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I Isotropic Approximation of Multivariate Gaussians

Greengrad and Strain [5] proposed the use of Fast Multipole Methods (FMM)
for approximating a discrete Gauss transform (DGT) G(x) which is defined as

G(x) =

N∑
r=1

qke
∥x−xk∥22

2h2

over a large number of source centers xk and target points x in linear time. The
FMM assumes that the Gaussian kernels are isotropic and that all source points
xk share the same standard deviation h. However, the (unnormalized) cumu-
lative probability σn(x) :=

∑
k∈In

fkρk(x) in Algorithm 1 (in the main paper)
is the sum of multivariate and anisotropic Gaussian densities. Nevertheless, we
use FMM to approximate the weight function under the assumption that the
Gaussian densities are close to being univariate and isotropic.

We map σn(x) to a DGT by defining the weight qk as the attribute value
of point k, i.e. qk := |fk|. If the attribute value is not a scalar but a vector,
we define qk to be the average value of the attribute value. Next, we introduce
an isotropic upper-bound for the Gaussian kernel ρk(x): Let k ∈ [1 : N ] be an
arbitrary point and Mk := JkVkJ

T
k + I its covariance matrix were Jk is the Ja-

cobian of the screenspace projection and Vk is a diagonal scaling matrix. Since
Mk is a covariance matrix, it is positive definite and there exists an eigendecom-
position Mk = QΣQT , where Q is an orthogonal matrix of eigenvectors and Σ
is a diagonal matrix of the eigenvalues λ1, λ2. Let y := QT (x −m(uk)) be the
rotated mean-centered input which allows us to write the exponential term of
the Gaussian kernel ρk as
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where the last step uses the fact that y ∈ R2. Setting hk = 1√
λ∗ where λ∗ =

min{λ−1
1 , λ−1

2 } allows to upper-bound the exponential term with
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since Q is orthogonal which implies ∥Qy∥2 = ∥y∥2. Given the list of isotropic
standard deviations h1, ..., hN , we define the common standard deviations, which
is used in the DGT, to be the average of the individual standard deviations
h := 1

N

∑N
k=1 hk.

Intuitively, the Gaussian kernels have an elliptical distribution where the
eigenvectors determine the principal directions and the eigenvectors determine
their length. We bound these elliptic kernels from above with isotropic kernels
whose radius encloses these ellipses. Finally, the circular kernels are approxi-
mated with a kernel whose radius is set to be the average of the circular kernels.
Naturally this underestimates the influence of some points but we compensate
for this problem by increasing the number of points drawn per pixel. Depth-
filtering in turn helps to remove points whose probability is overestimated but
which have no visual contribution.

In our implementation, we compute the common standard deviation h in
a pre-processing step before the tree construction starts. The eigenvalues are
computed using the closed-form solution of the eigen-problem for matrices in
two dimensions [3]:
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To avoid numerical instabilities which arise from the computation of the Jaco-
bians or inversion of the covariance matrix, we clamp the eigenvalues by comput-
ing hk = min{λ1, λ2, 10} . The computation of these eigenvalues is performed in
parallel on the multi-processor such that each thread computes the standard de-
viation hk for a single point k ∈ [1 : N ]. The average of these values is computed
using the reduce function provided in the thrust library [1].

II Additional Implementation Details of Algorithm 1

In order to make the sampling method more accessible to interested readers, we
first give an intuitive description of the presented algorithm. We then provide
further implementation details and finally analyze the runtime of the algorithm.

II.I Intuitive Description

Algorithm 1 (in the main paper) computes a set of point indices with size m for
each pixel in parallel by adapting a sequential Poisson sampling (SPS) design
[15]. The set is with probability 1 − ϵ a SPS sample where ϵ is a user-defined
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certainty. A set of points is a SPS sample if it contains them smallest transformed
random numbers ξx,k. Furthermore, the algorithm avoids to visit every point
which allows its expected runtime to scale near linear with respect to the number
of points and pixels.

Let n denote a node of the AABB-Tree, In be the indices of points which
are contained in the sub-tree of n. Furthermore let σn(x) denote the cumulative
probability of points in In. Let x be an arbitrary pixel and cx,n be the capacity
of a node n when drawing a sample for pixel x. The initial value of the capacity
is set to be one for every node. The proposed procedure then constructs a SPS
sample Sx by alternating between a descent and backtracking step:

The traversal in descending direction starts from the root node and continu-
ous down the tree by following the child node with the largest weight cx,n ·σn(x)
until the algorithm reaches a node n which has at most m points in its sub-tree
i.e. |In| ≤ m. The procedure then computes transformed random values ξx,k for
all points in k ∈ In and sorts the points by their transformed random number to
be in ascending order. If the sample Sx is still an empty list, it is filled with the
sorted points and their transformed random numbers. Otherwise, the procedure
merges the points in In with the points in the sample Sx such that the resulting
list is a SPS sample, i.e. the points in Sx are in ascending order according to
their transformed random values, and the sample has a length of m. Note that
the values ξx,j of points which are currently in the sample j ∈ Sx are constants.

The backtracking step updates the capacities cx,q along the traversed path
which avoids that the algorithm tries to merge the sample Sx with points that
have already been considered in a previous iteration. Let n1, n2, ...nd be the
nodes on the descent path where n1 is the root node. The capacity of a visited
node ni is updated by subtracting the fraction of probability mass that was
contributed by nd to the total mass of ni from the remaining capacity:

cx,ni
← cx,ni

−
d∏

j=i

σnj
(x)

σnj (x) + σn′
j
(x)

where n′
j is the node in the tree which shares a parent with the node nj . In the

next subsection, we derive the stopping criteria of the algorithm and analyze the
algorithm’s runtime.

II.II Detailed Runtime Analysis

Algorithm 1 repeatedly alternates between the descent and backtracking step
for each pixel x until the product of the value ξ and the remaining probability
mass cx,rσr(x) at the root is smaller than the user-defined threshold ϵ, i.e.

ϵ > ξ · cx,r · σr(x). (1)

The value ξ is updated in each iteration to be the largest transformed random
number of any element that is currently in sample Sx.
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To derive the bound in Equation 1 for an arbitrary pixel x, we first consider
the probability that an individual point changes the current sample Sx in the
next iteration of the algorithm. Let IR be the set of points that have not yet
been visited by our algorithm. For an arbitrary point k ∈ IR in the remaining
points to change the sample Sx, its transformed random value ξx,k has to be
smaller than ξ, which is the largest transformed random value among the points
in Sx. Since ξx,k =

ux,k

p̃k(x)
where ux,k is drawn from a uniform distribution on the

interval [0, 1] and ξ is a constant, the probability for k to change Sx is

P (ξk < ξ) = p̃k(x)ξ.

Next, recall that ux,k is drawn independently for every point k ∈ IR, which
implies that the probability that the sample Sx changes in the next iteration is
the sum of the individual events ξ

∑
k∈IR

p̃k(x). Let r be the root node of the
tree, according to the definition of the weight function σr(k) =

∑
k∈Ir

fkρk(x),
where Ir is the set of points in the subtree of root r and therefore the set of
every point in the point cloud. Finally, observe that IR is a subset of Ir and
that the ratio between the probability masses in both sets is by definition given
by cx,r. Therefore, the probability mass of all remaining points IR is the total
probability mass of all points σr(x) multiplied with the remaining capacity cx,r
of the root node ∑

k∈IR

p̃k(x) = cx,r · σr(x).

Consequently, the probability that Sx changes in the next iteration is ξ · cx,r ·
σr(x). By stopping the Algorithm if this probability is smaller than ϵ we obtain
a sample which is with probability 1− ϵ a SPS sample.

Our algorithm always converges since ξ is monotonically decreasing and the
capacity of the root is strictly monotonically decreasing. The value of ξ is mono-
tonically decreasing because the merging step in Algorithm 1 always select the
points with the m smallest values of ξx,k. The capacity is strictly monotonically
since every point has a non-zero contribution to σr(x) and is only considered
once by the algorithm. The runtime of the proposed algorithm is a random vari-
able and depends on the expected value of ξ, but more importantly also on the
convergence rate of cx,r ·σr(x) towards zero. A worst-case bound for the expected
value of ξ is E[ξ] = 1

2πk
< 1

2ϵ if the precision cut-off is ϵ. Unfortunately, the con-

vergence of cx,r · σr(x) is highly dependent on the instance and the quality of
the AABB tree, which makes it difficult to analyze. Additionally the algorithm
is unable to sample duplicates since the capacity of nodes visited in a previous
iteration is zero and every non-visited node has a weight σn(x) > 0 due to the
infinite support of the Gaussian kernels.

II.III Additional Implementation Details

Algorithm 1 (in the main paper) initializes all capacity values cx,n to be 1 and
requires access to cx,n for any combination of pixels x and node n in the tree. Our
implementation uses the following observation to improve its space efficiency: It
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is not necessary to store the capacity values for every combination of pixels x
and node n in the tree since the descent stops if a node has fewer than m points
in its sub-tree and the algorithm terminates if the expected likelihood that the
sample changes is below 1−ϵ. Our runtime analysis in the previous section allows
us to estimate that the algorithm visits on an average instance at least 1

2ϵ unique
nodes. In practice we found that the actual number of unique nodes visited by
the algorithm is much smaller and that a hashmap with size m · h is sufficient
where m is the number of samples to be drawn and h is the depth of the tree.
To efficiently store the capacity for visited nodes our implementation maintains
a hashmap for each pixel. Each cell within the map stores a key as an integer
and the capacity as a floating point number. When Algorithm 1 (in the main
paper) accesses a node’s capacity, its index is used as the key to find the node in
the pixel’s hashmap via linear probing. If the key is not present, the capacity is
returned as one and the key is inserted into the hashmap; otherwise the node’s
capacity is returned or the existing capacity is updated. The index is converted
into a key by utilizing Jenkins hash function [7].

An additional implementation detail regarding the sampling algorithm is that
the subset In of points which are contained in the subtree of node n is not stored
explicitly. The implementation instead stores the number of points |In| within
the subtree for each node n and only if n is a leaf the point’s index is stored in
the node. If In needs to be accessed, the implementation traverses all leafs of
the sub-tree using a stack-less traversal.

Fig. 1: Example of the FMM evaluation techniques used for different nodes within
the tree data-structure. Note that the depth in which Hermite expansions exist
is strongly dependent on the point distribution in screen space and can be on
different levels for many subtrees.

Hermite to Taylor Conversion Section 3.1 (in the main paper) outlines a
simple heuristic which the sampling procedure uses in its pre-processing step
to decide which Hermite coefficients are converted into Taylor coefficients. Af-
terwards σn(x) is evaluated either by directly evaluating the Taylor or Hermite
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expansions if it is available, otherwise the subtree is traversed and Hermite co-
efficients of the child nodes are accumulated. Figure 1 illustrates the different
evaluation methods used throughout the nodes in the tree. The proposed method
divides the image grid into pixel cells with side length l = 4 and each thread
block on the multi-processor processes 16 cells, where the pixels are mapped
one to one onto the threads. In a pre-processing step, the threads within a cell
compute the Taylor expansions for frequently evaluated nodes and store the
expansions in shared-memory. The shared memory is limited to 8192 bytes in
order to maintain close to 100% occupancy of the multi-processor. This limits
the number of Taylor expansion per cell to nt = 5 given a Taylor degree of
pt = 4. Each thread within a cell whose index i is smaller than the maximum
number of Taylor expansions computes a Taylor expansion for the node n which
has index i in level order. Level order is used because the nodes close to the
root are the most frequently evaluated which are also the most computationally
expensive since they often have no valid Hermite expansion. Each thread then
converts the Hermite expansion into a Taylor expansion using the results by Lee
et al. [12] where the expansion point XQ is the center of the cell. If a node does
not have a Hermite expansion, the Hermite expansions within the sub-tree are
converted into Taylor expansions and the coefficients are accumulated similar to
the approach by Lee et al. [12].

Possible Extension We would like to emphasize that the limit of 40 samples per
pixels is the result of the used hardware and is not a fundamental limit of our
proposed algorithm. However, we can outline changes to the current implemen-
tation to increase its efficiency: To help with debugging, the hashmaps used in
Algorithm 1 are currently allocated in a buffer that covers the whole image. Al-
locating the hashmap on the stack frame of a thread limits the buffer size based
on the active number of SM/threads. Also, switch to an atomics-based sorting
for the depth filtering, instead of loading all samples into shared memory.

Our algorithm emphasizes near-linear scaling to enable a greater range of
applications (e.g. processing room-scale and city-scale scenes). However, an ad-
ditional code path might use direct evaluation instead of Hermite/Taylor ap-
proximations if the instance is small.

III Experiment Details, Parameters and Additional
Evaluations

In this section, we describe all parameters, architectures and additional tech-
niques necessary to reproduce the results presented in our associated article.
Furthermore, this section contains additional figures that were created during
the experiments of the main article but could not be included due to the page
limit.
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III.I Comparison - Image-based Shape Reconstruction

Dataset, Shading Model and Initialization The object reconstruction is
demonstrated on the synthetic datasets provided by Yifan et al.[20]. This dataset
contains four point clouds that are reconstruction targets and two point clouds
that used as the initial estimate for the optimization procedure. The optimization
targets are referred to by Bunny, Teapot, Yoga1 and Yoga6. Each mesh is viewed
from 300 unique camera poses, which are distributed on a sphere around the
object. The dataset does not contain training or testing images and instead
uses the differentiable renderer to render the ground truth point cloud from the
selected training poses with a resolution of 256× 256 pixels.

The illumination model uses three directional light sources, which are posi-
tioned relative to the camera pose (i.e. the lighting is fix in cameras space). The
shading is a simple diffuse Lambert BRDF which is evaluated for each point and
the resulting color values are interpolated using the splatting algorithm.

The Bunny and Teapot point clouds both have 8000 points and are to be
reconstructed from 8000 points that are distributed on a centered sphere. The
Yoga1 and Yoga6 point clouds both have 20000 points and use points that are
distributed on a cube as initialization. The initial point clouds are depicted in
Figure 2. The normals are initialized using a standard PCA procedure based on

Fig. 2: Point clouds that are used as the initialization in the shape reconstruction
experiments and which provided in the dataset by Yifan et al. [20]. The sphere
is used for Bunny and Teapot objects whereas Yoga1 and Yoga6 use the right
point cloud as their initialization.

the point cloud and the diffuse albedo values are initialized with ones.

Optimization During the shape recovery, the point positions, normals and
albedo values are optimized to minimize the L1 distance to the reference images.
The optimization is performed using the “Adam” optimizer [10] with a learning
rate of 0.01 and the usual running average parameters of β1 = 0.9 and β2 = 0.999.
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The learning rate is reduced 5 times by a factor of 2.115 at regular intervals
during the 300 epochs. Rendering using the proposed method is performed with
m = 40 samples per pixel, and an error value of ϵ = 0.01 is used for the FMM
approximation.

Points are declared to be non-contributing if the sum of albedo values across
all channels is less than a threshold τ = 1.0. We chose a high threshold for this
application to avoid outliers that have a small contribution to the image loss
but would significantly increase the Hausdorff or Chamfer distance. For each
non-contributing point p̂ a point p, which has a contribution above τ , is chosen
at random. An offset p′ = p+ηd from the chosen points is computed where d is a
randomly sampled direction on the unit sphere and η = 0.1 is a user-chosen offset
step size. The choice of the parameter η depends on the scale of the objects and
the selected splat size. We found that a value close to 1% of the bounding box
diagonal works well for this application. Afterwards the point is projected into
the tangent plane of p by computing the orthogonal component o = ⟨p′ − p, n⟩
and subtracting it from the new position p̂← p′ − o · n.

Post-processing We perform a final clean-up step to remove non-contributing
points which might remain after the optimization converged. The optimized
point cloud is rendered from all camera poses used during training and the depth
filtered weights are accumulated for each points. The accumulation is performed
by utilizing the per pixel sample Ñx which contains the indices of the sampled
points and thus allows a mapping between points and pixels. Afterwards, a point
is pruned if the total contribution across all poses is smaller than the threshold
τ = 0.1.

Additional Comparison and Discussion We provide a visualization of the
convergence rate of different methods in Figure 3. We observe that our method
converges faster than DSS [20] and results in a more accurate surface repre-
sentation than DSS and Pulsar [11]. Table 4 provides a detailed comparison be-
tween the runtime of our algorithm and DSS. The runtime values in milliseconds
demonstrate that our algorithm scales better to larger instance sizes compared
to DSS. In addition, we provide a visualization of the point-wise error computed
between the reconstructions and the ground truth point cloud in Figure 4 and 5
that were used to compute the Chamfer and Hausdorff distance in Section 4.

Detailed Statistics The Hausdorff (HD) and Chamfer (CD) distances reported
for our method in Table 1 (in the main paper) are averaged over 10 runs and have
the following standard deviations: Bunny HD:0.442±0.0013\CD:0.125±0.0013,
Teapot HD:0.453±0.0016\CD:0.289±0.00082, Yoga1 HD:3.355±0.0113\CD:1.385±
0.0026 and Yoga6 HD:1.551± 0.0121\CD :0.517± 0.0045.

Additionally, we report the mean of the partial derivatives estimated using
Equation 3 (in the main paper) along side their standard deviation in Tab. 5
that occurred within one epoch during the shape reconstruction experiments.
Among all epochs and partial derivatives ∂L

∂wk
, we selected the partial derivative
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Fig. 3: Comparison between the convergence speed of the deformation between
DSS [20], Pulsar [11] and our method. Even though the deformation with the
sphere-based Pulsar converges faster than the other methods, its spherebased
surface approximation is of lower quality for the same number of points. The
proposed method converges faster than DSS. This figure is based on Figure 4(b)
in Lassner and Zollhöfer’s work[11].

Size
N = 8× 103 N = 2× 104 N = 1× 105

Forward Backward Forward Backward Forward Backward

DSS
19.3 ms 79.9 ms 42.8 ms 164.6 ms 258.1 ms 680.2 ms

99.2 ms 207.4 ms 938.3 ms

Ours
91.9± 1.2ms 103± 1.8ms 118.3± 1.7ms 160.6± 2.5ms 366.8± 2.6ms 297.1± 0.6ms

194.9± 2.8ms 278.9± 3.2ms 663.9± 2.4ms

Table 4: Comparison of the runtime in milliseconds between the proposed method
and the runtime values reported for DSS by Yifan et al. [20]. The table reports
the average time of the forward and backward pass as well as the combined time.
Note that the proposed method scales better to larger instances even though the
values for DSS were gathered on the faster Nvidia GTX 1080Ti.

with the highest std. deviation. The decreasing std. deviation aligns well with
the distances reported in Table. 2 (in the main paper).

III.II Application - Room-scale Scene Refinement

Dataset, Shading Model and Initialization The refinement of large-scale
point clouds is demonstrated on the dataset for room-scale SLAM provided by
Steinbrücker et al. [18] and Bode et al.[2]. Both datasets contain a sequence of
RGB-D images captured using the first and second generation Microsoft Kinect
respectively. Bode et al. [2] register the captured RGB image with the depth
images before performing the reconstruction. The initial point cloud, camera
poses and diffuse albedo values are obtained by using the SLAM procedure
proposed by Keller et al. [9]. Before the point cloud is refined, the number of
views in each dataset is reduced to 112 by using farthest-point sampling, where
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Fig. 4: Point-wise error computed between the reconstructions and the ground
truth pointset. The results for DSS were obtained using the code and parameters
published by its authors [21].
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Fig. 5: Point-wise error computed between the reconstructions and the ground
truth pointset. The results for DSS were obtained using the code and parameters
published by its authors [21].



12 J. U. Müller et al.

Set
#Samples per pixel

10 20 30 40

Bunny 13.14± 3.05 14.02± 1.19 16.56± 1.05 14.33± 0.46

Teapot −8.79± 1.63 −10.58± 1.15 −10.16± 1.29 −10.99± 0.4

Yoga1 0.87± 0.57 −0.46± 0.4 −0.29± 0.13 −0.17± 0.08

Yoga6 0.24± 0.28 0.15± 0.21 0.06± 0.17 0.11± 0.01

Table 5: Average value of the partial derivative with the highest std. deviations
during shape reconstruction on the Bunny, Teapot, Yoga1 and Yoga6 datasets
for varying number of samples per pixel. Increasing the sample count per pixel
decreases the variance on the partial derivative.

the distance between the estimated viewing directions is used as the criterion.
This is done to remove parts of the sequence in which the capture device is
stationary and to increase the likelihood that multiple view directions of the
same part of the scene are included in the same batch.

In order to represent more complex diffuse illumination the simple shading
model is replaced by a deferred shading in which spherical harmonics with 9
coefficients per color channel are used to represent the directional illumination
[16]. The deferred shading pipeline uses the proposed method to filter the albedo
and normal values to obtain an albedo and normal map, which are then used
to calculate the final pixel values. Due to the flexibility of the implementation,
changing the shading model only requires minor changes to the Python script
without any changes to the CUDA extensions. The coefficients of the spherical
harmonics approximation are initialized with uniformly sampled values from the
interval [−0.5, 0.5] except for the first coefficient, which is set to be 0.5. Deferred
shading with spherical harmonics is more accurate and allows for a more efficient
representation of the illumination.

Optimization In this application we alternate between optimizing the cam-
era poses and jointly optimizing the point position, normals, albedo values and
spherical harmonics coefficients. The pose of each frame in the dataset is op-
timized for 20 steps, with the learning rate halved after 10 steps. Then, the
remaining scene parameters are jointly optimized for 20 steps, with the learning
rate halved after 15 steps. This alternating optimization is repeated 10 times,
continuing the optimization of the poses with the learning rate from the last
step, while the learning rate of the remaining scene parameters is the same in
each step. The learning rate of the poses becomes smaller to get as close as pos-
sible to the actual pose and because the optimization of the poses is much more
sensitive to the learning rate. The higher learning rate of the other parameters
allows to accommodate the changes resulting from the adjustment of the pose.
Each camera pose is represented as a 7-dim. vector (3 coefficients for the posi-
tion and 4 for a quaternion) and optimized using Adam to minimize a masked
L1-distance between the rendered image and the ground truth. The dataset pro-
vided by Bode et al. [2] contains reference images in which areas with unreliable
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depth values are masked out. The masked L1 loss discards these areas by using
a mask that is derived from the depth images via a threshold τ ′ = 0.01 which
is well below the minimum depth measured by the sensor. The learning rate of
the optimizer is 0.0005 with β1 = 0.9 and β2 = 0.999. After each update, the
quaternion is normalized to ensure that it represents a rotation; no further reg-
ularization is necessary. The optimization of the remaining parameters follows
the setup described in the previous section but also uses the masked L1 loss and
reduces the learning rate to 0.005.

After each of the 20 optimization step we remove points which have a sub-
stantially larger error compared to the rest of the point cloud. The outlier re-
moval step is based on the statistical outlier removal [17] but considers the per
point error and uses a Laplace distribution as the underlying model. We identify
these points by computing the total error of all points across all images in the
dataset and analytically fitting a Laplace distribution to these points. The fitting
process only estimates the variance of the distribution and keeps the mean zero-
centered. Let F−1

σ be the inverse CDF of the zero-centered Laplace distribution
with variance σ. We prune all points whose error is larger than F−1(1e − 3).
The high point cloud densities in this application allow for point pruning while
maintaining visual fidelity in the remaining point cloud. Only a few hundreds of
the at least 106 points are removed in this process.

Additional Comparison and Discussion Section 4 (in our main paper)
presents a detailed analysis of the improvement achieved on the dataset by Bode
et al. [2] using our differentiable refinement process and a comparison between
our method and DSS on the dataset by Steinbrücker et al. [18]. In this para-
graph, we provide a more detailed discussion about the results on the dataset
by Steinbrücker et al. [18]. In contrast to the dataset by Bode et al. [2], this
dataset contains only views that show the scene in frontal view. Nevertheless,
the refinement process achieves a 15.1% improvement of the SSIM. Comparing
the reference image in Figure 6 with a rendered image before and after the re-
finement, it can be seen that the reconstruction of the poses on this dataset does
not play an as large role as on the previous dataset. Despite this, it can be ob-
served that the geometry and albedo values of the SLAM reconstruction do not
match the reference images here either. In the SLAM reconstruction, the albedo
values around the screen contain shadows that are not present in the RGB image
sequence. The refinement corrects this and improves the reconstruction of the
objects on the desk as shown in Figure 6.

III.III Application - Neural Rendering

In this paragraph which focuses on the neural rendering experiments, we describe
the initialization, neural network architecture and optimization setup in more
detail.

Dataset, Architecture and Initialization The synthetic dataset by Milden-
hall et al.[14] is divided into a training and validation split that each contain 100
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PSNR: 16.204, SSIM: 0.634 PSNR: 19.713, SSIM: 0.73

Fig. 6: Comparison between the reference image, a rendering of the point cloud,
camera poses and albedo parameter obtained from real-time SLAM on the
dataset provided by Steinbrücker et al.[18] and a rendering of the scene parame-
ters after being refined using the proposed algorithm. Additionally, the pixel-wise
difference between the reference image and the rendered images is also depicted
(darker values correspond to a smaller error). The albedo values obtained us-
ing SLAM include shadows that are not present in the reference image. The
refinement process is able to address these shadow artifacts and improves the
alignment and overall sharpness of the rendered texture. Additionally, the ge-
ometry of foreground objects are improved (e.g. the oversized monitor screen
border are removed).
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images and their associated camera poses. Additionally, the dataset provides a
test split with 200 images and poses and also contains the normal and depth
images. The images are rendered using path-tracing and utilize image-based
lighting. Since the available hardware has limited VRAM, the image resolution
of this dataset is reduced from 800× 800 to 256× 256 pixels.

The design of the neural renderer follows the approaches of Lassner and
Zollhöfer [11], which in turn adapt the approach of Wang et al.[19]. Their ap-
proach makes use of a Generative Adversarial Network [4] to enhance the image
quality beyond what is achievable by only using a pixel-wise loss function. Gen-

Fig. 7: Architecture of the neural renderer based on the Pix2Pix model proposed
by Isola et al.[6].

erally, our setup follows the approach by Lassner and Zollhöfer [11] that obtains
an initial estimate of the point cloud by directly optimizing the point cloud with
the differentiable renderer and afterward performs an end-to-end training using
the differentiable renderer in a neural rendering model. However, a few simplifi-
cations to the model were necessary in order to be able to train it on the available
hardware. The neural rendering model has three main components: First is the
differentiable renderer, which is used to produce a feature map instead of an
RGB image, since each point is assigned a 16-dimensional feature vector. To
obtain the feature map, the point features are linearly interpolated based on the
weight obtained by the point splatting without any additional shading. Next is
the generator model that takes the feature map from the differentiable renderer
as its input and predicts a view based on this input. In this simplified neural
renderer, the generator design follows an U-Net architecture which has been
adapted from Isola et al. [6]. The last major component of the model is the dis-
criminator. The discriminator is only used during training to be able to compute
the adversarial loss and can be omitted during inference. The discriminator is
a conditional PatchGAN discriminator [6]. The PatchGAN discriminator uses
only convolutions without any fully connected layers at the end which results
in the discriminator returning a likelihood per pixel patch instead of a single
value for the entire image. The network layout of the generator, discriminator
and neural rendering model are illustrated in Figure 7. The model is trained
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end-to-end using Adam [10] with a batch size of 8 to minimize the combined loss

Lmodel := Ladv + λLcnt

where Ladv is the adversarial loss component, Lcnt = |G(fc) − x|1 is the L1

distance between the generator output G(fc) and the reference image x, and
λ = 100 is a weighting term. The conditional adversarial loss uses the Least
square formulation introduced by Mao et al. [13] and is defined to be the mean
square error between the discriminator values computed on real and generated
views and the nominal value for real or generated samples:

Ladv :=
1

2P

∑
i=1

Ex∼pdata(x)(D(x, fc)i − 1)2 + Ez∼pz(z)(D(G(fc), fc)i + 1)2.

Note that the discriminator not only takes the real images x and generated im-
ages G(fc) but is conditioned with the generator prior fc, which is the output of
the differentiable renderer. The adversarial loss is the least-squares GAN objec-
tive averaged over the P patches. The pre-training is performed for 300 epochs
and afterwards the point cloud parameter and neural network weights are jointly
optimized for 2000 epochs.

IV Detailed Scaling

To more accurately assess the scaling of the sampling algorithm, the parameters
are varied individually relative to a synthetic baseline instance. The baseline in-
stance assumes that N = 105 points are uniformly distributed on a square image
with a resolution of iw, ih = 128 pixels. The precision of the FMM approxima-
tion is ϵ = 0.01 and the standard deviation is h = 0.4. The points are uniformly
distributed, since points can only be combined in a Hermite expansion if they
are close enough to each other. In an uniform distribution, the distance between
points increases only slowly when increasing the number of points in the same
sized screen space, which is a difficult instance for the algorithm. The graphs in
Figure 8 report the runtime required by the tree construction and the sampling
step in seconds for varying instance parameters. Note that these experiments
were performed on a Nvidia GTX 760 and do not include the additional runtime
added to the rendering steps by depth filtering or shading calculations. Conse-
quently, the timings reported in Table 4 and the runtime values reported in the
previous section are not directly comparable.

The plot of the runtime in Figure 8a, which plots an increasing number
of points from 105 to 1.9 × 106 against the runtime, highlights the linear time
complexity of both the construction algorithm as well as the sampling algorithm.
This is consistent with the observations made by Karras [8] and Lee et al.[12]
on which the tree construction is based.

To further demonstrate that the sampling is not only linear with respect
to the number of points but also scales linearly with regard to the point cloud
size and resolution, we provide a 3D plot in which both variables are scaled



Supplementary Material for Unbiased Differentiable Splatting 17

(a) Number of points (b) Image resolution

(c) Isotropic std. deviation (d) FMM precision

Fig. 8: Illustration of the scaling behaviour of the proposed sampling algorithm.
The avg. runtime in all figures is reported in seconds. Note that Figures 8a, 8c,
8d have two y scales. The left y-scale plots the tree construction time whereas
the right y-scale is for the runtime of the sampling step.

simultaneously in Figure 8b. Note that the construction time required to build
the BVH-tree is by design independent from the image resolution and is therefore
constant for a fixed number of points. The vertical and horizontal resolution is
increased from 128 pixels to 608 pxiels in steps of 32 pixels. The resulting surface
validates that the sampling scales linearly in both resolution and point cloud size
i.e. the runtime is in (N+iw ·ih) instead of O(N ·iw ·ih). This can be quantified by
fitting a linear model onto the data which returns a coefficient of determination
of 0.957.

During the reconstruction and refinement experiments in Sections 4 (of the
main paper) we observed the values of the isotropic standard deviation h to be
between 0.25 and 1.5. In this range, the sampling algorithm scales linearly with
respect to the standard deviation as is illustrated in the graph in Figure 8c. It
can be assumed that the steep increase of the runtime from a standard deviation
of 0.5 to 0.6 is due to the fact that for values smaller than 0.5 no points can be
combined in a Hermite expansion. If the necessary point density and standard
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deviation is reached, the constant term from the Hermite calculations increases
the runtime before it amortizes.

Lastly, Figure 8d highlights that decreasing the approximation precision by
increasing the error bound ϵ′ is negatively correlated with the required runtime
by the sampling algorithm. While the tree construction is mostly unaffected by
a change to the error bound, the time required to compute the samples scales
with the inverse logarithm of the error bound.

References

1. Bell, N., Hoberock, J.: Thrust: A productivity-oriented library for cuda. In: GPU
computing gems Jade edition, pp. 359–371. Elsevier (2012)

2. Bode, L., Merzbach, S., Stotko, P., Weinmann, M., Klein, R.: Real-time multi-
material reflectance reconstruction for large-scale scenes under uncontrolled illu-
mination from rgb-d image sequences. In: 2019 International Conference on 3D
Vision (3DV). pp. 709–718. IEEE (2019)

3. Deledalle, C.A., Denis, L., Tabti, S., Tupin, F.: Closed-form expressions of the eigen
decomposition of 2 x 2 and 3 x 3 Hermitian matrices. Ph.D. thesis, Université de
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