fanello et al. [7] where
random forests are employed to directly regress the pattern position without a
matching step by comparing intensity values in a small neighborhood around
each pixel. Similarly, Riegler et al. [21] as well as Johari et al. [14] use CNNs to
directly regress disparity without searching a reference pattern at run-time.

Albeit this work mainly focuses on the decoding of spatial neighborhood pat-
terns, the sensor used is designed for active stereo and thus makes the comparison
with methods like [26] possible. Zhang et al. [26] optimize a CNN based stereo
algorithm [15] for active stereo and demonstrates improved performance on Intel
RealSense hardware, which by default uses semi-global matching (SGM) [10].
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3 Method

Precise depth estimates rely on determining pattern positions at subpixel accu-
racy for the entire pattern. While it is possible to solve this problem by means of
a similarity search within a reference pattern, it is more suitable to use a priori
knowledge about the pattern’s structure to directly derive the pattern position.

Given a rectified image I(x) and pattern P (x) intensities along a given epipo-
lar line, it is possible to extract the pattern position xP , where the projected pat-
tern P (xP ) resembles the captured intensities I(xI) around pixel region xI . The
difference between these two positions (along the horizontal axis x) d = xP −xI

is called disparity and can express depth z = fb/d given the baseline b and focal
length f .

To estimate depth for a given pixel I(xI) both estimating the disparity d
or the position xP suffices. However, directly regressing the position xP poses a
challenge for pure CNNs as they exhibit too much noise over such a large out-
put range. This is a motivation for [21] to limit the output range to 128 pixels
and estimate disparity d instead. If, however, short-ranged depth estimates are
needed, it is necessary to increase the range of disparity, which leads to the same
aforementioned challenge. Another approach of splitting the range of pattern po-
sitions xP into classes leads, together with our requirement of subpixel accuracy,
to thousands of classes. While it is unmanageable to use one-hot encoded out-
puts as typically done in CNNs for every pixel, it is a task gracefully managed
by the decision trees employed in [7].

Our approach GigaDepth thus employs a similar hierarchical principle of
splitting the output range into smaller, easier to regress regions. Instead of di-
rectly deriving decisions for tree-traversal from intensity differences as in [7], we
employ a CNN to extract features allowing for more robust decision functions
based on MLPs. Fig. 2 shows an overview of our architecture. Note that the
use of Local Contrast Normalization (LCN) as shown in the figure is intended to
accentuate the pattern in the captured images. While used throughout this work
and, e.g. [14, 21, 26], we demonstrate in section 4.4 that its contribution to the
performance is minimal. For a deeper discussion, we refer to the the mentioned
works or the supplemental.

3.1 Backbone CNN

The first step in our pipeline is to condense the local image data such that the
features concerning the pattern and the scene can be efficiently processed by
the MLP tree. Compared to current CNNs, this backbone is implemented as a
shallow CNN (table 1a) with a receptive field of only 21 pixels, which makes the
number of considered pixels similar to [7] ((21 · 2 + 1)2 = 1849 vs. 322 = 1024
for [7]). Other networks (e.g. [17, 21]) employed in similar scenarios are multiple
times deeper and use a U-shaped structure such that their receptive field spans
the whole image and high-level perception of the scene can be learned. For this
pattern detection task, however, we found it sufficient to only consider regions
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Fig. 2: The proposed network architecture: While the backbone is a relatively
shallow CNN, the regressor is a hierarchy of adaptive MLPs operating on in-
dividual pixels. The stage 1 MLP features one set of weights for each line and
splits it up into 16 classes. Stage 2 has 16 sets of weights for each line to classify
into 12 subclasses. Stage 3 further splits these up into 10 categories. Only at the
last stage one of 1920 weights / regressors is selected to perform the regression.

large enough to capture uniquely identifiable pattern segments and to detect
cues about depth discontinuities around object boundaries.

We furthermore halve the resolution of our feature maps (1216 × 896 →
608 × 448) by convolution with a stride of two early in the network as high-
resolution depth-maps are impractical for real-time purposes.

3.2 MLP Tree

For every line of our output image we maintain one specialized tree consisting of
one-hot encoding decision MLPs at each node and specialized regression MLPs at
each leaf. In contrast to [7], directly comparing two intensity values for a binary
decision function, the MLPs constitute much more expressive but also heavier
decision functions leading to more robust performance. However, as even the
minimally feasible perceptrons are relatively compute intensive, we are forced to
use a much shallower tree (10 − 15 for [7] vs. 3) with each node splitting into
more branches to reach similar width.

Each of these trees is evaluated on a per-pixel basis such that the root node
would process the features of one individual pixel to split the output range xP,x

into c1 = 16 consecutive, equally spaced regions Xi1 . These are further split by
consecutive nodes into c2 = 12 regions Xi1,i2 each. A third stage follows, splitting
each of these regions into c3 = 10 regions Xi1,i2,i3 leading to a total of c =
c1c2c3 classes/regions. Finally, at the leaves of this tree structure sit specialized
regressors that are tuned to estimate xP,x in the small regions Xi1,i2,i3 .

A few modifications are employed that deviate from this simplified descrip-
tion: We share the trees for two consecutive rows to reduce the overall parameter
count. For the same purpose, we have regressor MLPs share weights for four con-
secutive classes while having per-class weights for the final regression. We also
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Table 1: The compositions of our backbone CNN and MLP regression tree. CNN
layers with kernel sizes k, stride s and in/output channels Cin and Cout. Each
layer is combined with BatchNorm and ReLU. The classification stages of our
MLP tree split the output region into ever smaller subregions until specialized
MLP regressors take over. The classifiers have multiple layers with the one-hot
encoded output being split in output classes c and overlap o to the neighboring
group of classes

(a) CNN backbone layers

In Out

k 5 3 3 3 3 5 3 3
s 2 1 1 1 1 1 1 1

Cin 2 16 24 32 40 64 64 96
Cout 16 24 32 40 64 64 96 160

(b) MLP regression tree stages

stage Cin [start, stop] layers [in, hidden, c/o]

class1 [0, 64] [64, 64, 32, 16]

class2 [16, 80] [64, 32, 12/2]

class3 [80, 144] [64, 32, 10/3]

reg(out) [128, 160] [32, 32, 1/1]

allow some overlap between the classification results of the classifiers of stage
2 and 3 as the preceding classifications might be inaccurate at the boundaries
between neighboring classes/regions e.g. Xi1 , Xi1+1. Given e.g. c2 = 14 with an
overlap of o2 = 1 means that the MLPs at stage 2 has 16 raw output classes with
indices i′2 = i2 + o2. In our example, raw results as i′2 = 0 or i′2 = 15 mean that
the previous classification result will likely fall in one of the neighboring regions
X ′

i′1,0
≡ X ′

i′1−1,14, X ′
i′1,15

≡ X ′
i′1+1,1. Similarly, the regressors are trained to cover

for their neighbors. See table 1b for a detailed account of the involved MLPs.
The described structure requires branching on a per-pixel basis and thus is

ill-suited for an efficient implementation on the basis of high-level functionality
of popular deep learning frameworks. Therefore we provide a CUDA implemen-
tation of a weight-selective layer for pytorch to keep execution time and, more
importantly, the memory footprint of our architecture manageable.

3.3 Training

When traversing the MLP tree to reach a leaf, each node takes in the features
extracted by the backbone to derive a decision about the path to be taken. If we
only apply a loss on the regression predicted by a leaf MLP and apply backprop-
agation starting there, we would not be able to update the weights of the non-leaf
node MLPs. The class indices i1, i2, i3 stemming from these only act to select
weights of the according MLPs and do not allow for the gradient to propagate
back, making supervision based on principles such as, e.g. photoconsistency, a
serious challenge.

We thus employ a training modality that allows full supervision for each of
the trees nodes individually, shifting the focus away from elegant means of self-
supervision towards the benefits of our branching architecture. We design our
system around the availability of complete ground-truth data, which is provided
in the form of a novel artificial dataset simulating the sensor. The classification
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stages of the MLP trees are supervised by class indices i1, i2, i3 generated by
discretizing the horizontal position of the dot-pattern into hierarchical regions
Xi1 , Xi1,i2 , Xi1,i2,i3 that are equally sized at each level. We utilize the cross
entropy loss at each level of our MLP tree and apply it to the nodes that would
be executed if each MLP performed perfectly. As this will not be the case in
practice, we also apply the loss to MLPs that might be traversed if the preceding
MLPs are off by one label (e.g. i1 ± 1). As a result, we train the overlap of
class labels described in section 3.2. To train the regressor MLPs at the leaves
we use the L1 loss and further employ the same strategy as before to let each
regressor cover for its neighbours. The gradients from both losses are propagated
all the way back to the backbone CNN and used to update weights via classical
Stochastic Gradient Descent. Training the whole system on our artificial dataset
takes ∼ 10h utilizing one NVIDIA RTX 3090.

We further utilize an edge mask that marks regions around depth disconti-
nuities to emphasise sharpness around edges by increased loss. Another mask is
used to remove the loss where the training signal is too ambiguous for spatial
neighborhood encodings. This mask covers pixels whose surface do not suffi-
ciently reflect the projector’s light due to albedo, distance or occlusion.

Augmentation of the data with noise and a slight vertical jitter of 4 pixels are
used to introduce robustness against some of the effects of operating the sensor
in real-world conditions. The impact of this measure is discussed in section 4.4.

4 Experiments

Real-world applications require accurate disparity in a subpixel range as well as
depth measurements that cover challenging surfaces. Similar to [21] we report
the outlier ratio o(th), describing the ratio between the number of pixels that
feature a disparity error higher than a given threshold th and the overall number
of pixels. We also present the Root Mean Square Error (RMSE) of the depth
measurements derived by the different algorithms and our specific sensor to
give a practical intuition. Pixels with a disparity error greater than one pixel
are excluded. The various failure modes and outliers of the different algorithms
would otherwise distort this comparison.

A thorough performance comparison to existing methods is conducted using
an artificial dataset. The rendering process provides ground-truth, which we
use to circumvent some of the sacrifices required by self-supervised training of
baseline methods. Finally, we compare on real-world data with ground-truth
captured by an industrial grade 3D scanner.

4.1 Baseline methods

The main reference points for our method are HyperDepth [7], Connecting The
Dots [21] and DepthInSpace [14], which directly regress a pixel’s position within
the pattern or the disparity. To contrast with these methods that need a reference
image to operate, we also compare to ActiveStereoNet [26], which extends [15]
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by modifying the loss to emphasize the dot pattern. It is expected that the
usage of the second IR camera gives ActiveStereoNet an advantage wherever the
pattern is too weak and classical stereo matching can pick up scene features.
Fittingly, all of these methods operate at similar execution times when tested
on our RTX 2070 Max-Q with HyperDepth 20 − 70ms, Connecting The Dots
40ms, DepthInSpace 20ms, ActiveStereoNet 45ms and ours 60ms.

While our rendered dataset enables training of these methods, we deviated
from the original methods in a few aspects:

– Resolution: For the purpose of comparability, we upscale the results of
algorithms operating on a lower resolution than the input resolution. The
algorithms themselves operate at or close to their intended resolution.

– Jitter: As our sensor hardware exhibits vertical drift (section 4.4) we train
all approaches with the appropriately jittered inputs.

– HyperDepth: Unlike the original authors [7], Riegler et al. [21] published an
implementation of HyperDepth that was used for their baseline comparison.
We ported their implementation to CUDA for faster experiments and added
k-means clustering to improve the regression accuracy at the leaf nodes. We
further utilize deeper trees (16 vs. 14 levels) for improved results.

– Connecting The Dots: The original approach of matching with the ref-
erence pattern did not converge on our dataset. We therefore use the image
captured/rendered by the right camera to have a stereo matching approach
during training time. During runtime, the algorithm operates as in the orig-
inal method, not utilizing the second camera. Despite these efforts, we are
unable to bring Connecting The Dots to the same performance levels as on
the originally intended dataset. We therefore also include a comparison of
our method on the dataset presented in [21].

– DepthInSpace: As this method is similar to Connecting The Dots in many
aspects and thus facing similar challenges during training, we adopt the
same adjustments, which leads to good success. The training requires optical
flow [12], such that only 241 of our captured sequences can be utilized as
only those have additional captures with a disabled IR-projector. This is
more than the 148 training sequences used in the original work [14] but puts
it at a disadvantage to the other baseline methods trained on 967 sequences.

4.2 Dataset

The Structure Core allows us to run the algorithms of [7, 14, 21] and [26], thus
we render a new dataset based on this sensor. The artificial data is rendered via
Unity3D using the High Definition Rendering Pipeline and free assets found on
the asset store. Different to [14, 21], which use ShapeNet [4] objects without tex-
tures, our objects are textured with partial randomization for selected surfaces3.
Aside from the ground-truth depth/disparity, we render stereo images as well as

3 Randomly selected textures on planes used in walls as well as cube, sphere, cylinder
and pill shapes.
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Fig. 3: Outlier ratios over pixel thresholds on a rendered dataset by [21] (a),
our dataset rendered with Unity3D (b) and our real-world captured dataset (c).
Aside from HyperDepth [7] and our algorithm, experiments marked with “full”
undergo fully supervised training with L1 loss.

pixel-level masks corresponding to areas where the pattern projector does not
have enough influence. 15k sequences of four frames each are rendered this way.
The test set features a different set of objects and textures and offers 9k frames.

To extract a texture for the pattern, we point the Structure Core as well as
a RealSense sensor with disabled projector towards a wall and capture multiple
IR frames. While the center of the pattern is covered by the Structure Core
itself, the RealSense captures the fringes. In the next steps, center points of
speckles for each IR image are extracted, manually matched between RealSense
and Structure frames (three points each) and ICP aligned. Finally, a set of
textures is created to vary the sharpness of speckles during rendering.

To fine-tune the baseline algorithms for the real-world domain, we capture
967 scenes with four frames each. 241 of these scenes have a second set of im-
ages with the dot-projector disabled. This is essential to train the edge detector
required by Connecting The Dots [21] and precompute the optical flow required
by DepthInSpace [14]. To evaluate the performance, we collect 11 scenes with
ground-truth data captured by a Photoneo MotionCam-3D M in scanning mode.
With an accuracy stated as < 0.250mm at a distance of 0.65m this sensor is ad-
equate for the expected accuracy of our algorithm. Translated to the Structure
Core’s geometry and provided the alignment between both sensors is similarly
accurate, this means we can expect ground-truth disparity with an accuracy of
∼ 0.05 pixels.

4.3 Results

The experiments on rendered and real data show that we indeed have a real-time
method capable of capturing dense and highly accurate disparity maps. Aside
from the increased accuracy and sensitivity to comparable methods we further-
more show that our approach bridges the domain gap much more gracefully.

Rendered Data Evaluating outlier ratios at different thresholds (fig. 3b) and
together with RMSE at different distances (figs. 4a and 4b) showcases the ac-
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Fig. 4: Outlier ratio at 1 pixel threshold (a) and RMSE of inliers (b) over distance
on our rendered dataset. While the captured dataset is too small to produce a
meaningful plot analog to (a) some of the algorithms produce enough inlier
estimates to plot the RMSE for depth (c). Aside from HyperDepth [7] and our
algorithm, experiments marked with “full” undergo fully supervised training
with L1 loss.
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Fig. 5: Outlier ratios on regions around depth discontinuities with our rendered
dataset. Evaluated for different outlier thresholds over a growing region around
object edges. Note that only estimates by ActiveStereoNet [26] benefit from a
proximity to the edges as they often coincide with strong intensity gradients.

curacy as well as sensitivity of each method. To further magnify the focus on the
model architectures themselves, we train versions of ActiveStereoNet [26] and
Connecting The Dots [21] with full supervision by utilizing the L1 loss.

Presented in figs. 3b, 4a and 4b as well as the qualitative results in fig. 7, it
is evident that the branching approaches of HyperDepth [7] and GigaDepth can
deliver more precise results but cannot always reach the level of completeness of
the CNN-based ActiveStereoNet [26] and DepthInSpace [14]. Plotting the outlier
ratios with a one pixel threshold over distances in fig. 4a we can infer that our
algorithm has a higher sensitivity towards the dot-pattern than any of the base-
line methods. ActiveStereoNet [26], which utilizes the second camera, performs
stereo matching and therefore shows better performance at higher distances that
are otherwise insufficiently lit by the projector.

To substantiate the claim about our algorithm’s robustness in situations of a
fragmented pattern, we evaluate its performance in regions around depth discon-
tinuities. After extracting the depth discontinuities from the ground-truth, we
increasingly dilate these edges to obtain regions of different proximity. In fig. 5,
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(a) IR + GT (b) Connecting The Dots (c) GigaDepth (ours)

Fig. 6: Disparities (left b, c) of the different algorithms on a dataset based on
models from [4]. Color coding is applied for disparity errors (right b, c) of 0 to 5
pixels with outliers (> 5 pixels) being black. (a) shows the input infrared image
(IR) and ground-truth (GT).

we plot the outliers in these regions along the a range of radii around edges.
It becomes evident that our method exceeds the remaining methods when high
pixel accuracy is needed. If accuracy is not of utmost important, ActiveStere-
oNet [26] can achieve a lower outlier ratio as it actually benefits from the strong
intensity gradients that often coincide with object boundaries.

As reflected in figs. 3b, 3c, 4a and 5, it is challenging to achieve acceptable
results for the Connecting The Dots [21] algorithm on our dataset. To still include
a truthful comparison, we perform a comparison of HyperDepth [7], Connecting
The Dots [21] and our algorithm on the dataset provided by Riegler et al. [21]
(with a modified test set to include unseen object classes). While the results in
fig. 6 and fig. 3a show that Connecting The Dots [21] delivers compelling subpixel
accuracy, our approach still vastly outperforms it. Unfortunately, this dataset
only offers a small range of distances and does not include important factors
such as textures on objects, which limits its expressiveness. DepthInSpace [14],
that shares many of the traits and uses a similar dataset as [21], behaves more
gracefully when applied to our dataset such that we can offer a fair comparison
in our more challenging scenario. We nonetheless refer to our supplementary
where we offer a comparison to our method on the dataset native to [14].

Real-world data For our real-world evaluation, we align the data from the
Photoneo MotionCam-3D M and the point clouds derived from each algorithm
using ICP. Projecting the ground-truth point cloud to the respective camera
frames yields the disparity maps we compare against. We plot the outlier ra-
tios for our set of algorithms in fig. 3c and show favorable results compared
to all baselines. Only ActiveStereoNet [26] achieves superior outlier ratios above
thresholds of ∼3 pixels, which we attribute to this method’s ability to fall back to
its stereo-matching roots when the pattern is absent. Evaluating the RMSE in-
line with the experiment on artificial data is challenging as not all methods pro-
duce enough usable depth samples at the full range of depth. For the remaining
methods (HyperDepth [7], DepthInSpace [14] and SGM [10]), we show equivalent
to favorable performance. Note that basing a comparison on the depth RMSE
leads to a distorted view due to the influence of errors in rectification/calibration
and (mis)alignment between the captured frame and ground-truth data. It is ad-
vised to focus on the pixel-metrics as they depend less on sensor geometry and



12 Schreiberhuber et al.

(a) IR + GT (b) HD (c) ASN (d) CTD (e) DIS (f) GD (ours)

Fig. 7: Disparities (top b - f) of different algorithms applied on a scene ren-
dered with Unity3D (rows 1,2) or captured with the Occipital Structure Core
(rows 3-6). The ground-truth (GT) is rendered or captured with the Photoneo
MotionCam-3D M and compared to other algorithms. Color coding is applied
for disparity errors (bottom b - f) of 0-5 pixels with outliers (> 5 pixels) being
black. Algorithms are: HyperDepth (b, HD), ActiveStereoNet (c, ASN), Con-
necting The Dots (d, CTD), DepthInSpace (e, DIS) and GigaDepth (e, GD).

to some extent even allow for cross-sensor comparability. We also include a com-
parison to HyperDepth [7] when trained on artificial data (marked as XDomain)
and a variant trained on SGM [10] to show a fundamental problem: While the
perfect ground-truth artificial data enables the algorithm to excel for high preci-
sion tasks, this is not necessarily applicable in the real-world, leading to reduced
reliability.

A qualitative assessment in fig. 7 shows that GigaDepth delivers notably
lower disparity errors compared to the baselines with measurements mostly be-
ing omitted at object fringes and pixels that are shadowed from the pattern
projector. It nonetheless suffers from the domain transfer as many spots on sim-
ilar surfaces, that were not a problem on artificial data, now have holes.
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(a) IR-input (b) Artifacts (c) Jitter (d) IR-input (e) Artifacts (f) Jitter

Fig. 8: Two frames captured in the same sequence. The captured images (a, d)
seem to change their vertical alignment with the projector causing the algorithm
to fail in shifting regions (b, e). Applying vertical jitter of four pixels during the
training phase makes the network agnostic to this variability (c, f).

4.4 Ablation

Architecture To corroborate our choice of network architecture we bench-
mark different combinations of feature extractors and regressors on our synthetic
dataset and report outlier ratios in table 2. The first set of experiments is based
on a relatively powerful and compute intensive UNet that takes an order of mag-
nitude more time to execute than all the other baseline methods (1s compared
to ∼ 50ms). Fully supervising the UNet on our regression task without any
additional network does not yield any usable behaviour. The same can be con-
cluded when supplying output layers with per-line weights. Using the network
as a backbone for our regression network, however, gives superior performance
even to our own backbone, albeit it being at much higher cost. Looking at the
outlier ratio for low thresholds (o(0.1)) we do not see much improvements but
the overall amount of valid pixel (o(1)) seems to have increased. We can attribute
this to the capacity of the network to incorporate high-level information without
sacrificing the ability to encode local features.

The second set of experiments operates with the backbone we tailored for
this task and aims at analysing the influence of the MLP tree structure. Varying
the amount of output classes between 288 and 2688 we see the return of in-
vestment diminishing after 1280 classes. While the runtime is almost unaffected
by the class count, the increasing amount of parameters is a cause for concern.
Note that the parameter count would rise even more steeply if we would not be
increasingly aggressive with our strategy of sharing weights between consecutive
output classes in the latent regressor layers. The influence of the depth of the
MLPs is shown in three variations (adding/removing one 32 channel latent layer)
of the 640 class version showing diminishing returns for MLPs deeper than two
layers. Finally we see in a variation (superscript a) of the 1920 class version, that
the lack of the LCN input brings a slight degradation in performance.

Vertical Jitter In fig. 8, we explore the effect of omitting the jittering augmen-
tation during training. It shows shifting regions of failing depth estimation even
within short sequences. This is an indication that the sensor geometry and com-
ponents are not entirely rigid or susceptible to temperature. Randomly shifting
the training images by just a few vertical pixel robustifies the algorithm.
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Table 2: Different configurations of our architecture tested on synthetic data.
We test two backbones, ours as well as a full UNet network, which both dom-
inate execution time with ∼ 70ms and ∼ 1s respectively (RTX 2070 Max-Q).
Regressors are given as c/l with the number of classes c and MLP layers l. All
networks take IR + LCN as input (superscript a omits the LCN). Note that with
increasing class count, we more aggressively apply our weight sharing scheme for
hidden layers of the regressor stage

B.B. UNet Our Backbone
Reg. none lines 1920/2 288/2 384/2 640/1 640/2 640/3 1280/2 1920a/2 1920/2 2688/2

o(0.1) 89.55 94.27 34.01 51.86 60.49 44.50 44.37 38.49 34.91 41.27 38.08 44.59
o(0.5) 54.78 72.39 14.32 19.88 18.64 19.05 17.53 18.11 16.97 17.20 17.20 17.26
o(1) 33.41 50.23 12.74 17.16 16.29 17.39 16.02 16.62 15.72 15.97 15.97 15.93

params 81M 105M 446M 134M 217M 131M 275M 359M 379M 388M 388M 429M

5 Conclusion

This paper introduced an algorithm that outperforms state of the art on extract-
ing depth from structured light-based depth sensors. Benchmarks on artificial as
well as real data show superior precision and sensitivity than comparable meth-
ods. It is shown that while pure CNN-based methods struggle to deliver high
accuracy for these regression tasks, combining a CNN-based backbone with a re-
gressor consisting of weight-adaptive layers can overcome this challenge. These
weight-adaptive layers enable us to implement a neural decision tree with small
specialized regressors at the leaf nodes. While the comparable HyperDepth [7]
follows a branching approach similar to our regression stage, the decision func-
tions on each node are comparably trivial and thus struggle to model the different
influences of scene and surface compositions. The focus on dot-patterns and the
strategy of keeping the receptive field small allows our large set of small neural
networks to specialize on their respective regions within the pattern. Despite
the necessity for accurate ground-truth to train the classification part, most eas-
ily obtained using artificial data, our approach’s resilience to domain shift is
demonstrated by the good performance on real-world data.

As most contemporary depth estimation algorithms cope without explicit su-
pervision by using consistency-based loss functions, it would be most desirable to
augment our approach with similar mechanisms. Generating meaningful update
steps for our tree structure in a semi-supervised setting (by e.g. using principles
found in reinforcement learning) would allow for easier domain adaptation.
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