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Abstract. Unsupervised domain adaptation in semantic segmentation
alleviates the reliance on expensive pixel-wise annotation. It uses a la-
beled source domain dataset as well as unlabeled target domain images
to learn a segmentation network. In this paper, we observe two main
issues of existing domain-invariant learning framework. (1) Being dis-
tracted by the feature distribution alignment, the network cannot focus
on the segmentation task. (2) Fitting source domain data well would
compromise the target domain performance. To address these issues, we
propose DecoupleNet to alleviate source domain overfitting and let the
final model focus more on the segmentation task. Also, we put forward
Self-Discrimination (SD) and introduce an auxiliary classifier to learn
more discriminative target domain features with pseudo labels. Finally,
we propose Online Enhanced Self-Training (OEST) to contextually en-
hance the quality of pseudo labels in an online manner. Experiments
show our method outperforms existing state-of-the-art methods. Exten-
sive ablation studies verify the effectiveness of each component. Code is
available at https://github.com/dvlab-research/DecoupleNet.
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1 Introduction

Semantic segmentation has made tremendous progress in recent years and it
has benefited plenty of applications. Its performance highly relies on pixel-wise
annotation. In this paper, we alleviate data-reliance and focus on unsupervised
domain adaptation (UDA). We learn a segmentation network with a labeled
source-domain dataset (usually a physically synthetic dataset) and an unlabeled
target domain dataset.

Due to “domain shift” [13,62] between the source and target domains, di-
rectly adopting the model trained on the source domain causes performance
degradation on the target one. To minimize domain shift, domain-invariant
learning [64,65,69,46,14,70] aligns distributions of source and target features.
Specifically, the features or predictions from different domains are aligned with
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Fig. 1. (a) Domain-invariant learning. (b) Our proposed DecoupleNet. The original
encoder g is split into gtgt and gshare. Also, gsrc and gtgt share the same architecture
but not the parameters. The source-domain shallow features ϕs are aligned towards ϕt

with an adversarial loss. During inference, g = gshare ◦ gtgt is used, and gsrc is simply
discarded. (c) Plot of the validation mIoU on source domain data (mIoU src) by the
dashed line and on target domain data (mIoU tgt) by the solid line. We compare our
DecoupleNet (blue line) with a representative domain-invariant learning method, i.e.,
AdaptSegNet [64] (orange line)

a discriminator by adversarial learning, as shown in Fig. 1(a). The discriminator
learns to distinguish between source and target features, while the segmentation
network learns to generate features that can fool the discriminator.

Domain-invariant learning alleviates domain shift. However, we still observe
the following two problems.

(1) Tasks entanglement. The feature distribution alignment and the segmenta-
tion task are conducted simultaneously in a single network, as shown in Fig. 1(a).
Being distracted by feature distribution alignment, the network cannot focus on
semantic segmentation, leading to inferior performance.

(2) Source domain overfitting. Since the training objective involves cross-entropy
loss that minimizes errors on the source domain data, the trained model would
fit the source domain data well, as shown in Fig. 1(c). However, in UDA, we only
care about the performance on the target domain, regardless of how it performs
on the source domain. Moreover, as we will discuss in Sec. 3.2, fitting the source
domain very well would contrarily compromise the target domain performance.

Based on these two observations, we design DecoupleNet to decouple feature
distribution alignment and the segmentation task. As shown in Fig. 1(b), we
introduce a copy of shallow encoder layers for the source domain, i.e., gsrc, dur-
ing training. Our goal is to let gsrc conduct feature distribution alignment, such
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that the final model g = gshare ◦ gtgt focuses more on the downstream segmen-
tation task. Also, it is notable that gsrc is simply discarded during inference,
and it only incurs negligible computational costs during training as shown in the
supplementary material.

With our new design, the issue of tasks entanglement can be addressed,
as shown in Fig. 1(b). Moreover, during training, we only require the model
gshare ◦ gsrc to fit well on the source domain, but never require the final model
g = gshare◦gtgt to do so. Thus, the final model avoids overfitting in the source do-
main. As shown in Fig. 1(c), compared to the domain-invariant method (Adapt-
SegNet [64]), DecoupleNet alleviates the source domain overfitting problem, and
boosts the target domain performance.

In addition, in order to learn more discriminative features for the target do-
main, we propose the Self-Discrimination (SD) technique by virtue of pseudo
labels. Unlike most self-training-based methods [90,59,51,83,77,29,70], SD does
not need another training phase to re-train the whole network from scratch.
Instead, pseudo labels are generated at each training iteration and can be em-
ployed as an additional supervision in an online manner. Given the fact that
directly adopting the noisy pseudo labels to supervise itself could corrupt the
existing classifier, we introduce an auxiliary classifier during training to prevent
contamination.

Finally, we propose Online Enhanced Self-Training (OEST) to further boost
the performance by extending DecoupleNet to a multi-stage training paradigm.
Most existing self-training-based methods [90,59,51,77,29,70] directly use the
generated pseudo labels without updating them in the re-training process. Con-
trarily, at each training iteration, OEST updates the pseudo labels by fusing
current contextually enhanced predictions, which effectively improves the qual-
ity of pseudo labels.

In summary, our contribution is threefold.

– We propose DecoupleNet to decouple feature distribution alignment and
semantic segmentation. This lets the network avoid tasks entanglement and
focus more on the segmentation task.

– To learn more discriminative features, we put forward Self-Discrimination by
introducing an auxiliary classifier. Moreover, we propose Online Enhanced
Self-Training to contextually enhance the quality of pseudo labels.

– Experiments show that our approach outperforms existing state-of-the-art
methods by a large margin. Also, extensive ablation studies verify the effec-
tiveness of each component in our method.

2 Related Work

Semantic segmentation. Semantic segmentation aims to assign a class label
to every pixel in an image. FCN [58] is a classic semantic segmentation network,
which introduces a fully-convolutional network. Considering that the final out-
put size of FCN is smaller than the input, methods based on encoder-decoder
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structures [52,2,56] are proposed to refine the output. Though the high-level fea-
ture has already encoded the semantic information, it cannot well capture the
long-range relationship. Dilated convolution [5,81], global pooling [38], pyramid
pooling [87,86,79] and attention mechanism [15,26,88,89] are used to better in-
corporate the context. Despite the success, all the models need annotations to
accomplish training, which costs much human effort.

Unsupervised domain adaptation. Unsupervised dmain adaptation [19] in-
tends to alleviate the data-reliance with a labeled dataset from a different do-
main. Distance-based methods [42,43,44,67,61,33,72,41] minimize the distribu-
tion distance such as MMD [67] between the source and target domain. With the
development of Generative Adversarial Network (GAN) [18], adversarial learn-
ing methods [16,66,74,24,37,75,9,12,36,68,30,47,85,3,28,1,40] get popular to align
the marginal or conditional feature distributions between the source and target
domains. Also, methods of [11,54] factorize the feature into domain-specific and
domain-agnostic features.

UDA in Semantic Segmentation. AdaptSegNet [64] employs adversarial
learning to align predictions between the source and target domain in the output
space and method of [45] makes further improvement. Patch-level information
is used in [65] to improve the performance and contextual relationship is consid-
ered in [25,27] explicitly. In [84,71,53], feature distance is directly minimized. In
[69,76,32,63,78,39,31,82,60], semi-supervised learning methods, such as entropy
minimization, adding perturbation, contrastive learning and randomly dropout,
further boost performance. Methods of [70,14,46] align class-conditioned feature
distribution. Those of [34,50,48,73] provide distinct processing for features from
different domains on some modules. On the other hand, image-to-image transla-
tion methods were considered in [23,35,17,77,8,80]. Recently, self-training-based
methods [90,59,51,83,77,29,70,21,20] re-train the network with the pseudo labels
generated from the initial network, yielding considerable improvement.

3 Our Method

In this section, we first introduce the preliminary in Section 3.1. Then, the key
observations are presented as our motivation in Sec. 3.2. Afterwards, Decou-
pleNet, SD and OEST are elaborated in Sections 3.3, 3.4 and 3.5, respectively.

3.1 Preliminary

Problem definition. We define the source domain images Xs along with
ground-truth labels Ys, and the unlabeled target domain images Xt. Our goal is
to train a segmentation model G that performs well on the target domain.

A representative domain-invariant solution [64] is shown in Fig. 2 (a). The
source and target domain images (xs, xt) pass forward the segmentation network
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Fig. 2. (a) A representative domain-invariant method, AdaptSegNet [64]. The normal
case: the ground-truth labels for the target domain are not available. The brown and
green lines represent the source and target domain branches, respectively. (b) Exp. I:
training by target domain images and their ground-truth labels with CE loss. (c)
Exp. II: training by source domain images with the adversarial loss, as well as the
target domain images and labels with CE loss. The discriminator is not shown in the
figure. (d) Exp. III: training by both source and target domains images and labels
with two CE losses. Note that unlike the normal case in (a), we use target domain
ground-truth labels in the toy experiments to support our idea only rather than give a
complete solution. (e) Evaluation results of two benchmarks on both source (blue line)
and target (orange line) domain validation sets (best viewed in color)

G, which is typically composed of an encoder g and a classifier C, to obtain the
predictions (ps, pt), respectively. It is written as

ps = C(g(xs)), pt = C(g(xt)). (1)

For the source domain prediction ps, the cross-entropy loss is employed with
its ground-truth label ys as

Lce = − 1

N

N∑
i=1

C∑
c=1

1{ys,i = c} log ps,i,c, (2)

where N is the number of spatial locations in the source prediction map ps, C
is the number of classes, ys,i represents the class label at the i-th location, and
ps,i,c represents the source prediction score of the c-th class at the i-th location.

As for the target domain prediction pt, a discriminator D is used to align the
distributions of the source and target predictions. The adversarial loss Ladv is
defined as

Ladv =
1

Nd

Nd∑
i=1

(D(pt)i − 0)2, (3)

where Nd is the number of spatial locations in the discriminator output, 0 is the
label of the source domain, and we follow LSGAN [49] to use the MSE Loss.
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The final loss Lseg for the segmentation network is defined as

Lseg = Lce + λadvLadv, (4)

where λadv controls the weight for Ladv. To train the discriminator, the discrim-
inator loss Ld is defined as

Ld =
1

Nd

Nd∑
i=1

(D(ps)i − 0)2 +
1

Nd

Nd∑
i=1

(D(pt)i − 1)2, (5)

where the labels of source and target domain are 0 and 1, respectively. Train-
ing alternates between updating the segmentation network with Lseg and the
discriminator with Ld.

3.2 Motivation

The method above aligns the distributions of source and target domain features
for domain-invariant learning. However, as shown in Fig. 2(a), since the learning
objective involves Lce during training, the trained network has to fit the source
domain data very well. The source domain overfitting issue potentially impairs
the segmentation performance on the target domain.

We conduct three experiments to verify this fact, and show them in Fig. 2(b)-
(d). Unlike the normal case (Fig. 2(a)), we use the target domain ground-truth
labels in the toy experiments only to support our idea rather than give a solution.
As shown in Fig. 2(e), from Exp. I to II, we apply an extra adversarial loss, so
the model performs slightly better on the source domain data. Further, from
Exp. II to III, we apply a stronger CE loss on the source domain, so it performs
very well on the source domain. However, the results in Fig. 2(e) reveal the fact
that the better the model fits on the source domain data, the worse it performs
on the target domain. This exactly supports our idea, i.e., overfitting the source
domain data actually impairs the final performance on the target domain.

Motivated by the observations, we propose a new framework to decouple
the feature distribution alignment from the segmentation task. It alleviates the
issue of source domain overfitting, and enables the final model to focus more on
target-domain semantic segmentation.

3.3 DecoupleNet

The framework of DecoupleNet is shown in Fig. 3. We first split the feature
encoder g into two parts, i.e., gtgt and gshare. Besides, we maintain another
module gsrc, which shares the same architecture with gtgt. The source and target
domain images (xs, xt) are fed into the source blocks gsrc and target blocks gtgt

to yield the shallow features (ϕs, ϕt), respectively. They further pass through
the shared blocks gshare to get the features (fs, ft). Afterwards, they are passed
into the classifier C to obtain the predictions (ps, pt). Initially, we have

ϕs = gsrc(xs), fs = gshared(ϕs), ps = C(fs), (6)
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the dashed line means stopping gradients. (b) Discriminators training. (c) Inference
pipeline. Best viewed in color

ϕt = gtgt(xt), ft = gshared(ϕt), pt = C(ft). (7)

Then, we adopt cross-entropy loss Lce for the labeled source domain data as

Lce = − 1

N

N∑
i=1

C∑
c=1

1{ys,i = c} log ps,i,c. (8)

Besides, we require the distribution of the source-domain shallow features
ϕs to align towards that of the target domain, i.e., ϕt, since our goal is to let
the source blocks gsrc bear the responsibility of feature distribution alignment.
Specifically, adversarial learning is adopted for the shallow feature alignment
with an additional discriminator Dlow and an adversarial loss Llow

adv as

Llow
adv =

1

N low
d

Nlow
d∑
i=1

(Dlow(ϕs)i − 1)2, (9)

where N low
d denotes the number of locations in the discriminator output, and 1

is the label of the target domain.
The design of DecoupleNet is with the following considerations. Basically, the

source domain images differ from the target ones mainly on low-level information,
such as illumination and texture. Also, it is known that the shallow layers in a
network often do well in capturing the low-level information. With these facts, it
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is natural to let the source blocks gsrc align the source-domain shallow features
towards the target ones.

Practically, the shallow feature distribution alignment by Llow
adv may be im-

perfect, and the shallow features for the source and target domains may still be
slightly mismatched. To remedy them, we use the adversarial loss Ladv in the
output space, as defined in Eq. (3). In this way, we have the final loss Lseg for
training the segmentation network defined as

Lseg = Lce + λlow
advLlow

adv + λadvLadv, (10)

where λlow
adv and λadv control the contributions of the corresponding loss. It is

notable that the incorporation of Ladv only brings minor improvement (+0.3%
mIoU), as shown in Exp. 5 and 6 of Table 3. This shows the feature alignment
is mainly attributed to Llow

adv. The Ladv only serves as a complement.
To train the discriminators, as shown in Fig. 3(b), we follow previous work [64]

to yield the discriminator loss as

Llow
d =

1

N low
d

Nlow
d∑
i=1

(Dlow(ϕs)i − 0)2 +
1

N low
d

Nlow
d∑
i=1

(Dlow(ϕt)i − 1)2, (11)

Ld =
1

Nd

Nd∑
i=1

(D(ps)i − 0)2 +
1

Nd

Nd∑
i=1

(D(pt)i − 1)2. (12)

During inference, as shown in Fig. 3(c), we adopt F = C ◦ gshare ◦ gtgt as
the final model. All other modules are simply discarded. Note that we do not
introduce extra parameters during inference.

Advantage of DecouleNet. First, the source blocks gsrc now bear the re-
sponsibility of feature distribution alignment. Being less distracted by feature
alignment, the final model (i.e., gshare ◦ gtgt) focuses more on the segmentation
task. Second, though the source domain branch gshare ◦ gsrc needs to directly
fit the source domain data with Lce, the final model g = gshare ◦ gtgt is never
required to perform well on the source domain during training. This alleviates
the source domain overfitting problem and facilitates performance boosting on
the target domain, as shown in Fig. 1(c).

3.4 Self-Discrimination

Despite the effectiveness of DecoupleNet, the target blocks gtgt is updated only
according to Ladv, which may not be strong enough to learn optimal parameters
for gtgt. Also, without a proper learning objective for the target domain, the
features ft may not be discriminative enough. To address them, we propose Self-
Discrimination (SD) to provide more supervision on the target domain branch.

As shown in Fig. 3(a), we introduce an auxiliary classifier Caux, which shares
the same architecture with the main classifier C. As the target domain feature ft
passes the classifier C to yield pt, we also forward ft into the auxiliary classifier
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Caux to get the auxiliary prediction pauxt . Meanwhile, we calculate the pseudo
label ỹt according to the main prediction pt. Similar to [90], we adopt class-wise
thresholds τ to ignore uncertain pixels in the pseudo labels and maintain class
balancing as well. Finally, we yield the self-discrimination loss Lsd as

pauxt = Caux(ft), ŷt,i =
C

argmax
c=1

pt,i,c, ỹt,i =

{
ŷt,i pt,i,c=ŷt,i ≥ τ c=ŷt,i

−1(ignored) otherwise
,

Lsd = − 1

Nt

Nt∑
i=1

C∑
c=1

1{ỹt,i = c} log pauxt,i,c, (13)

where C is the number of classes, Nt is the number of spatial locations in the
auxiliary prediction map pauxt , τ c is the threshold for the c-th class, pt,i,c and
pauxt,i,c are the main and auxiliary prediction scores of the c-th class for the feature
at the i-th location, respectively, and ỹt,i is the pseudo label for the i-th location
in the prediction map pt.

It is notable that the class-wise thresholds τ are initialized to zero when
starting training. It is updated with the current predictions pt at each iteration.
The implementation details are given in the supplementary material.

Basically, Lsd is a cross-entropy loss applied to pauxt,i,c. It has a nice property
that can adaptively scale the gradients with the current prediction error. Hence,
it is capable of yielding more discriminative target features ft. To verify the
effectiveness, we compare the t-SNE visualizations with and without SD in the
supplementary material. During inference, we only use the main classifier, and
the auxiliary classifier is simply discarded.
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Fig. 4. Accuracy of pseudo labels dur-
ing training

Remarkably, the accuracy of the
pseudo labels is more than 80%, and
continues to increase during training, as
shown in Fig. 4. Therefore, although
there might be wrong supervision from
pseudo labels, the benefits brought by SD
still outweigh the risks.

Finally, we incorporate Lsd into the
final segmentation loss Lseg as

Lseg = Lce+λlow
advLlow

adv+λadvLadv+λsdLsd.

The auxiliary classifier. The auxiliary
classifier plays an important role in SD.
If we directly apply the self-discrimination loss Lsd on the main prediction pt
without the auxiliary classifier, the noisy pseudo labels may corrupt the normal
training of the main classifier with Lce and cause large performance degradation,
as shown in Exp. 1 and 2 of Table 6. In contrast, introducing an auxiliary
classifier avoids the side effect on the main classifier.



10 X. Lai et al.

𝓛𝑜𝑒𝑠𝑡
𝑡𝑔𝑡

𝒈 𝓒

𝒙𝒕

𝒙𝒕
𝒇𝒖𝒍𝒍

𝒑𝒕
𝒄𝒓𝒐𝒑

𝒑𝒕
𝒇𝒖𝒍𝒍

𝒑𝒕

ෝ𝒑𝒕
෥𝒑𝒕

෥𝒚𝒕

Fig. 5. Framework of Online Enhanced Self-Training. Dashed line: stopping gradients

3.5 Online Enhanced Self-Training

To further boost performance, we extend DecoupleNet from a single stage to
a multi-stage self-training paradigm. Most existing self-training-based meth-
ods [90,59,51,83,77,29,70] generate pseudo labels in the re-labeling phase and
directly use them to provide supervision without further update in the re-
training phase. Generally, the predictions get more accurate during the re-
training process. Fixing the generated pseudo labels may lead to inferior perfor-
mance. ProDA [83] uses prototypes to denoise the pseudo labels. But it requires
to maintain an extra momentum encoder and needs to update the prototypes at
each iteration. In contrast, we propose a simple yet effective method, i.e., Online
Enhanced Self-Training (OEST), to contextually enhance the pseudo labels via
a simple average operation at each iteration.

The framework of OEST is given in Fig. 5. After the first-stage training
explained in Sections 3.3 and 3.4, we generate the pseudo soft labels p̂t ∈
[0, 1]H×W×C by making predictions on each target domain training image xt

using the trained model. Then, in the re-training process, we pass the target
domain image crops xt with strong data augmentation (e.g., color jitter) into
the segmentation network G = C ◦ g to yield their predictions pt. In addition,
we forward their corresponding full images xfull

t with weak data augmentation

(e.g., random horizontal flip) to obtain the full predictions pfullt as

pt = softmax(G(xt)), pfullt = softmax(G(xfull
t )). (14)

Afterwards, we crop pcropt from pfullt in the same way as cropping xt from

xfull
t , and enhance the original pseudo soft labels p̂t with pcropt via a simple

average operation to yield p̃t. It follows by ignoring uncertain pixels with class-
wise thresholds τ st as in [90] to obtain the updated pseudo labels ỹt as

p̃t =
1

2
(p̂t+pcropt ), ŷt,i =

C
argmax

c=1
p̃t,i,c, ỹt,i =

{
ŷt,i p̃t,i,c=ŷt,i ≥ τ st

c=ŷt,i

−1(ignored) otherwise
.

Since pcropt is aware of the contexts in the full image, the quality of the original
pseudo labels can be contextually enhanced via simple fusion. Finally, we yield
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Table 1. Results on GTA5→Cityscapes with ResNet101 and DeepLabv2. ST: self-
training
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mIoU

SourceOnly 27.0 20.6 53.9 20.8 19.4 35.3 40.7 23.0 84.6 30.1 73.5 63.9 31.4 65.7 10.5 26.3 2.1 34.1 21.8 36.0
AdaptSeg [64] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
AdaptSeg(LS) 91.4 48.4 81.2 27.4 21.2 31.2 35.3 16.1 84.1 32.5 78.2 57.7 28.2 85.9 33.8 43.5 0.2 23.9 16.9 44.1
CLAN [46] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt [69] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
FADA [70] 88.5 39.7 83.6 37.9 24.7 27.5 34.1 21.3 83.3 32.9 83.4 58.0 33.5 84.7 37.9 39.8 25.2 30.8 27.6 47.1
Ours 87.5 37.6 83.2 31.6 28.3 38.6 44.3 24.9 85.1 31.0 76.0 68.1 36.9 86.4 28.4 39.0 25.5 42.8 36.1 49.0

CBST [90] ! 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

AdaptPatch [65] ! 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

Label-Driven [77] ! 90.8 41.4 84.7 35.1 27.5 31.2 38.0 32.8 85.6 42.1 84.9 59.6 34.4 85.0 42.8 52.7 3.4 30.9 38.1 49.5

FADA [70] ! 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1

Kim et al. [29] ! 92.9 55.0 85.3 34.2 31.1 34.9 40.7 34.0 85.2 40.1 87.1 61.0 31.1 82.5 32.3 42.9 0.3 36.4 46.1 50.2

FDA-MBT [80] ! 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

TPLD [59] ! 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2

IAST [51] ! 94.1 58.8 85.4 39.7 29.2 25.1 43.1 34.2 84.8 34.6 88.7 62.7 30.3 87.6 42.3 50.3 24.7 35.2 40.2 52.2

MetaCorrection [21] ! 92.8 58.1 86.2 39.7 33.1 36.3 42.0 38.6 85.5 37.8 87.6 62.8 31.7 84.8 35.7 50.3 2.0 36.8 48.0 52.1

DPL [8] ! 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3

ProDA [83] ! 91.5 52.3 82.9 41.8 35.7 40.3 44.3 43.2 87.1 43.4 79.6 66.6 31.6 86.9 40.1 53.0 0.0 45.7 53.2 53.6

Ours+ST ! 88.5 47.8 87.4 38.3 36.9 44.9 53.8 39.6 88.0 38.7 88.8 70.4 39.4 87.8 31.4 55.0 37.4 47.1 55.9 56.7

ProDA (w/ SimCLR) ! 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

Ours (w/ SimCLR) ! 87.6 49.3 87.2 42.5 41.6 46.6 57.4 44.0 89.0 43.9 90.6 73.0 43.8 88.1 32.9 53.7 44.3 49.8 57.2 59.1

the self-training loss Ltgt
oest on pt with ỹt, and add it to the source domain CE

loss Lsrc
ce to obtain the final loss L as

Ltgt
oest = − 1

Nt

Nt∑
i=1

C∑
c=1

1{ỹt,i = c} log pt,i,c, L = Lsrc
ce + Ltgt

oest. (15)

4 Experiment

4.1 Implementation Details

Experimental setting. Following previous work [64,70,46,69,45,65,14], we use
the ResNet-101 [22] and DeepLabv2 [4] as our base model. To split the feature
encoder, we take {layer0, layer1} as the target blocks gtgt and the rest as the
shared blocks gshare for GTA5 dataset, while {layer0, layer1, layer2} as gtgt and
the rest as gshare for Synthia dataset. Note that layer0 refers to {conv1, bn1,
relu, maxpool}. More details are given in the supplementary material.

Datasets. Following most previous work, evaluation is performed on GTA5 →
Cityscapes, Synthia → Cityscapes and Cityscapes → Cross-City. The details of
the datasets [55,57,10,7] are given in the supplementary material.

4.2 Results

The comparison with existing state-of-the-art methods is given in Tables 1 and
2. Clearly, our method outperforms others by a large margin. Previous meth-
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Table 2. Results on Synthia→Cityscapes with ResNet101 and DeepLabv2. ST: self-
training. mIoU+: mIoU of 13 classes
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mIoU mIoU+

SourceOnly 59.9 24.7 57.7 6.3 0.0 32.5 29.7 15.0 72.8 70.8 59.2 17.7 73.0 23.0 11.6 22.6 36.0 41.4
AdaptSeg [64] 79.2 37.2 78.8 10.5 0.3 25.1 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 39.5 45.9
AdaptSeg(LS) 84.0 40.5 79.3 10.4 0.2 22.7 6.5 8.0 78.3 82.7 56.3 22.4 74.0 33.2 18.9 34.9 40.8 47.6
CLAN [46] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - 47.8
AdvEnt [69] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0
Ours 77.9 38.9 74.4 11.9 0.2 33.3 26.5 17.1 83.6 80.0 60.7 26.5 79.9 26.4 25.5 33.5 43.5 50.1

CBST [90] ! 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 48.9

AdaptPatch [65] ! 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 46.5

FADA [70] ! 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 52.5

Label-Driven [77] ! 85.1 44.5 81.0 - - - 16.4 15.2 80.1 84.8 59.4 31.9 73.2 41.0 32.6 44.7 - 53.1

Kim et al. [29] ! 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

FDA-MBT [80] ! 79.3 35.0 73.2 - - - 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 - 52.5

TPLD [59] ! 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5

MetaCorrection [21] ! 92.6 52.7 81.3 8.9 2.4 28.1 13.0 7.3 83.5 85.0 60.1 19.7 84.8 37.2 21.5 43.9 45.1 52.5

DPL [8] ! 87.5 45.7 82.8 13.3 0.6 33.2 22.0 20.1 83.1 86.0 56.6 21.9 83.1 40.3 29.8 45.7 47.0 54.2

IAST [51] ! 81.9 41.5 83.3 17.7 4.6 32.3 30.9 28.8 83.4 85.0 65.5 30.8 86.5 38.2 33.1 52.7 49.8 57.0

ProDA [83] ! 87.3 44.2 83.3 26.6 0.3 41.8 43.8 33.1 86.7 82.4 69.1 25.7 88.0 50.3 31.1 43.8 52.3 59.1

Ours+ST ! 78.7 47.4 75.7 27.8 1.0 43.3 49.1 32.6 87.8 87.3 69.3 34.4 88.5 55.0 44.8 58.5 55.1 62.2

ProDA (w/ SimCLR) ! 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0

Ours (w/ SimCLR) ! 77.8 48.6 75.6 32.0 1.9 44.4 52.9 38.5 87.8 88.1 71.1 34.3 88.7 58.8 50.2 61.4 57.0 64.1

ods [64,65,69,70] neglect the adverse effect brought by entanglement of feature
distribution alignment and the segmentation task. Contrarily, DecoupleNet de-
couples these two tasks, and boosts the performance.

Further, equipped with OEST, our method demonstrates stronger perfor-
mance. It is also notable that our method even surpasses ProDA [83] by 3.1
points on GTA5→Cityscapes and 2.8 points on Synthia→Cityscapes, achieving
a new state-of-the-art result. It is notable that following ProDA to distill the
SimCLR [6] initialized student, our method still outperforms ProDA on both
benchmarks. On Cityscapes → Cross-City, our method also manifests competi-
tive results given in the supplementary material.

4.3 Ablation Study

DecoupleNet. Comparing Exp. 2 and 4 in Table 3 reveals that DecoupleNet
outperforms the domain-invariant method (AdaptSegNet [64]) by 3.0% mIoU,
which reveals the effectiveness of DecoupleNet. Note that except the decoupled
architecture and Llow

adv, Exp. 2 and 4 are kept all the same for fair comparison.
Notably, we emphasize that Ladv brings only slight improvement (+0.3%

mIoU) by comparing Exp. 6 and 7 in Table 3. On the other hand, Llow
adv brings

large performance boost (+2.2% mIoU), in the comparison between Exp. 5 and
7. This shows that the huge performance boost by DecoupleNet mainly comes
from the decoupled network architecture and Llow

adv, rather than Ladv. Ladv only
serves as a complement for the imperfect alignment by Llow

adv. This demonstrates
the effectiveness of DecoupleNet from another perspective.
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Table 3. Ablation study for DecoupleNet and SD. Decouple: decoupled network ar-
chitecture. SD: Self-Discrimination

ID Method Decouple Lce Ladv Llow
adv Lsd mIoU

1 SourceOnly ! 36.0

2 AdaptSegNet ! ! 44.1

3 AdaptSegNet + SD ! ! ! 46.0

4 DecoupleNet ! ! ! ! 47.1

5 DecoupleNet + SD (w/o Llow
adv) ! ! ! ! 46.8

6 DecoupleNet + SD (w/o Ladv) ! ! ! ! 48.7

7 DecoupleNet + SD ! ! ! ! ! 49.0

8 DecoupleNet (w/o Llow
adv) ! ! ! 44.7

Table 4. Ablation study for the decoupled layers, i.e., the architecture of gsrc or gtgt.
Note that ResNet has 5 layers in total, and layer0 refers to the stem layer, i.e., {conv1,
bn1, relu, maxpool}

Decoupled layers {layer0} {layer0,1} {layer0,1,2}
mIoU (%) 47.7 49.0 47.9

Besides, we investigate the effect of decoupled layers (i.e., the architecture of
gsrc or gtgt) in Table 4. Making it too shallow leads to insufficient capability for
feature alignment, while making it too deep may interfere segmentation.

Table 5. Ablation study for the alignment direction between ϕs and ϕt. ϕs → ϕt:
applying Llow

adv on ϕs. ϕt → ϕs: applying Llow
adv on ϕt. No alignment: λlow

adv = 0

Alignment direction ϕs → ϕt ϕt → ϕs No alignment

mIoU (%) 49.0 47.3 46.8

Also, we highlight the importance of the alignment direction of ϕs and ϕt in
Table 5. ϕs → ϕt performs the best. We explain that this prevents the segmen-
tation network g = gshare ◦ gtgt from being distracted by feature alignment.

Self-Discrimination. By comparing Exp. 4 and 7 in Table 3, we observe a
performance boost of 1.9% mIoU brought by SD, which clearly demonstrates its
effectiveness. Also, it is notable that when we directly apply SD on the domain-
invaraint method (i.e., AdaptSegNet [64]), the performance still continues to
improve by a large margin, through the comparison between Exp. 2 and 3 in
Table 3. It shows that SD is not limited to DecoupleNet and can serve as a
plugin to existing methods by providing an additional supervision.
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In addition, we show the t-SNE visualizations of the target domain features
ft with and without SD in the supplementary material. It reveals the fact that
the model tends to learn more discriminative target domain features with SD.

Table 6. Ablation study for class-
wise thresholds and the auxiliary
classifier. class-balance: class-wise
thresholds. aux: auxiliary classifier

ID class-balance aux mIoU ∆

1 ! ! 49.0 0.0

2 ! 46.0 -3.0

3 ! 48.4 -0.6

Moreover, to show the necessity of the
auxiliary classifier, we make comparison in
Table 6. For the model w/o auxiliary clas-
sifier (Exp. 2), we directly apply Lsd on the
main predictions pt, which leads to large
degradation (−3.0% mIoU) compared to
Exp. 1. We conjecture that the supervision
signal from the noisy pseudo labels may in-
terfere the normal training of the main clas-
sifier with source domain ground-truth la-
bels. Further, Exp. 1 and 3 in Table 6 show
the effectiveness of the class-wise thresh-
olds, since it alleviates the class-imbalance
issue on pseudo labels.

Table 7. Ablation study for OEST. avg (full): average pseudo soft labels and pre-
dictions from full images. avg (crop): average pseudo soft labels and predictions from
crops. fix: use fixed pseudo soft labels only. pred only: use predictions only

Fusion Method avg (full) avg (crop) fix pred only

mIoU (%) 56.7 55.2 55.6 25.8

Online Enhanced Self-Training. As shown in Table 7, we compare the mod-
els with various fusion methods. The comparison between ‘avg (full)’ and ‘avg
(crop)’ show the effectiveness of contextual enhancement via full predictions.
Moreover, ‘fix’ is inferior to ‘avg (full)’ by 1.1% mIoU, which shows that online
updating pseudo labels with current predictions indeed improves the quality of
pseudo labels and brings performance boost. As for ‘pred only’, it totally cor-
rupts the training potentially due to the instability of the online prediction.

5 Conclusion

We have observed two issues of existing domain-invariant learning methods –
tasks entanglement and source domain overfitting. We propose DecoupleNet to
enable the final model to focus more on the segmentation task. Moreover, Self-
Discrimination is put forward to learn more discriminative target features. Fi-
nally, we design OEST to contextually enhance the pseudo labels.
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