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Abstract. We present a method that learns neural shadow fields, which
are neural scene representations that are only learnt from the shadows
present in the scene. While traditional shape-from-shadow (SfS) algo-
rithms reconstruct geometry from shadows, they assume a fixed scan-
ning setup and fail to generalize to complex scenes. Neural rendering
algorithms, on the other hand, rely on photometric consistency between
RGB images, but largely ignore physical cues such as shadows, which
have been shown to provide valuable information about the scene. We
observe that shadows are a powerful cue that can constrain neural scene
representations to learn SfS, and even outperform NeRF to reconstruct
otherwise hidden geometry. We propose a graphics-inspired differentiable
approach to render accurate shadows with volumetric rendering, predict-
ing a shadow map that can be compared to the ground truth shadow.
Even with just binary shadow maps, we show that neural rendering can
localize the object and estimate coarse geometry. Our approach reveals
that sparse cues in images can be used to estimate geometry using dif-
ferentiable volumetric rendering. Moreover, our framework is highly gen-
eralizable and can work alongside existing 3D reconstruction techniques
that otherwise only use photometric consistency. Code is available here.
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1 Introduction

Recovering 3D geometry from 2D images remains an extremely important, yet
unsolved problem in computer vision and inverse graphics. Considerable progress
has been made in the field when assumptions are made, such as bounded scenes,
diffuse surfaces, and specific materials. However, reconstruction algorithms still
remain largely susceptible to real world effects, such as specularity, shadows, and
occlusions [34]. This susceptibility is largely due the variation in different mate-
rials and textures, and a non-unique mapping from 3D geometries to 2D images.
Even though these effects cause issues for many methods, they also provide valu-
able information about the scene and geometry of the object. For example, cues
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Fig. 1. Exploiting physical cues in neural rendering. Our approach takes sparse
binary shadow masks captured with varying camera positions under fixed lighting and
uses our proposed differentiable shadow rendering model to estimate shadow maps,
thereby learning neural scene representations. We can visualize the learned implicit
representations by rendering estimated depth maps and estimated shadow maps from
novel views. We also run marching cubes [15] on our learned representations to get
explicit meshes for a quantitative analysis.

like self-shadows provide vital information about an object’s concavities, while
shadows cast on the ground plane provide information about its geometry. More-
over, shadows are independent of textures and surface reflectance models and
are a strong cue in overhead imagery where vertical surfaces, like facades, are
sampled poorly, whereas oblique lighting can expose this geometry. Exploiting,
instead of ignoring these cues, can make algorithms robust and the fundamental
problem of 3D reconstruction less ill-posed.

Previous works in recovering 3D shape of objects by exploiting physical cues
has relied on constructing inverse models to explicitly handle and exploit cues
such as shadows, shading, motion, or polarization [2] [41] [40]. These approaches
are physically anchored as they use properties of light or surface reflectance
models to exploit cues and only need up to a single image to reconstruct simple
objects. Albeit successful under strict assumptions about lighting, camera, and
the object, these models typically cannot handle complex scenes and do not
translate well into real-world scenarios as creating inverse models to capture
complex physical phenomenon soon becomes intractable and hard to optimize.

To combat the problem of real world variability, modern methods such as [31]
[17] [22] [28] [37] [13] have largely been data-driven by directly learning 3D repre-
sentations on real-world scenes based on photometric consistency. Such methods
employ an analysis-by-synthesis approach to solve the problem by using machine
learning to search the space of possible 3D geometries and an inverse model to
synthesize the scene based on the predicted geometries. These approaches typ-
ically only optimize the photometric loss between different camera viewpoints
and show success in learning implicit representation by rendering novel views.
However, because they do not explicitly handle these physical cues in their for-
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ward model, they fail in scenarios with complex lighting [29], specularity [39], or
reflections [6].

Motivated by the above observations, we explore what can be learned by
exploiting physical cues in a data-driven neural rendering framework. In this pa-
per, we investigate whether the neural rendering framework can learn geometry
from physical cues without the assumptions made by the aforementioned meth-
ods. We study the use of shadows cast by objects onto themselves and nearby
surfaces as the only source of information for 3D reconstruction. While modern
approaches for 3D reconstruction ignore such cues, we aim to exploit them. Our
unsupervised approach uses only shadows to reconstruct the scene by leveraging
recent advances in volumetric rendering and machine learning, and therefore pro-
poses a physically anchored data-driven framework to the problem of shape from
shadows. Moreover, unlike previous work in shape from shadows, we present a
novel method that uses differentiable rendering in the loop to iteratively recon-
struct the object based on a loss function instead of iteratively refining the object
through explicit carving. Specifically, we use an efficient shadow rendering tech-
nique called shadow mapping as the forward model and make it differentiable
so that it can be used as an inverse model to iteratively reconstruct the ob-
ject. Our work also reveals that from limited cues the differentiable volumetric
rendering component can quickly converge to localize and reconstruct a coarse
estimate of the object when such cues are explicitly modeled by a forward model.
Our work also suggests that neural rendering can exploit shadows to recover
hidden geometry, which otherwise may not be discovered by photometric cues.

1.1 Contributions

Our contributions in this paper are the following:

{ A framework that directly exploits physical cues like shadows in neural ren-
derers to recover scene geometry.

{ A novel technique that integrates volumetric rendering with a graphics-
inspired forward model to render shadows in an end-to-end differentiable
manner.

{ Results showing that our framework can learn coarse scene representations
from just shadows masks. We evaluate the learned representations qualita-
tively and quantitatively against vanilla neural rendering approaches. To the
best of our knowledge, we are the first to show that it is possible to learn
neural scene representations from binary shadow masks.

2 Related Work

Shape from Shadows. Shadowgram imaging deals with estimating the shape
of an object through a sequence of shadow masks captured with light sources at
various locations. These methods typically assume a controlled and fixed object
scanning setup [27] [36]. Martin & Aggarwal [16] introduced a volumetric space
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Fig. 2. Overview of the proposed pipeline We train a neural network to predict
opacity at points along the camera and light rays. The opacities are used by the volu-
metric renderer to output the ray-termination distance which we use to estimate the
z-buffer from the camera and the light perspective, the latter also known as the shadow
map. The estimated z-buffer is fed into a Projection step that projects the camera
pixels and their associated depths into the light’s reference frame. The shadow map is
indexed to obtain the corresponding depth values at these new points. The projected
depths and indexed depths go through a Soft Comparison step which outputs pre-
dicted cast shadows in the scene from the camera’s perspective. A loss is computed on
the predicted and the ground-truth shadow mask.

carving approach to SfS which outputs a visual hull around the object by carving
out voxels lying outside the visual cone. Other work takes a more probabilistic
approach to the shape-from-silhouettes problem to make the algorithm more
robust to errors [9]. However, interpreting shadows as silhouettes means that
self-shadows are not handled, thus motivating Savarese et al. [27] to propose a
method to “carve” out objects based on self-shadows to create more complete
reconstructions.

In contrast, our work takes a differentiable approach to solving the problem
through learning. Instead of an explicit carving of voxels we first construct a
differentiable forward model that casts shadows based on some geometry. Then,
we let the machine learning component predict geometry, which is synthesized
by the renderer to cast shadows. Finally, we optimize this setup based on a mean
square error between predicted and ground truth shadow masks.

Neural Rendering Broadly speaking, a neural rendering framework is com-
posed of a differentiable renderer, which can render the scene based on input
parameters and is able to differentiate the scene w.r.t. those input parameters.
While there are many formulations of differentiable renderers [21] [14] [10] [8]
that can synthesize scenes, state-of-art approaches have shown tremendous suc-
cess by relying on differentiable volumetric rendering [20]. Volumetric rendering
approaches can realistically render complex scenes and are gradient-friendly.
Thus, typical approaches train a neural network to encode the scene and op-
timize it for photometric consistency between input 2D images from different
viewpoints [17] [28] [18] [19]. Recent methods such as [6] [33] [29] [3] explicitly
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