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Abstract. Open set domain adaptation (OSDA) aims to tackle the
distribution shift of partially shared categories between the source and
target domains, meanwhile identifying target samples non-appeared in
source domain. The key issue behind this problem is to classify these
various unseen samples as unknown category with the absent of rel-
evant knowledge from the source domain. Though impressing perfor-
mance, existing works neglect the complex semantic information and
huge intra-category variation of unknown category, incapable of repre-
senting the complicated distribution. To overcome this, we propose a
novel Unknown-Oriented Learning (UOL) framework for OSDA, and it
is composed of three stages: true unknown excavation, false unknown
suppression and known alignment. Specifically, to excavate the diverse
semantic information in unknown category, the multi-unknown detec-
tor (MUD) equipped with weight discrepancy constraint is proposed in
true unknown excavation. During false unknown suppression, Source-to-
Target grAdient Graph (S2TAG) is constructed to select reliable target
samples with the proposed super confidence criteria. Then, Target-to-
Target grAdient Graph (T2TAG) exploits the geometric structure in
gradient manifold to obtain confident pseudo labels for target data. At
the last stage, known alignment, the known samples in the target domain
are aligned with the source domain to alleviate the domain gap. Exten-
sive experiments demonstrate the superiority of our method compared
with state-of-the-art methods on three benchmarks.

Keywords: Domain Adaptation, Open Set, Graph

1 Introduction

Deep learning has made spectacular progress in diverse application such as face
recognition [24], medical image understanding [3, 11] and autonomous driving
[46, 4]. These models are commonly trained under the supervised learning with
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Fig. 1: The digital recognition confusion matrix of (a) existing method [23] and
(b) our method. (c) Misclassification Example.

assumption that the training and test data come from the same distribution.
However, this assumption, in practice, can be easily violated due to the change of
environment or data acquisition device, leading to degraded performance in other
domains. Unsupervised Domain Adaptation (UDA) techniques are proposed to
alleviate this degeneration problem via narrowing down the domain gap. The
main paradigm in UDA minimizes discrepancy metrics to reduce the distribution
divergence [27, 22, 16], and the other paradigm leverages the adversarial learning
to learn domain-invariant feature representations [20, 45, 21].

The aforementioned UDA algorithms work competently under the closed
set regime, a.k.a. closed set domain adaptation (CSDA), where the label space
shares in two domains (Cs = Ct). However, the target domain always contains un-
known category (unseen in the source domain) in real-world scenarios, severely
restricting the applicability of CSDA models. For example, a medical diagno-
sis intelligent system should recognize data as unknown when data belonging
to an unseen category is accidentally inputted. The corresponding decision pro-
cess should be transferred to the surgeon for safety diagnosis. Therefore, a more
realistic setting, Open Set Domain Adaptation (OSDA) [34, 37], is recently stud-
ied, wherein the target domain contains irrelevant categories not presented in
the source domain (Cs ⊂ Ct) [37]. Compared with CSDA, the goal of OSDA is
not only to adapt the model from source to target domain for precise predictions
within known categories, but also to reject unseen samples as unknown category.

To distinguish unknown samples from known ones, existing OSDA methods
employ an additional logit to indicate the unknown [34, 37, 23, 1, 8]. However,
the unknown category, containing a set of unseen classes, possesses complex
visual semantics and huge intra-category variation. For example, digits 0 to 4
are known categories and 5 to 9 are unseen classes in digital recognition task.
This phenomenon make the single classifier weight incapable of representing
the dispersed distribution of unknown category, leading to misclassification of
unknown samples into known categories and high false positive rate for known
categories, as shown in the blue region of Fig. 1 (a). In addition, since there are
abundant and complex semantics in the unknown category, some known samples
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with similar semantics are classified into unknown category indistinguishably
(yellow region), e.g., some digits 0 with similar semantic information to digit
8 are misclassified into unknown, as shown in Fig. 1 (c). These two types of
overwhelming false predicted data would significantly hinder the practicability of
machine learning system. Thus, unknown learning is a crucial problem in OSDA,
but it has seldom been specially investigated yet. Here, we post a question: ‘How
could we discover as many unknown samples as possible without misclassifying
known samples into unknown category?’

Along with such a question, we propose a novel unknown-oriented learn-
ing (UOL) framework to solve OSDA, including true unknown excavation, false
unknown suppression and known alignment three stages. To handle the com-
plex visual semantics and huge intra-category variation, we propose the Multi-
Unknown Detector (MUD) with a weight discrepancy constraint to detect the
unseen samples scattered around the feature space and represent the dispersed
distribution of unknown category in true unknown excavation. The weight dis-
crepancy constraint enables the MUD to capture diverse semantic information of
unknown category and excavate as many unknown samples as possible, which re-
duces the false positive rate for known category. Considering that the gradient of
model parameters contains recognition-relevant information [30] and directional
information [18], we advance two gradient graphs named Source-to-Target grA-
dient Graph (S2TAG) and Target-to-Target grAdient Graph (T2TAG) in false
unknown suppression to fully delve into the knowledge of known samples in
gradient space. Through exploiting the intrinsic relationship among samples in
gradient space, we rectify the false unknown samples in the first stage and en-
hance the performance of known categories. Specifically, the S2TAG bridges the
source domain with target domain, and selects confident target samples with the
proposed super confidence criteria. Then, the T2TAG is devised to propagate the
confidence of these target samples in the gradient manifold and obtain pseudo
labels through solving a defined energy function. After distinguishing unknown
samples, the scenario of OSDA is simplified as the CSDA problem. The known
alignment stage is proceeded to alleviate the domain gap between the shared
categories. In summary, our major contributions are summarized as follows:

– To explicitly learn the unknown category, a novel framework UOL is de-
signed to conquer the OSDA problem with three stages, true unknown exca-
vation, false unknown suppression and known alignment.

– In true unknown excavation, multi-unknown detector equipped with weight
discrepancy constraint is proposed to explore the diverse semantic infor-
mation of unknown. In false unknown suppression, two gradient graphs are
constructed to obtain confident pseudo labels by exploiting the essential ge-
ometric structure of data.

– Extensive experiments are carried out on two standard OSDA benchmarks
and one newly built medical diagnosis benchmark. The results demonstrate
the superiority compared with other SOTA methods. Moreover, ablation
studies validate the impact and effectiveness of the proposed UOL frame-
work.
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2 Related Work

2.1 Closed Set Domain Adaptation (CSDA)

CSDA is intended to alleviate the performance degradation caused by domain
discrepancy. Existing methods could be mainly categorized into two streams:
adversarial learning based methods [5, 45, 10, 41] and discrepancy metric based
methods [38, 22, 16]. The first stream trains a domain discriminator to distin-
guish the source and target domains, and encourages feature extractor to learn
domain-invariant feature via fooling the discriminator. Ganin et al. [10] advance
a pioneering work, where a gradient reversal layer is proposed to connect the
feature extractor and domain classifier. Subsequently, many adversarial based
methods [39, 36, 42, 41, 5] are well designed. The second stream explicitly mea-
sures the domain gap by discrepancy metrics and narrows down the domain gap
via minimizing the metrics [26, 44, 22, 38]. For instance, Long et al. [25] minimize
the multi-kernel maximum mean discrepancy between two domains. Zhu et al.
[27] propose the joint maximum mean discrepancy among multiple layers. While
in real-world applications, open set is a more common scenario. But these CSDA
methods fail in solving the problem of open set domain adaptation since they
are incapable of rejecting unknown samples and the alignment of shared known
distributions will be destructed.

2.2 Open Set Domain Adaptation (OSDA)

The purpose of open set domain adaptation is to reject unknown samples in tar-
get domain and align distributions of known categories between two domains,
with the absent target annotations. Saito et al. [37] raise the realistic OSDA set-
ting where unknown samples are only existing in the target domain. They train
a classifier to build a boundary between source and target samples and train a
generator to make target samples far from the boundary, so that unknown sam-
ples would be rejected and known distributions are aligned. In addition, Liu et
al. [23] adopt a coarse-to-fine weighting mechanism to separate the target into
known and unknown. Recently, subsequent works [8, 33, 43, 28, 1, 14, 35] intro-
duce various techniques to generate more discriminative features in the target
domain and benefit the OSDA problem. Feng et al. [8] emphasize the semantic
structure of open set data via contrastive mapping. Pan et al. [33] employ the
self-ensemble framework with category-agnostic clustering in the target domain
and exploit the underlying structure of each cluster to learn more discriminative
target information. Xu et al. [43] couple all data optimally and propose a proto-
typical loss to achieve intra-class compactness and inter-class separability. Luo
et al. [28] utilize graph convolution to propagate the category information and
achieve a tighter upper bound of the target error. Bucci et al. [1] use the inherent
properties of self-supervision to achieve a more robustness recognition. Jing et
al. [14] project the feature to a hyper-spherical latent space and constrain the
centroid deviation angle to align the distribution.
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Fig. 2: Overview of the proposed framework, UOL, which includes three stages,
i.e. (a) True Unknown Excavation, (b) False Unknown Suppression and (c)
Known Alignment. In (a), source data xs and target data xt are fed into back-
bone E1 to extract feature z. Then, the multi-unknown detector W distinguishes
the samples from diverse unseen categories and initially aligns the distribution
of known categories. In (b), the gradients ĝs/t derived from back-propagation
are utilized to generate pseudo labels ŷt through GIA, where S2TAG GS2T is
built to produce super confidence matrix and T2TAG GT2T is built to propagate
confidence in target domain. In (c), category-level discriminators {Di}Ki=1 align
the feature distributions in category level, and extended classifier recognizes data
into K + 1 categories.

However, the complicated unknown category distribution makes it hard to
reject the unseen samples completely, which negatively influences the distribu-
tion alignment of known categories. Differently, we introduce multi-unknown
detector with the help of discrepancy constraint to explore the diverse semantic
information for unknown category. In addition, two graph structures are ad-
vanced to rectify the false prediction, so as to avoid the deconstruction from
unknown samples.

3 Unknown-Oriented Learning

In OSDA, we have a source domain Ds = (xs
i , y

s
i )

ns

i=1 of ns labeled samples as-
sociated with Cs label space and a target domain Dt = (xt

i)
nt

i=1 of nt unlabeled
target samples associated with Ct label space. The source label space Cs is a
subset of target label space Ct, i.e. Cs ⊂ Ct, while target label space further
includes a set of additional categories Cunk, i.e. Ct = Cs ∪ Cunk. These unseen
categories should be recognized as ‘unknown’ category in OSDA. Assuming the
source and target domains are drawn from the distributions p and q respectively,
where p ̸= q, we further observe that probability distributions of shared cate-
gories are different, i.e. p ̸= qCs

, due to the domain gap. In summary, we face
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a label space shift problem Cs ̸= Ct and a distribution shift problem p ̸= qCs

in OSDA. Thus, this study aims to reject unseen samples as unknown category
for the label space shift problem and to alleviate the domain gap of remaining
samples for the distribution shift problem.

To ensure the distribution alignment among shared categories instead of mix-
ing with unknown categories, we reject unseen data first (true unknown exca-
vation and false unknown suppression) and then align distributions of the re-
maining data in category level (known alignment). The whole Unknown-Oriented
Learning (UOL) framework is shown in Fig. 2. For the true unknown excavation
stage, data in both domains are fed into feature extractor E1. Then, a multi-
unknown detector W equipped with weight discrepancy constraint Lweight is
advanced to represent diverse distributions of unseen data and reject these data
as unknown category. After that, data gradients are back-propagated and two
gradient graphs GS2T , GT2T are built in the false unknown suppression stage.
Pseudo labels ŶT could be obtained through propagating the confidence and rec-
tifying false unknown data. At last, we can align distributions of shared known
categories via category-level discriminator {Di}Ki=1 and train an extended clas-
sifier C to recognize target data.

3.1 True Unknown Excavation

In OSDA, a set of unseen samples are holistically represented by a single un-
known category. These unseen samples with various visual characteristics are
generally scattered into several clusters in the embedding space, and the corre-
sponding distribution is complicated [23, 1]. Hence, we propose multi-unknown
detector (MUD) to explore diverse semantic information of unknown category
and excavate more unseen samples. Specifically, the proposed MUD composes
of K +N weights w, i.e. W = [w1, ...,wK ,wK+1, ...,wK+N ], where w ∈ Rd×1,
K denotes the number of known categories and N indicates the number of ad-
ditional weights. After obtaining the feature embedding from feature extrac-
tor, z = E1(x) ∈ Rd×1, MUD outputs a K + N dimensional logits vector
for each sample with the kth output logit w⊤

k z. Then, the maximum of last
N logits is selected to represent the unknown and the softmax is applied to
the K + 1 dimensional logits vector to produce the posterior probability, p =
softmax[w⊤

1 z, ...,w
⊤
Kz, max

k=K+1,...,K+N
w⊤

k z]. In order to identify intrinsic char-

acteristics on unseen categories, weights in W are supposed to have diverse
parameters. Therefore, the weight discrepancy constraint is advanced to enforce
the divergence of weights via minimizing their cosine similarity,

Lweight(W ) =
∑
i=1

∑
j=1,j ̸=i

wi ·wj

||wi||||wj ||
. (1)

With this constraint, the introduced weights N for unknown categories will be
mutually discrepant, thereby representing various semantics and learning diverse
knowledge for unseen categories. To recognize unknown samples in the target
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Fig. 3: Comparison between (a) single unknown weight and (b) multi-unknown
detector.

domain, an adversarial loss [37] is employed,

Lrej(x
t) = −ϵ log(pK+1(x

t))− (1− ϵ) log(1− pK+1(x
t)), (2)

where ϵ is a pre-defined parameter to balance the adversarial learning, and
pK+1(·) indicates the unknown probability. With gradient reverse [9], this adver-
sarial loss will encourage the unknown probability far away from ϵ, i.e., enhancing
it to 1 or suppressing it to 0, and recognize the unknown samples. Moreover, the
source knowledge is also utilized to help recognize unknown samples through
cross-entropy loss,

LCE(x
s, ys) = − log(pys(xs)). (3)

To update parameters of feature extractor E1 and MUD W simultaneously, the
gradient reverse layer [9] is introduced to flip the sign of Lrej . The object can
be formulated as

E∗
1 = argmin

E1

LCE(x
s, ys)− Lrej(x

t),

W ∗ = argmin
W

LCE(x
s, ys) + Lrej(x

t) + µLweight(W ).
(4)

As shown in Fig. 3, comparing with traditional methods employing a single
additional logit of linear classifier to represent the unknown category [37, 23, 1, 8],
the proposed MUD and weight discrepancy constraint excavate more unknown
samples with various semantic information and achieve inter-class separability.

3.2 False Unknown Suppression

The overwhelming semantic information in unknown category will cause some
known samples with similar information to be classified into unknown category.
To rectify these false unknown samples, we propose the gradient-graph induced
annotation (GIA) module to take advantage of gradient information and build a
dense graph structure in sample level to enhance the relationship among known
samples, as shown in Fig. 2 (b). To be specific, in the Source-to-Target grA-
dient Graph (S2TAG), the target samples with high confidence are selected as
super confident samples with corresponding pseudo labels. Then, based on the
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smoothness assumption [48, 13], the intrinsic relationship among target samples
in gradient manifold is exploited to propagate the confidence of super confident
samples via Target-to-Target grAdient Graph (T2TAG). Finally, we acquire re-
fined pseudo labels ŶT for the known alignment in Sec. 3.3.

Since gradient can reserve the learned knowledge of unseen categories in
True Unknown Excavation and incorporate information beneficial to recogni-
tion, we utilize the gradient via back-propagation to characterize data, i.e. ĝs =
Vec( ∂

∂W LCE(x
s, ys)), ĝt = Vec( ∂

∂W LCE(x
t, argmax

i
pi)), where Vec(·) repre-

sents the vectorization. Notably, we only make use of gradient features from the
classifier W . Considering the gradient vector with high-dimensional cost high
storage and computational resource, kernel-PCA [32, 29] is utilized to determine
the low-dimensional gradient manifold and reduce the resource consumption. Af-
ter applying k-PCA, we obtain vectors gs/t ∈ RM representing the coordinate,
w.r.t. the M principal components in a reproducing kernel Hilbert space, for
each sample in the gradient manifold.
S2TAG. To select the target sample with high confidence, we build a bipar-
tite graph GS2T = ⟨VS2T , ES2T ⟩ and model the relationship between source and
target domains. VS2T includes all samples in source and target domains. The
weighted edge matrix encodes the non-negative pairwise similarity between tar-

get sample and k-nearest neighbors in source domain, [ES2T ]ij = [gt
i
⊤
gs
j ]+, when

gs
j ∈ NNk(g

t
i), otherwise, [ES2T ]ij = 0.

Then, we select super confident samples in the target domain via super con-
fidence criteria. For known samples, they are supposed to be similar with source
samples of the same category. Their k-neighbors should belong to the same cat-
egory and the average similarity is large. As for unseen samples, they do not
belong to any categories in the source domain. Their k-neighbors should dis-
tribute in different categories and the average similarity is small. Based on these
two criteria, the super confidence matrix C̃ ∈ Rnt×(K+1) is generated with ele-
ments

C̃T
ij =

mi, if mi > α ∧ |Ni| = 1 ∧ j = Ni[0]
1−mi, if mi < 1− α ∧ |Ni| > 1 ∧ j = K + 1
0, otherwise,

(5)

where m indicates the average similarity vector for target sample, i.e. mi =
mean([ES2T ]ij) when gs

j ∈ NNk(g
t
i), α denotes the threshold to identify the su-

per confident samples, Ni represents the label set of k-neighbors of each target
sample i, and | · | is the cardinality of a set. To this end, the generated confi-
dence matrix encodes the confidence of selected confident samples with super
confidence criteria. Moreover, We also generate the corresponding super con-
fident index s ∈ Rnt , where 1 indicates the selected sample and vice versa.
Through the proposed S2TAG, confident samples in target domain are selected
for subsequent propagation.
T2TAG. With selected confident target domain samples, we exploit the in-
trinsic relationship among target samples in gradient manifold to construct an
undirected graph GT2T = ⟨VT2T ,AT2T ⟩, thereby propagating the confidence in-
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formation within the target domain and obtaining the robust pseudo labels. The
set of vertices VT2T is composed of all target samples. The data relation in the
gradient manifold is encoded using the adjacent matrix AT2T , and each element

is calculated via [AT2T ]ij = [gt
i
⊤
gt
j ]+, when gt

j ∈ NNk(g
t
i) ∧ j ̸= i, otherwise

[AT2T ]ij = 0. To ensure the adjacent matrix AT2T of an undirected graph is sym-
metric nonnegative with zero diagonal, we have AT2T := AT2T + A⊤

T2T . Then,
the adjacent matrix is normalized symmetrically as W = D−1/2AT2TD

−1/2,
where D = diag(AT2T1n) and 1n is the all-ones n-vector.

Based on the normalized adjacency matrix W, we propagate the confidence
in matrix C̃ to obtain the confidence matrix for the whole target dataset Ĉ. With
the prior that adjacent samples are supposed to possess comparable confidence
[48, 13], an energy function is advanced to measure the propagation result:

Q(Ĉ) = Tr(ĈT (I −W)Ĉ) + λ||SĈ − SC̃||2F , (6)

where Tr(·) denotes the trace of a squared matrix, || · ||F represents the Frobe-
nius norm of matrix, and S = diag(s). The first term of this energy function
describes the smoothness based on the relationship in the manifold, and the
second term maintains the corresponding value in the super confident matrix.
Through minimizing the energy function, we could obtain the optimal confidence
matrix encoding the refined pseudo label for the whole target dataset.

Since this energy function is convex, the global optimal propagation result

can be derived when the derivative of energy function is 0, i.e. ∂Q(Ĉ)

∂Ŷ
|Ĉ=Ĉ∗ =

0. Thus, the optimal equation is (I − W + λS)Ĉ∗ = λSC̃. Considering the
computational inefficiency of large matrix inversion and the positive definiteness
of matrix (I−W+λS), the conjugate gradient method [2, 13] is applied to solve
this linear equation. After propagating, we obtain the pseudo labels with matrix
Ĉ∗ to guide the known alignment training, ŶT = {ŷti |ŷti = argmaxj Ĉ

∗
ij}.

3.3 Known Alignment

After recognizing unknown samples, the OSDA problem turns into CSDA prob-
lem. The source and target domains can be aligned in shared label space Cs
without deconstruction from unseen categories. Inspired by previous works [7,
40], the network in this stage is composed of an encoder E2, category-level dis-
criminator and extended classifier C. The category-level discriminator have K
sub-discriminators {Di}Ki=1, each of which aligns the distribution for specific
category via a category-level adversarial loss:

Ladv(x
s, xt) =

K∑
i=1

Ii=ys log[Di(E2(x
s))]

+

K∑
i=1

Ii=ŷt log[1−Di(E2(x
t))].

(7)

Moreover, both source and target data are utilized to train the extended classifier
via cross entropy, LCE(x

s, ys) and LCE(x
t, ŷt) as Eq. 3. During the inference,
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only encoder E2 and extended classifier C need to be reserved. The prediction
can be obtained through C(E2(x

t)).

4 Experiments

4.1 Experimental Details

Datasets and Baselines.Digital Recognition is a popular benchmark for OSDA
with three datasets, i.e. MNIST [19], USPS [12], SVHN [31]. Each dataset con-
tains 10 digitals from 0 to 9. Following the previous work [37], three adaptation
tasks is constructed, i.e. SVHN→MNIST, MNIST→USPS and USPS→MNIST.

Office-Home is a challenge domain adaptation benchmark consisting of 15500
images from 65 categories of everyday objects in four domains, i.e. Art (Ar),
Clipart (Cp), Product (Pr), and Real-World (Rw). We follow the same split
set in previous work [23].

Endo-c2k is a new medical diagnosis benchmark related to endoscopy. The
source domain is CAD-CAP WCE dataset [6] including 1800 images. The target
domain is KID WCE dataset[17] including 2371 images. Three common cate-
gories are shared in two domains (normal, inflammatory and vascular), and two
categories are exclusive in target domain (polyp and ampulla vater).

We compared the proposed UOL against other state-of-the-art OSDA meth-
ods including ATI-λ [17], OSBP [37], AoD [8], STA [23], JPOT [43], ROS[1] and
ϵ-OSD [47].

Implementation. For Digital Recognition, we use LeNet as backbone. For the
other two benchmark, we use the pre-trained ResNet-50 on ImageNet as the
backbone. Multi-unknown detector W , extended classifier C and category-level
discriminator {Di}Ki=1 are fully connected neural networks, and the output di-
mension of W , C and {Di}Ki=1 are K + N , K + 1 and 1. They are randomly
initialized. The additional weights number N is set as 5 for digital recognition,
10 for Office-Home, 2 for Endo-c2k. The hyper-parameters are tuned in Office-
Home Ar → Cp task and fixed for all other OfficeHome tasks, µ = 10−3, α = 0.9,
λ = 0.95. As for the graph part, k-nearest neighbors search is accelerated by Faiss
[15], and k is set as 20. Radial basis function is employed for kernel-PCA. We
employ SGD optimizer with 0.9 momentum and 10−4 decay weight to optimize
the network. The learning rate is set as 10−3 initially and decreases according
to the cosine annealing policy. All experiments are done in GTX 2080Ti GPU.
We run each setting 3 times and report the average results.

Evaluation Metrics. Four widely used metrics [37, 1] are employed to measure
the performance of all methods, i.e.OS: normalized accuracy for all classes,OS*:
normalized accuracy for the known classes only, Unk: the accuracy of unknown
samples and HOS: the harmonic mean of OS* and UNK. Among all metrics,
HOS evaluates the performance of OSDA methods more comprehensively. The
HOS will be high only if the algorithm achieves high performance on both known
and unknown category.
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Table 1: Classification accuracy (%) on Digital Recognition for OSDA. The best
and second best results are highlighted by bold and underline separately.

Method MNIST→USPS USPS→MNIST SVHN→MNIST Average

OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS

ATI-λ [34] 86.8 89.6 73.0 80.4 82.4 81.5 86.7 84.0 67.6 66.5 73.0 69.6 78.9 79.2 77.6 78.0

OSBP [37] 92.1 94.9 78.0 85.6 92.3 91.2 97.6 94.3 63.0 59.1 82.3 68.8 82.4 81.7 85.9 82.9

STA [23] 93.0 94.9 83.5 88.8 92.2 91.3 96.5 93.8 76.9 75.4 84.4 79.6 87.3 87.2 88.1 87.4

AoD [8] 91.3 92.0 87.8 89.9 93.1 95.2 91.7 93.4 68.6 65.5 84.3 73.7 84.3 84.2 87.9 85.7

JPOT [43] 92.9 92.1 96.9 93.3 92.4 91.2 98.4 94.2 79.2 75.3 86.7 79.9 88.2 85.4 94.0 88.9

UOL 95.6 95.1 97.8 96.5 96.9 96.9 96.7 96.8 82.4 84.1 88.2 86.1 92.1 91.6 93.5 93.1

Table 2: Recognition accuracy (%) on 12 pairs of source and target domains
from Office-Hone benchmark including four domains, i.e. Art (Ar), Clipart (Cp),
Product (Pr), and Real-World (Rw). The best and second best results are high-
lighted by bold and underline separately.
Setting OSBP [37] AoD [8] STA [23] ROS [1] ϵ-OSD [47] UOL

OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS OS OS* Unk HOS

Ar→Cp 50.6 50.2 61.1 55.1 58.9 59.9 33.9 43.3 46.6 45.9 64.1 53.5 51.5 50.6 74.1 60.1 61.6 62.8 31.6 42.0 58.9 58.3 73.8 65.2

Ar→Pr 71.3 71.8 59.8 65.3 73.4 74.4 48.4 58.6 67.0 67.2 62.0 64.5 68.5 68.4 70.3 69.3 76.6 78.3 34.1 47.5 78.3 78.5 72.8 75.6

Ar→Rw 78.8 79.3 67.5 72.9 79.2 80.2 54.2 64.7 76.2 76.7 63.7 69.6 75.9 75.8 77.2 76.5 83.2 85.0 38.2 52.7 89.2 89.4 83.7 86.4

Cp→Ar 59.8 59.4 70.3 64.4 60.6 61.5 38.1 47.1 50.2 49.3 72.7 58.8 54.1 53.6 65.5 58.9 62.2 62.8 47.2 53.9 59.6 58.8 78.9 67.4

Cp→Pr 66.8 67.0 62.7 64.8 67.5 68.4 45.0 54.3 57.7 57.6 60.2 58.9 60.3 59.8 71.6 65.2 71.0 72.2 41.0 52.3 71.7 71.8 68.2 69.9

Cp→Rw 71.9 72.0 69.2 70.6 74.8 75.8 49.8 60.1 64.9 65.2 57.4 61.1 65.6 65.3 72.2 68.6 77.7 79.0 45.2 57.5 76.0 76.0 74.1 75.1

Pr→Ar 59.4 59.1 68.1 63.3 63.8 64.7 41.3 50.4 49.5 48.4 77.0 59.4 57.6 57.3 64.3 60.6 64.6 65.4 44.6 53.0 64.6 64.2 74.3 68.9

Pr→Cp 45.3 44.5 66.3 53.3 58.1 59.0 35.6 44.4 42.9 40.8 95.4 57.2 47.5 46.5 71.2 56.3 60.0 60.8 40.0 48.3 56.6 55.6 81.2 66.0

Pr→Rw 76.0 76.2 71.7 73.9 77.7 78.7 52.7 63.1 76.6 77.3 59.1 67.0 71.1 70.8 78.4 74.4 81.5 82.9 46.5 59.6 85.1 85.2 83.2 84.2

Rw→Ar 66.1 66.1 67.3 66.7 67.3 68.2 44.8 54.1 68.7 68.6 71.2 69.9 67.1 67.0 70.8 68.8 70.6 71.6 45.6 55.7 75.2 75.0 79.2 77.1

Rw→Cp 48.6 48.0 63.0 54.5 55.8 56.7 33.3 42.0 46.0 45.4 61.0 52.1 52.3 51.5 73.0 60.4 58.8 59.6 38.8 47.0 63.4 63.0 73.0 67.7

Rw→Pr 76.0 76.3 68.6 72.2 77.7 78.6 55.2 64.9 73.9 74.5 58.9 65.8 72.3 72.0 80.0 75.7 81.3 82.8 43.8 57.3 85.5 85.3 89.3 87.2

Average 64.2 64.2 66.3 65.2 67.9 68.8 45.4 54.7 60.0 59.8 65.0 62.3 62.0 61.6 72.4 66.2 70.8 71.9 43.3 54.0 72.0 71.8 77.6 74.2

4.2 Results for Benchmarks

Digital Recognition. Experiments are conducted in the digital recognition
benchmark. As shown in Table 1, UOL overpasses state-of-the-art methods [34],
[37], [23], [8], [43] with 15.1%, 10.2%, 5.7%, 7.4% and 4.2% increments in average
HOS. These encouraging results demonstrate that the proposed UOL can rec-
ognize unknown samples better while achieving high performance in classifying
known samples.
Office-Home. We further illustrate the experimental results on all 12 tasks of
this benchmark in Table 2. Due to the high openness [23, 1] and large domain
gap, we can observe that previous methods achieve poor performance either in
unknown recognition or in known classification. For example, ϵ-OSD [47] only
achieves 43.3% unknown category accuracy despite high performance for known
classes, leading to an unsatisfactory HOS score. On the contrary, UOL achieves
competitive result for known categories with 71.8% average OS* and also su-
perior accuracy 77.6% for unknown samples, which demonstrates the better un-
known recognition ability of UOL than ϵ-OSD [47]. Moreover, UOL surpasses all
other OSDA methods with HOS metric by a large gap in 12 tasks and possesses
superior capability with increments of 26.6%, 19.5%, 11.9%, 8.0% and 20.2%
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Table 3: Classification accuracy (%) on
Endo-c2k.

Method Norm.Vasc. Infl. Unk OS OS* HOS

Source Only 31.9 53.1 31.3 0.0 29.1 38.8 0.0
OSBP [37] 22.8 56.8 63.0 14.3 39.2 47.5 22.0
STA [23] 28.8 42.6 34.8 25.4 32.9 35.4 29.6
AoD [8] 20.8 55.8 65.6 22.2 41.1 47.4 30.2
ROS [1] 32.4 59.1 49.3 23.8 41.2 46.9 31.6

UOL 38.3 59.4 56.0 30.2 46.0 51.2 38.0

Table 4: Ablation performance on the
Ar→Cp task.

MUD WDC
GIA

OS OS* Unk HOS
Graph Grad. k-PCA

53.1 53.3 48.1 50.6
✓ 52.9 52.8 54.3 53.5
✓ ✓ 54.8 54.2 68.8 60.6
✓ ✓ ✓ 56.8 56.3 69.1 62.0
✓ ✓ ✓ ✓ 57.7 57.1 73.1 64.1
✓ ✓ ✓ ✓ ✓ 58.9 58.3 73.8 65.2

average HOS comparing with state-of-the-art methods [37], [8], [23], [1], [47],
which reveal that the proposed UOL is robust to the severe domain gap and
high openness.
Endo-c2k. Table 3 shows the OSDA results in Endo-c2k benchmark. We firstly
evaluate the performance in ‘source only’ setting where only source samples are
utilized to train the network, which can be regarded as a lower bound. From the
results, we observe that the proposed UOL outperforms all other methods [37],
[23], [8], [1] in term of unknown samples recognition with a large gap, i.e. 15.9%,
4.8%, 8.0% and 6.4%. This significant improvement comes from the additional
weights representing the unknown category in MUD. Furthermore, the normal
category accuracy for OSBP [37], STA [23] and AoD [8] is lower than that for
‘source only’ while that for UOL is not. This shows that UOL can avoid the
deconstruction of shared known distributions during alignment.

4.3 Ablation Study

Effectiveness for Multi-Unknown Detector and Weight Discrepancy
Constraint. To evaluate the contribution of proposed multi-unknown detector
and weight discrepancy constraint, qualitative and quantitative ablation results
are shown in Fig. 4 and Table 4, respectively. The additional weight number N
is set as 1 in the first row and set as 5 for the second row in Fig. 4. We observe
that the distribution of unknown samples often overlap with distributions of
known categories for three scenarios in the first row, due to the discrepant visual
information inner unknown category. In the second row, the unknown samples
are grouped into several clusters with the guidance of multi-unknown weights,
and intra-class compactness and inter-class separability is achieved with the
help of weight discrepancy constraint. Moreover, comparing the 3rd row and
2nd row with the 1st row in Table 4, the unknown recognition performance
increase with 6.2% and 20.7% Unk, which verifies that multi-unknown detector
(MUD) equipped with weight discrepancy constraint (WDC) can help recognize
the unknown samples.
Effectiveness for GIA. We ablate two graph structures, gradient and k-PCA
successively to validate the effectiveness of each component in Gradient-graph
Induced Annotation. Comparing the three confusion matrices in Fig. 5, lots of
off-diagonal elements are non-zero in the 1st matrix, while most of these are
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8

(a) M→U (b) U→M (c) S→M

Fig. 4: T-SNE visualization of the target features for the digital recognition
benchmark including MNIST (M), USPS (U) and SVHN (S). Gray points indi-
cate the unknown features and points with other colors indicate known features.
Red stars represent the classifier weights of unknown category and Blue stars
represent the weights of known categories.

5

(a) Threshold Based (b) GIA w/o Gradient (c) GIA

Fig. 5: Confusion matrices of pseudo labels in MNIST→USPS task for (a) thresh-
old base method, (b) GIA without gradient and (c) GIA.

zero in the 2nd and 3rd matrices. This indicates two proposed graph structures
could fully utilize the intrinsic relationship of data and suppress noisy pseudo
labels. Moreover, the false unknown samples in the 3rd confusion matrix are
less than those in 2nd one, which certifies that gradient manifold incorporates
the information beneficial to recognition. As for the numerical results in Table
4, it is reported that the unknown accuracy is promoted by 4.0% comparing
the 5th row with 4th row, which indicates that gradient can reserve the learned
knowledge of unseen categories in the true unknown excavation. Comparing the
6th row with the 5th row, the HOS score increases by 1.1% , which validates
that k-PCA can learn a appropriate low-dimensional gradient to represent the
intrinsic relationship.

Robustness to openness and sensitivity to additional weights num-
ber N . In Fig. 6 (a), the relationship between openness and additional weights

number N is further discussed. The openness is defined as the O = 1 − |Cs|
|Ct| ,
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6

(a) Openness and N (b) Sensitivity of . (c) Sensitivity of /

Fig. 6: (a) Ablation study for openness and additional weights number N , (b)
Sensitivity analysis of µ and (c) Sensitivity analysis of λ. All experiments are
conducted on the Ar→Cp task.

where |Cs| and |Ct| is the category number is source and target domain. We in-
vestigate this setting using Ar→Cp task with increasing openness, i.e. 45 known
classes O = 0.38, 35 known classes O = 0.46, 25 known classes O = 0.62, 15
known classes O = 0.77 and 5 known classes O = 0.92. For each setting, we
conduct experiments with 1, 5, 10, 15 and 20 additional weights number sepa-
rately. Experimental results represent that UOL framework achieves satisfactory
performance in each openness setting with 61.95%, 62.18%, 65.18%, 66.24% and
66.28% HOS, which demonstrates that the proposed method maintains a consis-
tent performance for various openness. Moreover, we observe that HOS scores
are stable when the additional weights number is within the interval of [10,
20] in each openness setting. This indicates the results are not sensitive to the
additional weight number N within a certain range of [10, 20].

Sensitivity to Coefficients µ and λ. We show the sensitivity analysis for
weight discrepancy constraint coefficient µ and super confident matrix coefficient
λ in Figure 6 (b) and (c). We vary the value of µ from 1e − 4 to 1e − 2 and
the value of λ from 0.85 to 1.00. The results show that the scores are stable to
these two coefficients within a range. Limited by space, more experiments and
implementation details can be found in supplementary material.

5 Conclusion

This paper presents a novel framework UOL for open set domain adaptation
with a focus on unknown discovery. We propose the multi-unknown detector
equipped with weight discrepancy constraint to excavate the diverse unknown
knowledge. Meanwhile, gradient-graph induced annotation module is advanced
to exploit the intrinsic relationship in gradient manifold and rectify the false un-
known samples. After unknown discovery, the remaining samples are aligned in
category level. Extensive experiments show that the proposed framework UOL
performs consistently well on three benchmarks with diverse openness and do-
main discrepancy. In future, we plan to introduce other prior knowledge such as
visual-linguistic embedding to the unknown category.
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