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A. Derivation of Posterior Distribution (Eq.(17))

Given prior distribution as:

P (pri) = P (c(r2(tk))|D1) ∼ N (c̄(r2(tk)), β̄
2(r2(tk))). (1)

Given new data distribution as:
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The corresponding posterior distribution can be formulated as:
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Proof.
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B. Derivation of Posterior Distribution with Multiple New
Data (Eq.(22))

For simplicity, we consider the situation with two new inputs, and the derivations
for more inputs are similar. We change some symbols in the main paper with
short notations. The derivation in the main paper can be applied readily with
simple substitutions. For x = r1(t1) = r2(t2), given prior distribution as:

P (pri) = P (c(x)|D1) ∼ N (c̄(x), β2
0). (8)

Given new data distribution as:

p(r1|x) ∼ N (α1x + b1, β
2
1), (9)

p(r2|x) ∼ N (α2x + b2, β
2
2). (10)

The corresponding posterior distribution can be formulated as:
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Proof.

P (post) = P (c(x)|D1, r1, r2) =
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C. Model Architectures

The detailed model architecture for ActiveNeRF is similar to the original NeRF
[1]. We first use the positional encoding function to generate high frequency
details. Specifically, the encoding function is formulated as:

γ(p)=(sin(20πp),cos(20πp),···,sin(2L−1πp),cos(2L−1πp)), (18)
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which separately applied to 3D coordinates x, y, z and Cartesian viewing di-
rection dx, dy, dz. We follow the configurations in NeRF and set L = 10 for
coordinates, and L=4 for directions.

A MLP with 8 fully-connected layers is first adopted to process the encoded
3D coordinates, with residual connection on the 4th layer. Then, a single fully
connected layer is adopted to predict the volume density σ. Different from orig-
inal NeRF, we add an additional fully connected layer with softplus activation
function to predict the corresponding variance. The latent feature is then con-
catenated with encoded viewing directions to produce RGB color.

D. Training Configurations.

In our experiments, we follow the settings in NeRF, and sample 64, 128 points for
coarse and fine models respectively. We use the Adam optimizer with an initial
learning rate at 5e−4 which decays exponentially to 5e−5 during optimization.
We use a batch size of 1024 rays and train our model on a single RTX2080Ti
GPU.

E. Additional Qualitative Results

We provide additional visualization results for static and active scenarioes, as
shown in Figure 1∼3.

F. Ablation Study

We further evaluate the effectiveness of the candidate evaluation module alone.
We substitute the acquisition function with heuristic approaches while keeps
the uncertainty module. We denote the baseline approaches as ActiveNeRF +
Random and ActiveNeRF + FVS as introduced in the main paper. The results
are shown in Table 1 and ActiveNeRF outperforms other approaches consistently.

Table 1. Ablation on acquisition function : Setting I is same as the setting I in the
Table 2 of main paper, which includes 4 initial observations and 4 extra observations
obtained at 40K, 80K,120K and 160K iterations.

Sampling Rate (r) PSNR↑ SSIM↑ LPIPS↓
Setting I, 20 total observations:

ActiveNeRF (Full) 26.24 0.856 0.124

ActiveNeRF+FVS 26.05 0.852 0.146

ActiveNeRF+Random 24.77 0.801 0.188

We also investigate the performance of ActiveNeRF when the new percep-
tions are evaluated in a lower resolution. It can be seen in Table 2 that our
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model can still achieve competitive performances with sampling rate as 5, and
reduces the time consumption. When the sampling rate becomes larger than 10,
the quality of novel view synthesis is gradually affected.

Table 2. Ablation on sampling rate

Sampling Rate (r) Time PSNR↑ SSIM↑ LPIPS↓
Setting I, 20 total observations:

1 (Full) 2.20h 26.24 0.856 0.124

5 2.12h 26.12 0.855 0.124

10 2.10h 25.15 0.812 0.135

20 2.09h 24.67 0.799 0.167
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Fig. 1. Qualitative results on synthetic and realistic scenes with different frac-
tions of training samples. Several observations can be made: First, ActiveNeRF per-
forms significantly better than NeRF in the low-shot setting (e.g., See Ln. 2 and 3).
Also, ActiveNeRF and NeRF obtain similar qualitative performance when all images
are used (See Ln. 1 and 4), suggesting modeling uncertainty has no negative impact
on the quality of view synthesis.
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Fig. 2. Comparison of ActiveNeRF with NeRF+Random . The initial training
set has 4 images, and we capture 4 new perceptions every 40K iterations. Our candidate
evaluation function is proved to outperform heuristic approaches on the quality of view
synthesis.
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Fig. 3. Qualitative results of ActiveNeRF with active iterations on realistic
scenes. We capture new perceptions every 40K iterations. Improved synthesis quality
can be observed at unobserved regions.
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