DecoupleNet: Decoupled Network for Domain
Adaptive Semantic Segmentation —
Supplementary Material

Introduction

This is the supplementary material, which is divided into the following sections.

Pseudo code is given in Sec.

Experimental results for VGG-16 are shown in Sec.

Experimental results on Cross-City are shown in Table.

Multi-round performance comparison with ProDA is given in Sec.
Implementation detail of class-wise thresholds in SD is explained in Sec.
Analysis of extra training computational cost is shown in Sec.

Details of the plot in Fig. 1(c) of the submission file are given in Sec. @

Visual comparison with existing methods is shown in Sec.
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Extension to UDA classification task is shown in Sec. Bl
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More implementation details of the experiments are explained in Sec. [9]
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. t-SNE visualizations and the details are given in Sec. [I0]

1 Pseudo Code

In order to clarify the back-propagation routine of the gradients, we demon-
strate the pseudo code of the first-training stage (with DecoupleNet and Self-
Discrimination), as shown in Alg. |1} It mainly shows which modules are updated
according to each loss.

2 Experimental Results for VGG-16

Table [1] and Table [2] show the results with VGG-16 [12] on GTA5—Cityscapes
and Synthia—Cityscapes, respectively. Our approach outperforms others by a
large margin, which clearly demonstrates the superiority of our method.

3 Multi-round Comparison with ProDA

We compare multi-round performance of ProDA and ours in Table[d] Our method
still yields a considerable performance boost by applying one more self-training
round. Note that one round refers to re-labeling the target domain images based
on the model in the previous round and then re-training.
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Algorithm 1 First-stage training (DecoupleNet and Self-Discrimination)

Require: z, =i, ys, Wy, Wgtgt7 Wonare» We, Weawo, Woy,,,, Wo

1: for iter = 1 — numc_iters do

2: VWg, .0, VWy, 0, VWg ... <0, VWc <+ 0, VW¢,,, <0

3.

4 Obtain L. according to Eq. (8)

5 VW .« gur—

6 Vquhare A QVVB;:L;J

T VWe + G

8

9 Obtain £ according to Eq. (9)
oLl

10: VWy,,. & VWy .+ awit

11:

12: Obtain Lq4, according to Eq. (3)
AL 4q,
13: VW, & VWy, ., + gy

Itgt

4 VWy, «VWg, + %
15:  VWe « VWe + St
16:

17: Obtain Lsq according to Eq. (13)
180 VW, , « YWy, + gorsd

OWgigt
19: VWarare < VWg oo + #
20: VWCQMU — VWCauw + #
21:
22: Obtain L™ according to Eq. (11)
low

23 VWp,, +VWp, + 035—;

low

25: Obtain L4 according to Eq. (12)

2. VWop « VWp + 1t

28: Update Wgsrc’ Wgtgt’ Wgshare’
29: Update Wp,,,,, Wp with Adam

We, We, ... with SGD
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Table 1. Results on GTA5—Cityscapes with VGG16 and DeepLabv2. ST: self-training

5 5 2

> T 5 & o 5 & .8 S 5 & 5 & 8
Method ST ~g 5 g g é? E \;ﬁ }h’z §o § ?f} g Sc u‘? «’:: ~e§ £ SO »c% mloU
SourceOnly 62.6 22.0 75.1 23.7 16.8 24.5 21.7 80 77.1 11.2 65.7 442 179 71.6 16.0 9.9 0.0 146 52 | 30.9
AdaptSeg [13] 87.3 29.8 78.6 21.1 182 225 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 | 35.0
AdaptSeg(LS) 86.8 31.9 787 27.8 17.6 20.5 223 8.0 79.0 23.3 69.8 46.9 16.6 80.1 23.3 186 3.0 13.7 59 | 353
CLAN 88.0 30.6 79.2 23.4 20.5 26.1 23.0 14.8 81.6 34.5 72.0 458 7.9 80.5 26.6 29.9 0.0 10.7 0.0 | 36.6
AdvEnt 86.9 28.7 78.7 285 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 84 81.5 26.0 17.2 18.9 11.7 1.6 | 36.1
FADA [16] 89.8 37.7 79.2 30.5 22.0 25.7 25.7 15.1 79.9 26.9 69.7 52.1 229 81.1 21.9 154 3.8 222 11.1| 38.6
Ours 90.1 43.0 79.5 28.7 22.1 25.6 27.4 13.2 77.7 26.4 68.3 52.8 25.3 81.2 26.3 27.6 0.7 23.7 20.4 40.0
CBST [20] V' [904 508 720 183 9.5 27.2 28.6 14.1 824 25.1 70.8 42.6 145 769 59 125 12 140 28.6| 36.1
AdaptPatch [[4] | v/ |87.3 35.7 79.5 32.0 14.5 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 155 4.1 | 375
Label-Driven [I7] V1901 412 822 303 21.3 18.3 33.5 23.0 84.1 37.5 814 54.2 24.3 83.0 27.6 320 81 29.7 26.9 | 43.6
FADA [16] V1923 51.1 83.7 33.1 29.1 28.5 28.0 21.0 82.6 32.6 85.3 55.2 28.8 83.5 244 374 0.0 211 152|438
Kim et al. [4] V925 545 839 34.5 255 31.0 30.4 180 84.1 39.6 83.9 53.6 19.3 817 21.1 13.6 17.7 123 6.5 | 42.3
FDA-MBT [18] vV [86.1 351 80.6 30.8 20.4 27.5 30.0 26.0 82.1 30.3 73.6 52.5 21.7 81.7 24.0 30.5 29.9 14.6 24.0 | 42.2
TPLD [11] V835 49.9 723 17.6 10.7 29.6 28.3 9.0 782 20.1 25.7 47.4 13.3 79.6 3.3 193 1.3 143 33.5|34.1
DPL 2] V892 440 835 35.0 24.7 27.8 38.3 25.3 84.2 39.5 81.6 54.7 25.8 83.3 29.3 49.0 52 30.2 32.6 | 46.5
Ours+ST v/ 193.7 61.0 85.9 31.1 284 35.2 41.9 248 82.0 27.3 83.7 63.0 27.2 86.7 34.5 482 0.1 33.9 39.1 48.8

Table 2. Results on Synthia—Cityscapes with VGG16 and DeepLabv2. ST: self-
training. mIoU™": mIoU of 13 classes

s I oy 8 e & & o S s . . s B
Method | § £ § F &3 F £ L LI F F 55 F |moumout
SourceOnly 72 147 487 8.0 02 170 13 43 716 77.7 461 59 663 184 19 39 | 246 283
AdaptSeg [13] 789 292 755 - - - 01 48 726 767 434 88 TL1 160 3.6 84| - 376
AdaptSeg(LS) 738 239 787 7.0 0.7 206 15 6.0 752 79.2 45.7 13.2 705 207 54 1L0| 334 389
CLAN [f] 804 307 TAT - - - 14 80 771 79.0 46.5 89 73.8 182 22 99| -  30.3
AdvEnt [I5] 670 204 719 63 03 199 0.6 2.6 749 749 354 06 67.8 214 41 155|314 366
FADA [16] 80.1 31.0 76.9 5.4 05 23.3 4.5 T.8 787 78.2 41.9 126 683 2.7 6.9 15.6| 346 40.3
Ouis 78.7 277 761 8.0 0.7 205 15 8.4 747 785 43.6 15.6 70.3 24.2 7.7 24.5/35.0 40.9
CBST [20] V606 287 69.5 12.1 0.1 254 119 13.6 82.0 819 49.1 145 660 6.6 3.7 324|354 36.1
AdaptPatch [[d] | v/ |72.6 205 772 35 04 210 14 7.9 733 79.0 45.7 145 604 196 7.4 16.5| 337  30.6
Label-Driven [I[7]| v/ | 73.7 20.6 77.6 1.0 0.4 26.0 147 26.6 80.6 8L8 57.2 24.5 76.1 27.6 13.6 46.6| 41.1 485
FADA [[6) v |80.4 359 809 25 03 304 7.0 22.3 818 83.6 48.9 168 77.7 3L.1 135 17.9| 305  46.0
Kimet al. [] |v/ |89.8 48.6 789 - - - 0.0 47 80.6 8L7 362 13.0 744 225 6.5 32.8| -  43.8
FDA-MBT [I8] |v/ |842 351 78.0 6.1 0.4 27.0 85 221 77.2 79.6 555 10.9 748 249 143 40.7| 405 473
TPLD [T v |813 345 733 119 00 269 02 6.3 79.9 7L2 551 142 73.6 57 0.5 417|360 413
DPL [2] V835 382 804 13 1.1 201 20.2 32.7 81.8 83.6 55.9 20.3 794 26.6 7.4 46.2| 43.0 50.5
Ours+ST v |86.6 41.6 82.6 17.4 5.0 31.7 0.1 20.6 83.2 87.1 54.2 15.0 82.9 40.4 27.0 30.5| 44.7 50.8

4 Class-wise Thresholds in SD

For Self-Discrimination, we use a class-wise threshold for each class to ignore the
uncertain pixels in the pseudo labels. Specifically, the class-wise threshold is set
to the p percentile of prediction confidences. However, the prediction confidences
need to feed forward all target domain images, which is time-consuming and
impractical for each training iteration. Instead, we do not calculate the prediction
confidences of all target domain images. We first maintain a confidence queue
(with a length limit of 100,000 in our experiments) for each class, and then
append prediction confidences of the current data batch into it at each training
iteration. When the confidence queue is full, the earliest elements would be
released to accommodate the new elements. In this way, we approximate the
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Table 3. Results on Cityscapes— Cross-City with ResNet101 and DeepLabv2

’”Oto

s g
g $ & ¢
5 L 5 5 mloU
835 446 524 108 54.8
84.5 39.8 56.9 11.1 58.4
839 579 511 9.2 60.7

City Method

SourceOnly | 84.2 379 795 194 49.8 841 804 478
Rome | Ours 86.3 45.5 83.7 194 469 864 926 584
Ours+ST 879 419 85.2 33.4 414 87.0 93.4 64.0

kS
37.4
47.6
53.2
SourceOnly | 75.9 51.7 679 225 31.7 771 80.7 56.1 39.6 782 381 449 259 | 53.1
Rio Ours 80.0 59.3 785 125 279 828 875 63.6 36.0 81.7 360 55.5 315 56.4
Ours+ST 85.0 61.7 770 34.6 264 826 88.1 653 369 814 46.4 469 33.6 | 58.9
27.2
32.1
33.3
31.6
32.2
33.2

SourceOnly | 84.9 355 70.3 145 27.0 81.9 73.3 56.1 70.1 6.7 19.6  52.1 47.6
Tokyo | Ours 84.8 41.0 749 281 311 83.0 91.3 610 722 10.5 36.1 59.7 | 54.3
Ours+ST 84.5 375 76.9 34.4 38.0 854 91.3 66.1 73.2 76 297 61.8| 55.4

SourceOnly | 84.9 356 76.6 272 17.0 749 828 30.0 70.4 339 547 227 49.4
Taipei | Ours 849 394 830 365 155 762 94.8 402 72.7 411 58.3 39.6 54.9
Ours+ST 86.0 40.2 86.5 51.1 17.0 77.6 943 45.7 714 54.3 483 40.2 | 57.4

Table 4. Comparison with ProDA on first and second-round self-training

Method GTA5—Cityscapes Synthia—Cityscapes
oo First-round Second-round First-round Second-round

ProDA [19] 53.6 54.9 52.3 53.9

Ours 56.7 58.1 55.1 56.6

prediction confidences of all target domain images by those in the confidence
queue, and incur negligible computational cost in the meanwhile.

5 Extra Training Computational Cost

The computational cost comparison is demonstrated in Table [5] It shows that
our method incurs negligible computational cost. Same environment is used for
fair comparison. It is worth noting that our method does not introduce extra
parameters during inference.

6 Plot Details

The plot in Fig. 1(c) of the submission file is conducted on GTA5— Cityscapes.
Since we need to evaluate the performance on the source domain (mlIoU_src)
for plotting, we only employ the first 24,000 samples of the GTA5 dataset for
training, and the last 966 samples for validation. Note that for the normal exper-
iments in Sec. 4 of the submission file, we still follow existing previous methods
to use the total 24,966 samples for training.

Similarly, we yield the plot on Synthia— Cityscapes in the same way, as shown
in Fig. |1} From the plot, consistent conclusion can be made — our method can
alleviate the issue of source domain overfitting.
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Table 5. Computational cost comparison

Method ‘ AdaptSegNet [13] DecoupleNet+SD
Training Time 23h 22min 24h 45min
Training Parameters 54.72M 55.77TM
Inference Parameters 51.94M 51.94M

Source domain mloU
x

045 Target domain mloU  0.45
| 0.4
04
035
035
o
0 0

0035 40 45 S0 sS

Fig. 1. Plot of the validation mIoU on source domain data (mIoU_src) by the dashed
line and on target domain data (mIoU_tgt) by the solid line. Evaluation is made on
Synthia—Cityscapes. This figure is similar to Fig. 1(c) of the submission file

7 Visual Comparison

The visual comparison of first-stage training and self-training are shown in Fig.
and Fig. [3] respectively. They demonstrate the superiority of our method. Com-
pared to others, our approach tends to yield high-quality segmentation results
with less artifacts.

Table 6. The results of adapting DecoupleNet to the UDA classification methods with
ResNet50 on VisDA 2017 [7]

Method ‘ Accuracy A

MCD [10] 70.3 0.0
MCD + Ours 70.9 +0.6
DropToAdapt [5] 76.2 0.0

DropToAdapt + Ours 78.1 +1.9

8 Extension to UDA Classification Task

Our method can be easily adapted to the UDA classification task. To demon-
strate the generalization ability, we adapt our method to two representative UDA
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Fig. 2. Visual comparison with one-stage methods

classification methods, MCD [10] and DropToAdapt [5]. Similarly, we main-
tain two shallow blocks responsible for two domains respectively, while the deep
blocks are shared by both domains. We also add the additional loss Efl‘gf} on
the shallow source features ¢5. The pipeline and the losses used in MCD and
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Fig. 3. Visual comparison with self-training based methods
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DropToAdapt are all kept. Amazingly, as shown in Table[6 we can make further
improvements on the UDA classification task.

9 DMore Implementation Details of Experiment

Ezperimental setting. During training, we follow [19] to perform random 512 x
892 crop. We use ‘poly’ learning rate decay policy where the base learning rate is
scaled by (1—iter/max_iter)P°**" and power is set to 0.9. We use SGD optimizer
to train the segmentation model with weight decay and momentum set to 0.0005
and 0.9, respectively. The base learning rate is set to 0.00025 and 0.0025 for the
backbone parameters and the others, respectively. To train discriminators, we
use Adam optimizer with the base learning rate, betal and beta2 set to 0.0001,
0.9 and 0.99 respectively. Four NVIDIA GeForce RTX 2080Ti GPUs are used
for training, and a training batch includes 8 source and 8 target domain images.
The loss weights Agq, )\g"dll“) and A\gq are set to 0.01, 0.1 and 0.1 respectively.
The ablation study is conducted on GTA5—Cityscapes with ResNet101 and
DeepLabv2.

For the first stage, we train for 60,000 iterations without any data augmen-
tation except random cropping. As for the second stage, we train for 40,000
iterations with the data augmentation of random color jitter. The class-wise
threshold percentage is set to 0.8. To stabilize training, the model weights are
initialized with the SourceOnly model.

Datasets. As shown in the submission file, our experiments are conducted on
GTA5 — Cityscapes, Synthia — Cityscapes and Cityscapes — Cross-City. The
details of these datasets are illustrated below.

The Cityscapes [3] dataset contains 2975 and 500 finely annotated urban
scene images with 19 classes for training and validation respectively. Only the
images in the training set are used during training. After training, the validation
set is used to evaluate the performance of models.

The GTAS5 [8] dataset is a synthetic dataset collected from a physically ren-
dered video game called Grand Theft Auto V (GTAV). It comprises 24966 urban
scene images, with compatible classes with Cityscapes. We only choose 19 se-
mantic classes available in Cityscapes, while the rest pixels that belong to other
classes are labeled as ignored.

The Synthia [9] dataset is also a synthetic urban scene dataset. We choose
the SYNTHIA-RAND-CITYSCAPES subset, which comprises 9400 images but
only shares 16 semantic classes with the Cityscapes dataset. Similar to the GTA5
dataset, the pixels that belong to other classes are also labeled as ignored.

The Cross-City [I] dataset is an urban scene dataset and contains 3,200
unlabeled images and 100 annotated images of Rome, Rio, Tokyo and Taipei.
Its annotations share 13 classes with Cityscapes.

Network architecture. Since most segmentation networks can be generally di-
vided into a feature encoder and a linear classifier, we modify the ASPP module
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Fig. 4. The t-SNE visualizations of the target features w/o SD (Left) and w/ SD
(Right). Each color represents each class. Note that both visualizations are in the same
t-SNE space. More visualization details are described in the supplementary

in Deeplabv2 by first projecting multi-scale atrous features into a common di-
mension and then passing them into a linear classifier. This minor modification is
for maintaining another auxiliary classifier in Self-Discrimination. For fair com-
parison, the modification incurs negligible parameters and does not affect the
segmentation performance in our experiments. In Self-Discrimination, we main-
tain another linear classifier as the auxiliary classifier, so the additional training
parameters brought by SD can be almost neglected.

10 Details of The t-SNE Visualizations

In Fig. [4 we demonstrate the t-SNE visualizations for the target features f; of
the models with and without SD. In particular, we firstly forward all the images
in the Cityscapes validation set into the model that has already been trained
with or without SD, obtaining the target feature f;, whose shape is (H, W, C).
Each feature vector in f; has a corresponding ground-truth label, so we can
obtain the feature vectors belonging to each class with the ground-truth labels.
Further, we randomly select 100 feature vectors for each class, and then use the
python sklearn package to perform t-SNE visualization for them, thus obtaining
the Fig. 6 of the submission file. In this way, the figure is obtained from the
whole validation set, which is more convincing because it alleviates the effect
brought by random variance. Note that both results without (the Left) and with
SD (the Right) are in the same t-SNE space. And to ensure the visibility, we
choose 7 classes in the visualizations with each color representing each class,
i.e., road (blue), sidewalk (orange), building (red), person (green), car (brown),
vegetation (silver), sky (skyblue).
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