
DecoupleNet: Decoupled Network for Domain
Adaptive Semantic Segmentation —

Supplementary Material

Introduction

This is the supplementary material, which is divided into the following sections.

1. Pseudo code is given in Sec. 1.

2. Experimental results for VGG-16 are shown in Sec. 2.

3. Experimental results on Cross-City are shown in Table. 3.

4. Multi-round performance comparison with ProDA is given in Sec. 3.

5. Implementation detail of class-wise thresholds in SD is explained in Sec. 4.

6. Analysis of extra training computational cost is shown in Sec. 5.

7. Details of the plot in Fig. 1(c) of the submission file are given in Sec. 6.

8. Visual comparison with existing methods is shown in Sec. 7.

9. Extension to UDA classification task is shown in Sec. 8.

10. More implementation details of the experiments are explained in Sec. 9.

11. t-SNE visualizations and the details are given in Sec. 10.

1 Pseudo Code

In order to clarify the back-propagation routine of the gradients, we demon-
strate the pseudo code of the first-training stage (with DecoupleNet and Self-
Discrimination), as shown in Alg. 1. It mainly shows which modules are updated
according to each loss.

2 Experimental Results for VGG-16

Table 1 and Table 2 show the results with VGG-16 [12] on GTA5→Cityscapes
and Synthia→Cityscapes, respectively. Our approach outperforms others by a
large margin, which clearly demonstrates the superiority of our method.

3 Multi-round Comparison with ProDA

We compare multi-round performance of ProDA and ours in Table 4. Our method
still yields a considerable performance boost by applying one more self-training
round. Note that one round refers to re-labeling the target domain images based
on the model in the previous round and then re-training.

2 X. Lai et al.

Algorithm 1 First-stage training (DecoupleNet and Self-Discrimination)

Require: xs, xt, ys, W gsrc
, W gtgt

, W gshare
, W C , W Caux , WDlow , WD

1: for iter = 1→ num iters do
2: ∇W gsrc

← 0, ∇W gtgt
← 0, ∇W gshare

← 0, ∇WC ← 0, ∇WCaux ← 0
3:
4: Obtain Lce according to Eq. (8)
5: ∇W gsrc

← ∂Lce
∂W gsrc

6: ∇W gshare
← ∂Lce

∂W gshare

7: ∇W C ← ∂Lce
∂WC

8:
9: Obtain Llow

adv according to Eq. (9)

10: ∇W gsrc
← ∇W gsrc

+
∂Llow

adv
∂W gsrc

11:
12: Obtain Ladv according to Eq. (3)
13: ∇W gtgt

← ∇W gtgt
+ ∂Ladv

∂W gtgt

14: ∇W gshare
← ∇W gshare

+ ∂Ladv
∂W gshare

15: ∇W C ← ∇W C + ∂Ladv
∂WC

16:
17: Obtain Lsd according to Eq. (13)
18: ∇W gtgt

← ∇W gtgt
+ ∂Lsd

∂W gtgt

19: ∇W gshare
← ∇W gshare

+ ∂Lsd
∂W gshare

20: ∇W Caux ← ∇W Caux + ∂Lsd
∂WCaux

21:
22: Obtain Llow

d according to Eq. (11)

23: ∇WDlow ← ∇WDlow +
∂Llow

d
∂WDlow

24:
25: Obtain Ld according to Eq. (12)
26: ∇WD ← ∇WD + ∂Ld

∂WD
27:
28: Update W gsrc

, W gtgt
, W gshare

, W C , W Caux with SGD
29: Update WDlow , WD with Adam

Supplementary Material for DecoupleNet 3

Table 1. Results on GTA5→Cityscapes with VGG16 and DeepLabv2. ST: self-training

Method ST ro
ad

sw
.

b
u
il
d

w
al
l

fe
n
ce

p
ol
e

li
gh
t

si
gn

ve
g.

te
rr
ai
n

sk
y

p
er
so
n

ri
d
er

ca
r

tr
u
ck

b
u
s

tr
ai
n

m
ot
o.

b
ic
y
cl
e

mIoU

SourceOnly 62.6 22.0 75.1 23.7 16.8 24.5 21.7 8.0 77.1 11.2 65.7 44.2 17.9 71.6 16.0 9.9 0.0 14.6 5.2 30.9
AdaptSeg [13] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0
AdaptSeg(LS) 86.8 31.9 78.7 27.8 17.6 20.5 22.3 8.0 79.0 23.3 69.8 46.9 16.6 80.1 23.3 18.6 3.0 13.7 5.9 35.3
CLAN [6] 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 45.8 7.9 80.5 26.6 29.9 0.0 10.7 0.0 36.6
AdvEnt [15] 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1
FADA [16] 89.8 37.7 79.2 30.5 22.0 25.7 25.7 15.1 79.9 26.9 69.7 52.1 22.9 81.1 21.9 15.4 3.8 22.2 11.1 38.6
Ours 90.1 43.0 79.5 28.7 22.1 25.6 27.4 13.2 77.7 26.4 68.3 52.8 25.3 81.2 26.3 27.6 0.7 23.7 20.4 40.0

CBST [20] ! 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

AdaptPatch [14] ! 87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 15.5 4.1 37.5

Label-Driven [17] ! 90.1 41.2 82.2 30.3 21.3 18.3 33.5 23.0 84.1 37.5 81.4 54.2 24.3 83.0 27.6 32.0 8.1 29.7 26.9 43.6

FADA [16] ! 92.3 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 24.4 37.4 0.0 21.1 15.2 43.8

Kim et al. [4] ! 92.5 54.5 83.9 34.5 25.5 31.0 30.4 18.0 84.1 39.6 83.9 53.6 19.3 81.7 21.1 13.6 17.7 12.3 6.5 42.3

FDA-MBT [18] ! 86.1 35.1 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 42.2

TPLD [11] ! 83.5 49.9 72.3 17.6 10.7 29.6 28.3 9.0 78.2 20.1 25.7 47.4 13.3 79.6 3.3 19.3 1.3 14.3 33.5 34.1

DPL [2] ! 89.2 44.0 83.5 35.0 24.7 27.8 38.3 25.3 84.2 39.5 81.6 54.7 25.8 83.3 29.3 49.0 5.2 30.2 32.6 46.5

Ours+ST ! 93.7 61.0 85.9 31.1 28.4 35.2 41.9 24.8 82.0 27.3 83.7 63.0 27.2 86.7 34.5 48.2 0.1 33.9 39.1 48.8

Table 2. Results on Synthia→Cityscapes with VGG16 and DeepLabv2. ST: self-
training. mIoU+: mIoU of 13 classes

Method ST ro
ad

sw
.

b
u
il
d

w
al
l

fe
n
ce

p
ol
e

li
gh
t

si
gn

ve
g.

sk
y

p
er
so
n

ri
d
er

ca
r

b
u
s

m
ot
o.

b
ic
y
cl
e

mIoU mIoU+

SourceOnly 7.2 14.7 48.7 8.0 0.2 17.0 1.3 4.3 71.6 77.7 46.1 5.9 66.3 18.4 1.9 3.9 24.6 28.3
AdaptSeg [13] 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6
AdaptSeg(LS) 73.8 23.9 78.7 7.0 0.7 20.6 1.5 6.0 75.2 79.2 45.7 13.2 70.5 21.7 5.4 11.0 33.4 38.9
CLAN [6] 80.4 30.7 74.7 - - - 1.4 8.0 77.1 79.0 46.5 8.9 73.8 18.2 2.2 9.9 - 39.3
AdvEnt [15] 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6
FADA [16] 80.1 31.0 76.9 5.4 0.5 23.3 4.5 7.8 78.7 78.2 41.9 12.6 68.3 21.7 6.9 15.6 34.6 40.3
Ours 78.7 27.7 76.1 8.0 0.7 20.5 1.5 8.4 74.7 78.5 43.6 15.6 70.3 24.2 7.7 24.5 35.0 40.9

CBST [20] ! 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

AdaptPatch [14] ! 72.6 29.5 77.2 3.5 0.4 21.0 1.4 7.9 73.3 79.0 45.7 14.5 69.4 19.6 7.4 16.5 33.7 39.6

Label-Driven [17] ! 73.7 29.6 77.6 1.0 0.4 26.0 14.7 26.6 80.6 81.8 57.2 24.5 76.1 27.6 13.6 46.6 41.1 48.5

FADA [16] ! 80.4 35.9 80.9 2.5 0.3 30.4 7.9 22.3 81.8 83.6 48.9 16.8 77.7 31.1 13.5 17.9 39.5 46.0

Kim et al. [4] ! 89.8 48.6 78.9 - - - 0.0 4.7 80.6 81.7 36.2 13.0 74.4 22.5 6.5 32.8 - 43.8

FDA-MBT [18] ! 84.2 35.1 78.0 6.1 0.4 27.0 8.5 22.1 77.2 79.6 55.5 19.9 74.8 24.9 14.3 40.7 40.5 47.3

TPLD [11] ! 81.3 34.5 73.3 11.9 0.0 26.9 0.2 6.3 79.9 71.2 55.1 14.2 73.6 5.7 0.5 41.7 36.0 41.3

DPL [2] ! 83.5 38.2 80.4 1.3 1.1 29.1 20.2 32.7 81.8 83.6 55.9 20.3 79.4 26.6 7.4 46.2 43.0 50.5

Ours+ST ! 86.6 41.6 82.6 17.4 5.0 31.7 0.1 20.6 83.2 87.1 54.2 15.0 82.9 40.4 27.0 39.5 44.7 50.8

4 Class-wise Thresholds in SD

For Self-Discrimination, we use a class-wise threshold for each class to ignore the
uncertain pixels in the pseudo labels. Specifically, the class-wise threshold is set
to the p percentile of prediction confidences. However, the prediction confidences
need to feed forward all target domain images, which is time-consuming and
impractical for each training iteration. Instead, we do not calculate the prediction
confidences of all target domain images. We first maintain a confidence queue
(with a length limit of 100, 000 in our experiments) for each class, and then
append prediction confidences of the current data batch into it at each training
iteration. When the confidence queue is full, the earliest elements would be
released to accommodate the new elements. In this way, we approximate the

4 X. Lai et al.

Table 3. Results on Cityscapes→Cross-City with ResNet101 and DeepLabv2

City Method ro
ad

sw
.

b
u
il
d

li
gh
t

si
gn

ve
g.

sk
y

p
er
so
n

ri
d
er

ca
r

b
u
s

m
ot
o.

b
ic
y
cl
e

mIoU

Rome
SourceOnly 84.2 37.9 79.5 19.4 49.8 84.1 80.4 47.8 37.4 83.5 44.6 52.4 10.8 54.8
Ours 86.3 45.5 83.7 19.4 46.9 86.4 92.6 58.4 47.6 84.5 39.8 56.9 11.1 58.4
Ours+ST 87.9 41.9 85.2 33.4 41.4 87.0 93.4 64.0 53.2 83.9 57.9 51.1 9.2 60.7

Rio
SourceOnly 75.9 51.7 67.9 22.5 31.7 77.1 80.7 56.1 39.6 78.2 38.1 44.9 25.9 53.1
Ours 80.0 59.3 78.5 12.5 27.9 82.8 87.5 63.6 36.0 81.7 36.0 55.5 31.5 56.4
Ours+ST 85.0 61.7 77.0 34.6 26.4 82.6 88.1 65.3 36.9 81.4 46.4 46.9 33.6 58.9

Tokyo
SourceOnly 84.9 35.5 70.3 14.5 27.0 81.9 73.3 56.1 27.2 70.1 6.7 19.6 52.1 47.6
Ours 84.8 41.0 74.9 28.1 31.1 83.0 91.3 61.0 32.1 72.2 10.5 36.1 59.7 54.3
Ours+ST 84.5 37.5 76.9 34.4 38.0 85.4 91.3 66.1 33.3 73.2 7.6 29.7 61.8 55.4

Taipei
SourceOnly 84.9 35.6 76.6 27.2 17.0 74.9 82.8 30.0 31.6 70.4 33.9 54.7 22.7 49.4
Ours 84.9 39.4 83.0 36.5 15.5 76.2 94.8 40.2 32.2 72.7 41.1 58.3 39.6 54.9
Ours+ST 86.0 40.2 86.5 51.1 17.0 77.6 94.3 45.7 33.2 71.4 54.3 48.3 40.2 57.4

Table 4. Comparison with ProDA on first and second-round self-training

Method
GTA5→Cityscapes Synthia→Cityscapes

First-round Second-round First-round Second-round

ProDA [19] 53.6 54.9 52.3 53.9
Ours 56.7 58.1 55.1 56.6

prediction confidences of all target domain images by those in the confidence
queue, and incur negligible computational cost in the meanwhile.

5 Extra Training Computational Cost

The computational cost comparison is demonstrated in Table 5. It shows that
our method incurs negligible computational cost. Same environment is used for
fair comparison. It is worth noting that our method does not introduce extra
parameters during inference.

6 Plot Details

The plot in Fig. 1(c) of the submission file is conducted on GTA5→Cityscapes.
Since we need to evaluate the performance on the source domain (mIoU src)
for plotting, we only employ the first 24, 000 samples of the GTA5 dataset for
training, and the last 966 samples for validation. Note that for the normal exper-
iments in Sec. 4 of the submission file, we still follow existing previous methods
to use the total 24, 966 samples for training.

Similarly, we yield the plot on Synthia→Cityscapes in the same way, as shown
in Fig. 1. From the plot, consistent conclusion can be made — our method can
alleviate the issue of source domain overfitting.

Supplementary Material for DecoupleNet 5

Table 5. Computational cost comparison

Method AdaptSegNet [13] DecoupleNet+SD

Training Time 23h 22min 24h 45min
Training Parameters 54.72M 55.77M
Inference Parameters 51.94M 51.94M

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.3

0.35

0.4

0.45

0.5

0.55

0.6

5 10 15 20 25 30 35 40 45 50 55
Epochs

mIoU_tgt (AdaptSegNet) mIoU_tgt (DecoupleNet)

mIoU_src (AdaptSegNet) mIoU_src (DecoupleNet)

mIoU_srcmIoU_tgt

Source domain mIoU

Target domain mIoU

Fig. 1. Plot of the validation mIoU on source domain data (mIoU src) by the dashed
line and on target domain data (mIoU tgt) by the solid line. Evaluation is made on
Synthia→Cityscapes. This figure is similar to Fig. 1(c) of the submission file

7 Visual Comparison

The visual comparison of first-stage training and self-training are shown in Fig. 2
and Fig. 3, respectively. They demonstrate the superiority of our method. Com-
pared to others, our approach tends to yield high-quality segmentation results
with less artifacts.

Table 6. The results of adapting DecoupleNet to the UDA classification methods with
ResNet50 on VisDA 2017 [7]

Method Accuracy ∆

MCD [10] 70.3 0.0
MCD + Ours 70.9 +0.6
DropToAdapt [5] 76.2 0.0
DropToAdapt + Ours 78.1 +1.9

8 Extension to UDA Classification Task

Our method can be easily adapted to the UDA classification task. To demon-
strate the generalization ability, we adapt our method to two representative UDA

6 X. Lai et al.

Input GT SourceOnly AdaptSegNet FADA Ours

Fig. 2. Visual comparison with one-stage methods

classification methods, MCD [10] and DropToAdapt [5]. Similarly, we main-
tain two shallow blocks responsible for two domains respectively, while the deep
blocks are shared by both domains. We also add the additional loss Llow

adv on
the shallow source features ϕs. The pipeline and the losses used in MCD and

Supplementary Material for DecoupleNet 7

Input GT SourceOnly ProDA Ours+ST

Fig. 3. Visual comparison with self-training based methods

8 X. Lai et al.

DropToAdapt are all kept. Amazingly, as shown in Table 6, we can make further
improvements on the UDA classification task.

9 More Implementation Details of Experiment

Experimental setting. During training, we follow [19] to perform random 512×
892 crop. We use ‘poly’ learning rate decay policy where the base learning rate is
scaled by (1−iter/max iter)power and power is set to 0.9. We use SGD optimizer
to train the segmentation model with weight decay and momentum set to 0.0005
and 0.9, respectively. The base learning rate is set to 0.00025 and 0.0025 for the
backbone parameters and the others, respectively. To train discriminators, we
use Adam optimizer with the base learning rate, beta1 and beta2 set to 0.0001,
0.9 and 0.99 respectively. Four NVIDIA GeForce RTX 2080Ti GPUs are used
for training, and a training batch includes 8 source and 8 target domain images.
The loss weights λadv, λ

low
adv and λsd are set to 0.01, 0.1 and 0.1 respectively.

The ablation study is conducted on GTA5→Cityscapes with ResNet101 and
DeepLabv2.

For the first stage, we train for 60, 000 iterations without any data augmen-
tation except random cropping. As for the second stage, we train for 40, 000
iterations with the data augmentation of random color jitter. The class-wise
threshold percentage is set to 0.8. To stabilize training, the model weights are
initialized with the SourceOnly model.

Datasets. As shown in the submission file, our experiments are conducted on
GTA5 → Cityscapes, Synthia → Cityscapes and Cityscapes → Cross-City. The
details of these datasets are illustrated below.

The Cityscapes [3] dataset contains 2975 and 500 finely annotated urban
scene images with 19 classes for training and validation respectively. Only the
images in the training set are used during training. After training, the validation
set is used to evaluate the performance of models.

The GTA5 [8] dataset is a synthetic dataset collected from a physically ren-
dered video game called Grand Theft Auto V (GTAV). It comprises 24966 urban
scene images, with compatible classes with Cityscapes. We only choose 19 se-
mantic classes available in Cityscapes, while the rest pixels that belong to other
classes are labeled as ignored.

The Synthia [9] dataset is also a synthetic urban scene dataset. We choose
the SYNTHIA-RAND-CITYSCAPES subset, which comprises 9400 images but
only shares 16 semantic classes with the Cityscapes dataset. Similar to the GTA5
dataset, the pixels that belong to other classes are also labeled as ignored.

The Cross-City [1] dataset is an urban scene dataset and contains 3,200
unlabeled images and 100 annotated images of Rome, Rio, Tokyo and Taipei.
Its annotations share 13 classes with Cityscapes.

Network architecture. Since most segmentation networks can be generally di-
vided into a feature encoder and a linear classifier, we modify the ASPP module

Supplementary Material for DecoupleNet 9

Fig. 4. The t-SNE visualizations of the target features w/o SD (Left) and w/ SD
(Right). Each color represents each class. Note that both visualizations are in the same
t-SNE space. More visualization details are described in the supplementary

in Deeplabv2 by first projecting multi-scale atrous features into a common di-
mension and then passing them into a linear classifier. This minor modification is
for maintaining another auxiliary classifier in Self-Discrimination. For fair com-
parison, the modification incurs negligible parameters and does not affect the
segmentation performance in our experiments. In Self-Discrimination, we main-
tain another linear classifier as the auxiliary classifier, so the additional training
parameters brought by SD can be almost neglected.

10 Details of The t-SNE Visualizations

In Fig. 4, we demonstrate the t-SNE visualizations for the target features ft of
the models with and without SD. In particular, we firstly forward all the images
in the Cityscapes validation set into the model that has already been trained
with or without SD, obtaining the target feature ft, whose shape is (H,W,C).
Each feature vector in ft has a corresponding ground-truth label, so we can
obtain the feature vectors belonging to each class with the ground-truth labels.
Further, we randomly select 100 feature vectors for each class, and then use the
python sklearn package to perform t-SNE visualization for them, thus obtaining
the Fig. 6 of the submission file. In this way, the figure is obtained from the
whole validation set, which is more convincing because it alleviates the effect
brought by random variance. Note that both results without (the Left) and with
SD (the Right) are in the same t-SNE space. And to ensure the visibility, we
choose 7 classes in the visualizations with each color representing each class,
i.e., road (blue), sidewalk (orange), building (red), person (green), car (brown),
vegetation (silver), sky (skyblue).

10 X. Lai et al.

References

1. Chen, Y.H., Chen, W.Y., Chen, Y.T., Tsai, B.C., Frank Wang, Y.C., Sun, M.:
No more discrimination: Cross city adaptation of road scene segmenters. In: ICCV
(2017)

2. Cheng, Y., Wei, F., Bao, J., Chen, D., Wen, F., Zhang, W.: Dual path learning for
domain adaptation of semantic segmentation. In: ICCV (2021)

3. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR (2016)

4. Kim, M., Byun, H.: Learning texture invariant representation for domain adapta-
tion of semantic segmentation. In: CVPR (2020)

5. Lee, S., Kim, D., Kim, N., Jeong, S.G.: Drop to adapt: Learning discriminative
features for unsupervised domain adaptation. In: ICCV (2019)

6. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain
shift: Category-level adversaries for semantics consistent domain adaptation. In:
CVPR (2019)

7. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: The
visual domain adaptation challenge. arXiv:1710.06924 (2017)

8. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth
from computer games. In: ECCV (2016)

9. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia
dataset: A large collection of synthetic images for semantic segmentation of ur-
ban scenes. In: CVPR (2016)

10. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: CVPR (2018)

11. Shin, I., Woo, S., Pan, F., Kweon, I.S.: Two-phase pseudo label densification for
self-training based domain adaptation. In: ECCV (2020)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556 (2014)

13. Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.:
Learning to adapt structured output space for semantic segmentation. In: CVPR
(2018)

14. Tsai, Y.H., Sohn, K., Schulter, S., Chandraker, M.: Domain adaptation for struc-
tured output via discriminative patch representations. In: ICCV (2019)

15. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy
minimization for domain adaptation in semantic segmentation. In: CVPR (2019)

16. Wang, H., Shen, T., Zhang, W., Duan, L.Y., Mei, T.: Classes matter: A fine-grained
adversarial approach to cross-domain semantic segmentation. In: ECCV (2020)

17. Yang, J., An, W., Wang, S., Zhu, X., Yan, C., Huang, J.: Label-driven reconstruc-
tion for domain adaptation in semantic segmentation. In: ECCV (2020)

18. Yang, Y., Soatto, S.: Fda: Fourier domain adaptation for semantic segmentation.
In: CVPR (2020)

19. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo
label denoising and target structure learning for domain adaptive semantic segmen-
tation. In: CVPR (2021)

20. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for seman-
tic segmentation via class-balanced self-training. In: ECCV (2018)

	DecoupleNet: Decoupled Network for Domain Adaptive Semantic Segmentation — Supplementary Material

