
1

A.1 Additional Details

Reconstructing any 3D representation just from the object’s binary shadow
masks is a very hard and unsolved problem. Shadows possess important geo-
metric information about the object, however, due to the ill-posedness, many
different kinds of objects that have similar appearance in 2D can cast the same
shadow. Moreover, these objects can map to the same shadow mask and have
very different underlying 3D shapes making this problem more difficult than re-
covering 3D geometry from images. Our algorithm makes limited assumptions
about the underlying scene working with hard shadows. It also doesn’t assume
the number of objects in the scene and tries to fit the best 3D model that explains
the shadows masks.

Fig.A.1. Predicted depth maps and shadow masks for a scene with multiple
objects and a chair during training on validation poses. Reconstructing any 3D
representation from the object’s binary shadow masks is a very hard and we show that
we can extend our algorithms to a scene with arbitrary number of objects. This is
due to our use of implicit volumetric representation and that our our algorithm makes
limited assumptions about the scene or its objects.



2

Fig.A.2. Increasing the distance transform weight ”sigma” hyperparameter.
We show the shadow maps that the model actually learns from. We apply the distance
transform and slowly decrease it in our training. The transform helps with taking
smoother gradients w.r.t. the model’s parameters.

A.2 Results

We show predicted depth and shadow masks on a scene with multiple objects
and the chair in Figure A.1, and on a bunny object in Figure A.4. In the first
row of Figure A.1, we run our method on a scene with multiple objects that spell
ECCV. If we had used explicit meshes, we would have to specify the number of
objects before training, however, by parametrizing the scene with opacities, we
can scale up to an arbitrary number of objects placed in any position in the scene.
For the scene with multiple objects, we generate shadow masks and feed them
to the proposed algorithm as input, without specifying additional information.
Since our algorithm does not assume any prior knowledge about the scene or
its objects, it can optimize over and find the best volumetric densities that
explain the shadow mask. This result further shows how traditional algorithms
like shape-from-shadows/X can benefit from differentiable volumetric rendering
as with it they can scale to an arbitrary number of objects and more complex
scenes.

For the chair object in Figure A.1, observe how the chair is on the right of
the casted shadows and the model accurately predicts and segments out that
area, and is able to infer the sharp corner.

As shown in Figure A.4, the model is able to learn the coarse shape and lo-
calize the bunny well through its shadow map. However, it fails to carve our the
ears and the and finer details. Our shape-from-shadow algorithm has the poor-
est performance on the bunny (Figure A.4), most likely due to its complexity,
curved surfaces, and its protruding ears that can imply many different possible
combinations of the underlying 3D shape. Note that the model is trained on
coarser versions of the fine shadow masks (shown in first column).A.3.



3

Fig.A.3. Ablation on sigma and number of shadow masks. We study the
importance of the distance transform in our method. Without the distance transform
to guide and smoothen the shadow masks, there is no convergence in the depth maps or
the mesh. We notice an iterative coarse to fine mesh estimation done by the framework
as we increase the number of masks and vary sigma. We observe that the number of
masks carves the space down to create finer meshes. Varying sigma with many shadow
masks yields the best results, although it can overfit to the shadow mask and cause
mesh artifacts.

A.3 Implementation

Model Details. During training, we set β 1e−2 or 1e−3 and ϵ is usually set to 0.
We set the µmin, µmax to be 0 and 1 respectively and compute gradients directly
on the normalized values instead of using the sigmoid. For the position encoding
we also use parameters from the original NeRF implementation. We use an 8-
layer MLP to parametrize our scene. To enable better depth reconstruction we
also use a coarse and a fine MLP, the coarse is sampled 64 times and the fine
128. Our MLP, however, does not have an extra head for the color and does not
take the viewing direction as input.

Training Scheme. To train the model, we use the PyTorch implementation
of the Adam optimizer [?], use a learning rate of 5×10−4, and use a step function
to decay the learning rate at 20 epochs. We evaluate our model on the validation
data, and test it against real meshes from blender. We start training with a high
distance setting for our distance transform σ = {100, 150} and train for 150
epochs. Then we lower the σ = {50, 45} to continue training. We note that using
a σ value lower than this causes our model to diverge and start to learn spurious
depth maps. Our entire implementation trains on one Tesla V-100 and takes a
half a day. The models were typically trained to run for 200/300 epochs where
each epoch runs on all rays generated from all camera pixels. Only the cuboid
was trained on 2 Tesla V100s on an image of size 128 × 128 with 64 fine and
coarse samples. This training took 3 days to complete.



4

Real-World Dataset Pipeline. We place a mannequin object of the hand
in the scene and use the flashlight from a smartphone and take a video of the
scene using another smartphone. We start the data collection near the flash-
light so that the first 30 poses are roughly similar to the pose of the light. We
process the remaining 74 frames and perform an intensity threshold to extract
the shadow masks. This simple technique also causes the darker regions to be
classified as shadows, as visible in Fig. ??. We then run COLMAP [?] [?] on
the video to extract the poses, and use the first frame’s pose as the light pose
discarding the rest. We note that our method is robust to the coarsely estimated
light pose as there are shadows visible from that viewpoint.

Efficient Differentiable Shadow Rendering. Our approach requires two
NeRF forward passes per epoch to train: one from the light’s perspective and
one from the camera’s. To make training faster, we implemented a more efficient
method to compute depths. We exploited the fact that our method requires
the shadow map array to be indexed by the projected camera pixels, therefore
we only need to compute a full shadow map on H × W rays and can batch
the camera rays. This approach worked well and decreased our computational
cost by roughly half. Moreover, our method does not make any assumption on
the size of the camera and light depth arrays, and therefore we could also use a
smaller shadow map. We also implemented a more efficient method of projecting
the camera pixels into the light frame of reference, only computing the light
depths on the projected locations instead of computing the full shadow map.
This implementation, however, does not lead to any convergence, indicating that
the loss computed on out-of-shadow pixels is also important and gives valuable
information that helps in carving away that space to refine the mesh.

We also experimented with changing the number of fine samples used to
sample opacities for a given light ray, computing gradients on the light opacities
every K steps, in addition to sampling light depths at varying intervals instead
of every step. Albeit many such methods did speed up training, we decided to
use a basic setup which samples the light and camera rays with 64 coarse and
128 fine samples every iteration, with gradients being computed at each step.

Explicit Mesh from Implicit Representations. Extracting an explicit
mesh from an implicit volumetric representation typically involves running march-
ing cubes [?]. We used the PyMCubes library implementation of the marching
cubes algorithm. To do this, we create a bounding volume around the object
and query the 3D volume for opacities at points inside the cuboid. In practice,
we query along each dimension 128 to 256 of the volume of size (H,W,D) there-
fore creating voxels of size H/128,W/128, D/128. We query for an opacity at
every voxel once to create a volume that can then be fed into the marching
cubes algorithm. We use a set contour value of 0 to search for isosurfaces in
the volume. This gives us a non-smooth, explicit mesh with vertices and trian-
gular faces which is then used for visualization and evaluation. Note that the
volume bounds are different for each object and we find them using trial and
error. In (x, y, z) direction, they are {±5} for cuboid, {±35} for chair, {±45}
for vase and {±35} bunny. We refer our readers to our code for more infor-



5

Fig.A.4. Predicted depth maps and shadows masks during training on the
bunny’s validation poses. Even though the model is able to learn the greater shape
and localize the bunny well through its shadow map, its poor performance is probably
due to its complexity, curves surfaces and its protruding ears that can imply many
different possible combinations of the underlying 3D shape.

mation. Additionally, we do want to note that extracting explicit meshes from
implicit representations is an extremely difficult task which requires a lot of trial
and error. Even when results look great for novel view synthesis with the RGB
NeRF framework, marching cubes does not produce perfectly smooth meshes.
Often these meshes have jagged edges and protruding elements. Moreover, this
becomes a tremendous problem when there is more than one object, as we start
to extract extremely noisy meshes. However, alignment of explicit meshes is one
of the most accurate metrics for 3D reconstruction evaluation, which is why we
use it as an evaluation metric.

A.4 Ablation Studies

We show in Figure 6 in the main text the final reconstructions from differ-
ent experiments varying different parameters. We observe that starting from a
smoothed-out shadow mask is critical for the algorithm to construct a coarse
mesh and the algorithm almost never converges without smoothing applied to
the initial binary shadow masks. This makes sense as the gradients are now non-
zero around the edges of the binary mask, and can help guide the network in
constructing a mesh that is consistent with all the shadow images. Smoothing
techniques have also been used in [?] and [?] where the goal was to recover 3D
mesh from a single silhouette image. Since the light is fixed in the scene and
unchanged, the amount of information available about the object’s geometry is
also fixed. The varying camera positions provide different viewpoints to the ob-
ject and help the algorithm differentiably carve away that space. We note that
even with five shadow masks our algorithm is able to reconstruct a coarse object,
however it is not able to carve away the right and the left parts of the vase, which
we believe is due to the lack of viewpoints from those poses. We note that 200



6

Fig.A.5. Drastically changing distance transform weight during training
for the Chair Object. This figure shows the challenge in using shadows with a
gradient based technique. Even though we reduce the weight during training, drastically
reducing it can cause the model to unlearn the scene representation as the information
it relied on converge to the object is now missing.

views of the object means that some positions are sampled more than once, and
is more than enough to help the algorithm carve out the unnecessary elements in
the mesh. We also show that varying the distance transform weight from 150 to
50, as shown in Figure 6 for the vase, can create crisper depth maps and faster
convergence. However, this also leads to overfitting to the shadow mask since
exactly fitting a mesh to the shadow does not necessarily translate to inferring
the actual underlying shape of the object due to fundamental ill-posedness of
the problem.

In Figure A.5 we also show drastically reducing the distance transform weight
from 50 to 20 can cause the model to unlearn the scene representation. This shows
how little gradient information shadows contain and that the model needs to be
consistently nudged in order for it to be guided to reconstruct the underlying
mesh.


