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1 Introduction

In the main paper, we introduced a novel approach to relative pose refine-
ment (PoserNet) and evaluated its effectiveness in correcting initial relative pose
estimates. We then investigated the effect of PoserNet on Motion Averaging
performed via either an optimisation-based method (EIG-SE3 [1]), or a deep-
learning-based method (MultiReg [7]). In both cases, we used as training and
testing dataset a collection of graphs generated using images from 7-Scenes[3].

In this document, we provide additional details about i) how the 7-Scenes
graphs were obtained by generating and matching ROI detections; ii) the im-
plementation details for our PoserNet and for the third-party MultiReg [7] and
EIG-SE3 [1] methods; iii) a more detailed discussion of the error distribution
after motion averaging (Table 4 of the main paper); iv) the effect of increas-
ing PoserNet’s complexity by increasing its “depth”; v) PoserNet generalisation
capabilities.

2 Generating Graphs from 7-Scenes

In this section, we provide additional details on how we generated object detec-
tions and on how we established matches between them. We provide an example
of the resulting graphs in Figure 2. Moreover, we share general considerations
on the difficulties we encountered in the process.
ROIs generation – We computed ROIs for our experiment applying the pre-
trained Object Localisation Network (OLN) [4] on the images of the 7-Scenes
dataset. Examples of ROIs computed via OLN, and a comparison with those
obtained using a part of Faster R-CNN [5] are shown in Figure 1. We opted
for using OLN in our work because we found it more reliable at localising small
objects. We selected the 50 best-scoring detections for each image, a number em-
pirically large enough to capture most objects present in the scene. We discarded
detections larger than 25% of the image size, as they were likely associated with
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(a) Chess - R-CNN (b) Chess - OLN

(c) Fire - R-CNN (d) Fire - OLN

(e) Heads - R-CNN (f) Heads - OLN

(g) Pumpkin - R-CNN (h) Pumpkin - OLN

Fig. 1: Different approaches to ROI generation: ROIs computed with the pre-
trained ResNet50 component of the Faster R-CNN [5] network, and by OLN [4].
We found OLN more reliable at identifying small and re-occurring objects.
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a large scene area, rather than with an object, and could possibly carry infor-
mation detrimental to the relative pose estimation task.
Camera selection – We then sampled image sets, as candidates for the nodes
of the graphs. In most of our experiments we used graphs composed of eight
nodes; we compared the performances of PoserNet on large graphs (125 nodes)
and small graphs (eight nodes), and in the paper we show how the latter lead to
better performance. Moreover, in the paper we show how training PoserNet on
small graphs still allows it to generalise well on large graphs, making the choice
of using small graphs not restrictive.
ROIs matching – To establish which candidate nodes are connected, we matched
ROIs across images. We passed each image pair through the pre-trained Super-
Glue [6] model, generating a set of matched keypoints for the pair of images. Of
those keypoints, we kept only the ones contained in the bounding boxes (BB)
associated with the ROIs. We then defined as matched all BB pairs that shared
at least 15 matched keypoints, with the keypoints spanning at least 30% of the
area of the bounding box. These two criteria were defined to ensure that match-
ing bounding boxes enclose the same scene element, and that the shared scene
elements constitute a large chunk of the bounding box. We created one edge
between two images in a graph if the images were connected via at least five
matched BBs.
Relative pose estimation – For each edge, we provide two estimates of the
relative transformation mapping points between the connected nodes. The es-
timates were generated using the OpenCV [2] implementation of the 5-point
algorithm, using as inputs either all matched keypoints, or the centres of the
matched BBs. Keypoint-based initialisation and BB-based initialisation result
in estimates with different levels of noise: the keypoints - aside from some noise
and possible mismatches - are much closer to the ideal input of the 5-point al-
gorithm than the BB centres. Even if the two BBs were tightly fitting the same
object in the two views, the BB centres would not correspond to projections of
the same 3D points; and the ROIs are rarely well centred on the objects.
Graph’s topology – In the previous steps we generated all elements necessary
to build our graph (nodes and edges), but we now have to check how connected
the graph is. The presence of isolated nodes or having multiple disconnected
subgraphs is not an issue for PoserNet per se, as the former are ignored and the
latter are optimised in parallel. For this reason, we accept the large graphs as
they are. In the small-graph case, however, given the limited number of nodes
available, we reject all graphs with isolated nodes or isolated subgraphs.

3 Implementation Details

In this section, we discuss implementation details for the third-party code ref-
erenced in the paper (MultiReg and EIG-SE3) and for PoserNet. We provide
general information on the hardware and computational time involved in the
experiments, and on the changes implemented in the third-party code we used
in our experiments.
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(a) Objectness Detections (b) Sample Graph

(c) Matched Detections

Fig. 2: Sample input graph. We select eight images and obtain objectness detec-
tions via OLN (a) and use them as nodes in a graph (b). The number on top
of each image represents the image ID, which also corresponds to the node ID
as shown in (b). Two nodes are connected if they share at least five matched
detections. In (c) we show matched detections for pairs of images. Detections
matched across each image pair and indicated with the same number (blue box).

PoserNet. The MLPs used in PoserNet for updating the embedding of the
edges (Ψe) and of the nodes (Ψn) consist in three fully connected layers, each
followed by leaky ReLUs. The number of units in each layer is 32. We employed
the Adam optimiser, with a learning rate of 10−3 for the experiments training
on small graphs, and of 10−2 for the experiments training on large graphs. The
difference was motivated by the different speed of learning we observed in the
two cases. We adopted a learning rate scheduler, which reduced the value of the
learning rate after three epochs without improvements on the validation loss.
Regarding α, the parameter used to tune the strength of the different components
of the loss, we found that the best results are obtained by setting α = 0.1.
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MultiReg. To use MultiReg [7] in our experiments, we implemented as few
changes as possible to the original code. First, we added data loaders to process
our 7-Scenes graphs; this narrowly follows the process used by the original Mul-
tiReg method to process the ScanNet dataset. Unlike in the original method, we
do not augment data by randomly sub-sampling each graph; the ScanNet train-
ing data used in the original paper was composed by 60 graphs, each containing
from 50 to over 100 nodes. Our training set, instead, contains 14k graphs of 8
nodes each, making the augmentation step unnecessary, if not detrimental. As
a last change, we relaxed the conditions for classifying an edge as outlier: the
original work labels as outliers and it ignores all graph edges with an associated
rotation error of over 15◦ or a translation error of more than 0.15 m. We removed
this constraint, as it would lead us to ignore a large number of edges. Training
MultiReg on the eight-nodes sequences took on average 12 hours on a GeForce
RTX 2080 Ti with 11 GB of RAM, while evaluation on the test set required less
than one minute.

EIG-SE3: We ran the EIG-SE3 algorithm using the Matlab code originally
released by the authors of [1], with no modification and just looping over all
testing graphs. This process does not require training, and processing the testing
set (7k 8-nodes graphs) requires approximately 50 minutes. This is significantly
longer than MultiReg’s evaluation time, though the process could be made more
efficient, by parallelising it and evaluating in batches.

We provide examples of the absolute camera poses generated by EIG in
Figure 3, comparing the poses obtained starting from relative poses with and
without PoserNet refinement. In the example we can see how PoserNet can lead
to significantly more accurate poses, both for relative poses initialised using
matched keypoints or the matched detection BB centers. We can see how, in the
case of BB-based initialisation, using the raw input results in camera poses so
noisy that EIG cannot properly align them to the ground truth poses. We also
point out that the poses obtained starting from the PoserNet-refined inputs have
the correct orientation, and the discrepancies with respect to the ground truth
poses are mostly limited to translations. This is not surprising, as the results in
Tables 2,4 of the main paper show how PoserNet improvement of the relative
poses is mostly noticeable in the relative rotations rather than in the translation
direction.

4 Highlighting advantages of PoserNet

To better highlight the significant benefit of refining the relative pose with Poser-
Net, in Fig. 4 we provide plots of the rotation and translation error distributions
over all eight-node testing graphs. To increase interpretability, we sorted the
sequences in ascending order of error on the PoserNet-refined predictions. More-
over, given the large number of sequences and likely presence of outliers, we
smooth the curves using a rolling average over a window of 50 graphs.
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(a) BB-based initialisation (b) Keypoint-based initialisation

Fig. 3: Effects of PoserNet on the motion averaging output of EIG. We compare
ground-truth camera poses (azure) with the output of EIG initialised with the
raw relative camera poses (red) and the ones refined with PoserNet (green).
For relative poses obtained with both the bounding-box (a) and key-point (b)
initialisation method, EIG’s output is significantly improved by using PoserNet
to refine the input relative poses.

5 Ablation on the depth of PoserNet

To select the optimal number of rounds of message passing (characterised as
GNN “depth”) for the GNN in PoserNet, we trained four versions of PoserNet
with depths ranging from two to five. For this experiment we trained each model
for the same amount of time (24 hours), initialising the edges of the small graph
dataset with the keypoint-based relative poses. As it can be seen in Table 1, the
highest accuracy is achieved with a GNN of depth 2, which is the value we used
for all the remaining experiments described in the main document.

2-level 3-level 4-level 5-level

Relative orientation error 7.5 7.6 9.4 11.2
Translation direction error 14.7 14.9 16.1 17.2

Table 1: Median performance of PoserNet as a function of GNN depth, errors
expressed in degrees. Best performance (in bold) was achieved with a two-level
GNN.
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Fig. 4: EIG-SE3 Motion Averaging performances on raw inputs and on inputs
refined by PoserNet. There is a substantial error reduction both for relative poses
computed from the detection centers (Top) and keypoints (Bottom).

6 Ablation on the keypoint descriptors

In all our experiments, the initial relative poses are obtained applying the OpenCV
5-point algorithm to either the 2D centres of matched bounding boxes, or key-
points SuperGlue. These two choices represents opposite use cases, with the BB
centres providing a very rough initialisation (even if the bounding boxes are cor-
rectly matched, their centres are not guaranteed to correspond to the same 3D
point), and SuperPoint+SuperGlue being the state-of-the-art for keypoint de-
tections and matching. We assumed that any other common choice of keypoint
matching would result in input relative pose accuracy subsumed in the range of
values covered by our two initialisation strategies, and that showing how Poser-
Net can significantly improved on both could be generalised to the other cases.
To support this point, we show in Table 2 how estimating the relative pose
starting from points matched via SIFT or ORB is more accurate than using BB
centres, and less accurate than using SuperPoint + SuperGlue. Moreover, we
must point out that while using ORB provided better results than SIFT, the
ORB matches caused the 5-point algorithm to fail in 30% of the image pairs.
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Metric BB SIFT ORB∗ GLUE

R 96.48 53.53 74.84 36.27
t 89.30 90.73 90.20 87.23

Table 2: Median rotation (R) and translation (t) error using SIFT, ORB, Su-
perPoint+SuperGlue (GLUE), and matched BB center (BB) to compute the
relative poses. ∗ Failed on 30% of pairs.

7 Generalisation of PoserNet to novel scenes

To assess PoserNet generalisation capabilities, we evaluate on each of the seven
scenes a model trained exclusively on the other six. For these tests, we consider
only eight-node graphs, and we use the key-point based relative pose initiali-
sation approach. The results of this leave-one-out scheme, reported in Table 3,
suggest PoserNet can generalise well to novel scene: averaging the performances
over all seven tests results in average rotation and translation orientation errors
compatible with the those obtained training on the full dataset.

Office Pumpkin RedKitchen Stairs Chess Fire Heads Median All

Rotation 5.05 9.93 7.33 9.39 7.27 8.36 8.96 8.04 7.31
Translation 10.59 13.05 16.82 18.07 21.03 11.15 47.54 19.75 14.54

Table 3: Median performance of PoserNet on each scene when trained only on the
other six. The overall performance over the seven tests (Median) is comparable
with the performances obtained training PoserNet on the full dataset (All).

References

1. Federica Arrigoni, Beatrice Rossi, and Andrea Fusiello. Spectral synchronization of
multiple views in se (3). SIAM Journal on Imaging Sciences, 9(4):1963–1990, 2016.

2. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
3. Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time

rgb-d camera relocalization. In International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, October 2013.

4. Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So Kweon, and Weicheng Kuo.
Learning open-world object proposals without learning to classify. IEEE Robotics
and Automation Letters (RA-L), 2022.

5. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.



PoserNet 9

6. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich.
SuperGlue: Learning feature matching with graph neural networks. In CVPR, 2020.

7. Zi Jian Yew and Gim Hee Lee. Learning iterative robust transformation synchro-
nization. In International Conference on 3D Vision (3DV), 2021.


