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Abstract. Most previous works on object counting are limited to pre-defined
categories. In this paper, we focus on class-agnostic counting, i.e., counting ob-
ject instances in an image by simply specifying a few exemplar boxes of interest.
We start with an analysis on intraclass diversity and point out three factors: color,
shape and scale diversity seriously hurts counting performance. Motivated by this
analysis, we propose a new counter robust to high intraclass diversity, for which
we propose two effective modules: Exemplar Feature Augmentation (EFA) and
Edge Matching (EM). Aiming to handle diversity from all aspects, EFA gen-
erates a large variety of exemplars in the feature space based on the provided
exemplars. Additionally, the edge matching branch focuses on the more reliable
cue of shape, making our counter more robust to color variations. Experimental
results on standard benchmarks show that our Robust Class-Agnostic Counter
(RCAC) achieves state-of-the-art performance. The code is publicly available at
https://github.com/Yankeegsj/RCAC.
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1 Introduction

Object counting, i.e., estimating the number of object instances of a certain category in
a given image, has a wide range of applications such as video surveillance and agricul-
ture. However, most methods in previous works can only count pre-defined categories,
such as people [16,13], animals [3], plants [18,22] and cars [17]. For most existing
works, each model is typically trained for one category with a large amount of labeled
data. They have two notable limitations. On one hand, we need to train multiple models
if we are required to count objects of various categories, which is computationally ex-
pensive and inconvenient. On the other hand, such models cannot be adapted to unseen
categories at test time. But in practice, it is desirable to develop counting methods that
are more general and flexible, which are extendable to any arbitrary new category at test
time.
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To this end, class-agnostic object counting is more suited for real applications and
has been investigated recently. Interactive Object Counting (IOC) [2] addresses the
counting task with human interaction. The user is asked to annotate a small number
of objects with dots and the algorithm learns a codebook and partitions all pixels into
object and background groups. This process is repeated until the results are satisfactory.
In contrast, some more recent works [15,19] formulate counting as a matching problem,
turning out to be more effective and efficient. Generic Matching Network (GMN) [15]
learns the matching function from concatenation of query image and exemplar box
features to a similarity heatmap. When adapting the model to a novel category, only
a fraction of parameters need to be optimized. Few-shot adaptation & matching Net-
work (FamNet) [19] computes the correlation maps between exemplar box and image
features and then predicts the density map.

However, the current best performance is still far from satisfactory. For example,
the average ground truth count on the FSC-147 validation set is 63.54, while the mean
average error (MAE) of the current top method FamNet [19] is as high as 24. In order
to understand the limitations of current methods, we analyze failure cases and find that
objects of interest in the same image may differ in color, shape and scale, which largely
hinders counting performance. A detailed analysis can be found in Sec. 3. It has been
shown by FamNet [ 1 9] that it is helpful to provide more diverse exemplar boxes. Yet the
exemplar boxes are provided by annotators subjectively and thus the diversity cannot
be guaranteed; also, the number of provided exemplar boxes is limited, potentially not
covering all instances. To address this problem, in this paper, we aim to develop a
new counting method, which is more robust to intraclass diversity. Specifically, we
propose two effective modules. One the one hand, we apply exemplar augmentation
in the feature space to handle high diversity in various aspects. One the other hand, we
introduce an additional matching branch that uses edge features to deal with diversity
in color.

To summarize, the main contributions of our work are as follows: (1) We analyze the
top-performing class-agnostic counting method FamNet [19], showing that intra-class
diversity is a key factor decreasing counting performance, and point out the diversity
comes from three aspects: color, shape and scale. (2) Two modules are proposed to
overcome the high diversity challenge. The exemplar feature augmentation module in-
creases the exemplar diversity so as to achieve more effective matching with a wide
range of instances. Moreover, the additional matching branch using edge features fo-
cuses on the more reliable cue of shape, down-weighing some less reliable cues, in-
cluding background and object colors. (3) Experimental results on two related datasets
show that our method achieves state-of-the-art results for class-agnostic counting, out-
performing previous methods by a large margin; also, since no test time adaptation is
employed, our method is more convenient to apply.

2 Related Work

In this section, we first briefly review recent works on class-aware object counting and
then focus on class-agnostic object counting methods.
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Class-Aware Object Counting. Most object counting methods are limited to pre-defined
categories, e.g., people, animals and cars. Generally, they can be divided into two
groups. One of them is detection based counting [4,9,12]. Each of them applies an
object detector on the given image, and then counts the number of bounding boxes.
However, it is hard to choose a proper threshold for the detection confidence to select
out reasonable boxes; and object detectors usually perform poorly at crowds. The other
group is regression based counting [19,22,16,13,5,6]. These methods estimate a density
map for each image, and counting is achieved by summing up the pixel values. For both
kinds of methods, box or point annotations for all persons are required at training time,
which are rather expensive. Class-aware object counters perform well on trained cate-
gories but they cannot be adapted to a new category at test time. Also, it is expensive to
obtain rich training annotations.

Class-Agnostic Object Counting. Similar to class-aware object counting, a straight-
forward way for class-agnostic object counting is to apply a few-shot object detector
[10,7,11] on the given image. But the major disadvantage is that it is tricky to choose a
proper detection score threshold for counting; also, the detectors usually fail at crowded
scenes. In contrast, regression based methods are cleaner and expected to achieve higher
performance.

Some early regression based works perform pixel-wise classification. For example,
I0C [2] learns a codebook from a few dot annotations marked by the user, so as to
distinguish object and background pixels. Few-Shot Sequential Approach (FSSA) [24]
uses the extracted prototype features to classify each pixel as one of the object classes
present in the support set or as background. More recently, counting is formulated as
a matching problem, which becomes more effective and efficient. GMN [15] proposed
a class-agnostic counting approach consisting of three modules, namely embedding
module, matching module and adaptation module. The exemplar box and query image
features extracted from the embedding module are concatenated and fed to the match-
ing module to predict a similarity heatmap. The adaption module is used to adapt to a
new domain and is the only module needs to be updated for adaptation. FamNet [19]
and Class-agnostic Few-shot Object Counting Network (CFOCNet) [25] are most re-
lated to our work. They both take correlation matching maps between the exemplar box
and query images and then predict the density maps based on them. FamNet performs
additional fine-tuning at test time. Model Agnostic Meta Learning (MAML) [8] based
few-shot approaches also fine-tune some parameters to make the model better adapt to
novel classes. In this paper, we also employ correlation maps for matching. The ma-
jor difference is that, we propose new modules against high diversity aiming for more
effective matching.

3 Analysing Intraclass Diversity for Counting

In this section, we aim to analyse the impact of intraclass diversity on counting perfor-
mance.

We choose the method of FamNet* as our baseline, which is a simpler version of
FamNet [19] without test-time adaptation. It has been shown [19] that test-time adap-
tation only brings minimal improvements and thus we do not consider it here. The
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Fig. 1. Some Failure cases of FamNet* [19] from the FSC-147 dataset. At each row, from left
to right, We show each query image, its ground truth density map, estimated density map given
each exemplar box and the final average density map. B™', B™2, B"> are shown in red, blue
and white bounding boxes respectively. The numbers indicate the ground truth counting number
or estimated counting results. Colorful for better visualization.

pipeline of FamNet* is as follows (shown as the black arrows in Fig. 2): the query im-
age is fed to the backbone network (ResNet-50) for feature extraction, which is trained
on ImageNet and not updated during training; multi-scale features for each exemplar
box are obtained by performing ROI pooling on the feature maps from the third and
fourth ResNet-50 blocks; the query image features also come from the third and fourth
blocks; correlation maps are calculated by taking each exemplar box feature as a convo-
lution kernel, which is applied to the query image feature maps; the density map is then
predicted by a shallow subnet consisting of 5 conv layers using the correlation matching
maps as input.

We start with analyzing failure cases for the FamNet* we trained on the FSC-147.
We pick those samples with relative errors higher than 20% and do visual inspection.
The relative error is calculated as absolute prediction error divided by the ground truth
count. By observing the above samples, we find three typical factors that affect the
performance: high diversity w.r.t. color, scale and shape. In Fig. | we show some failure
cases from the FSC-147 dataset. Each image is provided with three exemplar boxes
(BY, B3, B3), each generates a density map and the final output density map is obtained
by averaging the above three. The counting number (shown at the right bottom) of each
density map is calculated by summing up all pixel values on it.

The color diversity comes from two aspects: the foreground objects and the back-
ground. For the query image in row 1, there is a high color difference among the object
instances. Although the provided three exemplar boxes are of different colors, they still
fail to cover all colors of different objects. Similarly, in row 2, we can also see color
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Fig.2. Pipeline of our proposed method — Robust Class-Agnostic Counter (RCAC). Given an
input query image I, along with several exemplar boxes B", we first apply an edge detector
to obtain a gray-scale edge image, and then we have a two-stream scheme using the RGB and
edge images for matching in parallel. Specifically, the RGB and edge images are fed into separate
backbone networks for feature extraction; exemplar box features are cropped from the full feature
maps via ROI pooling, which are augmented via our proposed feature augmentation module; after
that, feature correlation layer takes feature maps of each exemplar feature as convolution kernel
to calculate the correlation map on the full feature maps; correlation maps come from the same
exemplar goes through the density prediction module to generate one density map, and the final
predicted density map is obtained by averaging all the density maps. Need to note that only
the edge backbone and density prediction module represented with blue trapezoid are optimized
during training. The black arrows indicate the shared flows between ours and the baseline method.

difference inside object boxes. The fishes are all white but their background regions
differ in color. The high diversity w.r.t. color results in large counting errors.

For the query image in row 3, the chairs distribute from the near to the distant,
showing large variance in scale. Although the provided three exemplar boxes are of
different scales, they are not able to cover the full scale range of all instances. This
challenging scenario makes the predicted counting number (37.36) become much lower
than the ground truth (252).

For the query image in row 4, the skateboards show different shapes caused by
different orientations. We can see many of them are put horizontally, but some are put
vertically, e.g. those ones close to the blue box. Also, they are of different scales from
the near to the distant. Moreover, the color varies a lot across different instances. This
example is representative that different factors may happen at the same time, leading to
very challenging scenarios.

We further provide some quantitative analysis regarding the impact of diversity.
First, from the full validation set we select three subsets with high diversity w.r.t. color,
scale and shape respectively in the following way. For each image, we compute the
variance values w.r.t. color (represented by hue), scale (represented by area) and shape
(represented by aspect ratio) based on the provided exemplar boxes. Then we select top
hundreds of images with highest scale variance as the scale diversity subset, similar for
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color and shape. A comparison of results of FamNet* on the full validation set and three
diverse subsets is shown in Tab. 1. We can find that compared to the full validation set,
diversity w.r.t. color, scale and shape all bring a significant performance drop. Especially
for the subsets with high color and scale diversity, the performance drops by ~ 20 pp
w.r.t. MAE.

The above analysis indicates that counting performance is highly affected by the di-
versity of object instances. Therefore, we are aiming to develop a new counting method
robust to high intraclass diversity. Qualitative results of our method on high intraclass
diversity images is shown in Fig. 4.

4 Our Robust Class-Agnostic Counter

In this section, we first introduce the setting of few-shot counting. After that, we pro-
vide the pipeline of our method, followed by detailed description of two new modules:
exemplar feature augmentation and edge matching.

4.1 Problem Formulation

We follow the few-shot setting from our baseline method FamNet* [19]: given a query
image (17 € R¥>*H*W) and K exemplar bounding boxes (B" € RX*%) that locate
the reference instances belonging to the same category, the task is to predict the density
map Y of the query image and the counting number is calculated by summing up all
pixel values of Y.

4.2 Pipeline

The overall pipeline is depicted in Fig. 2. We have a two-stream feature extraction, ob-
taining feature maps for each input RGB query image and its gray-scale edge image.
For each stream, the exemplar features are cropped from the full feature maps via ROI
pooling and then augmented via our proposed exemplar feature augmentation module.
After that, correlation maps are calculated by taking each exemplar box features as a
convolution kernel, which is applied to the entire query image feature maps. Then the
correlation maps generated by the same exemplar box from two streams are concate-
nated and sent to the density prediction module, which outputs one density map for
each exemplar. The final density map is obtained by averaging all density maps and the
counting number is calculated by summing up all pixel values.

Feature extraction. For the RGB image (/7) stream, we use the ImageNet pre-trained
ResNet-50 backbone, obtaining the query feature maps F'?. Please note we take the
output of two layers as feature maps (3rd and 4th blocks of ResNet-50), denoted as
F1, i € {1,2}, and the network is frozen during training. For the edge image (I¢)
stream, we use a light version of VGG net, which is initialized randomly and optimized
during training.

ROI pooling. This operation (ROI) crops the exemplar feature maps based on exem-
plar boxes B". The feature maps of the k-th exemplar box Bj, are obtained as follows:

F{7 = ROI(F{, By), i € {1,2}. (1)
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Each exemplar feature map is first resized to the same size based on the maximal ex-
emplar box. And then we resize each exemplar feature map by 0.9 and 1.1 to obtain
multi-scale features, following FamNet*. In this way, we obtain multi-level and multi-
scale feature maps for each exemplar:

Flg,f,s = Resize(F,gf, s), @

i1€{1,2}, s€{0.9,1.0,1.1}.

Feature correlation. The correlation maps M = {M{, M, ..M} } are obtained by
convolving the query image and each exemplar box and are used for density prediction.
The process is denoted as:

M, = Conv(F}, kernel), kernel = Fy;; .,

. €))
ie{1,2}, s€{0.9,1.0,1.1},

where C'onv denotes the convolution operation that correlate the exemplar features with
the query features to obtain multiple correlation maps. After convolution, for each ex-
emplar, we append the obtained 6 correlation maps (2x3: two-level (output of 3rd and
4th blocks of ResNet-50) and three-scale (0.9, 1.0, 1.1) features) to M g for density
prediction.

Density prediction. For the k-th exemplar, given M,/ from the previous step, the den-
sity prediction module (D) predicts a relevant density map. The final density map is
obtained by averaging K density maps.

Y = Mean(D(M?), D(MZ), ..., D(ML)) 4)

Optimization. Our objective is to minimize the difference between Y and Y:
~ 2
=Y |v-7[" )

4.3 Exemplar Feature Augmentation (EFA)

To obtain more exemplars for robust prediction, we propose to apply exemplar feature
augmentation to generate other latent exemplar features. To be specific, given B" €
RE*4 we compute a weighted sum of these K features with a weight vector & =
(a1, 9,...;aK), Y;—, o = 1. Besides the original K exemplar features, we generate
additional N augmented features using an augmentation matrix v € RV <% consisting
of N different weight vectors. The nth augmentation feature is denoted as:

qu?:—n,i = Z V(”’ /{)F]g;:
k (6)

ie{l,2} ke{l,2,..K},ne{l,2,...N}.

For instance, when the weight vector is equal to (1,0, ...,0), the augmented feature is
the same as I}/ Please note that we sample @ with a multinomial dirichlet distribution.
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In this way, we obtain a larger set of density maps, and the final density map can be
formulated as:

Y = Mean(D(M{), D(M), ..., D(Mf. ) ©)

Imagine that we want to count objects of various colors, but only three samples are
given. EFA is like creating new samples of different colors in the feature space via
combining the provided exemplars. In this way, objects with various colors can be bet-
ter matched; and similarly, the intraclass diversity w.r.t. shape and scale can be also
handled.

Dirichlet distribution. In machine learning, one common distribution called Beta dis-
tribution is denoted as:

F(91)F(92)a91_1

Beta(a | 61,02) = 70 + 62)

(1—a)™71, ®)
where I represents Gamma function. Dirichlet distribution generalizes the Beta distri-
bution to a multinomial distribution. It is expressed as:

Dirichlet({ay,aq, ... aK} | {91,92,...,9;(})

Hz IF 9 —1 (9)
F(Z’L 1 H

where Z _;o; = 1and o; > 0. We choose the multinomial Dirichelet distribution as
it meets the following requirements: (1) The sum of all weights equals to 1, so that the
value level of the augmented features and the original features remain unchanged. (2)
The number of exemplars can vary. (3) The diversity of sampled weights is high. Fig.
3 shows the sampling probability of dirichlet distribution with different 6. First of all,
we treat K exemplars equally, therefore, the parameters of the distribution satisfy the
condition that 6; are equal. In addition, the original sample occupies three vertices of
the triangle shown in Fig. 3. Expect not to generate features similar to the original, we
adopt the sampling distribution with the maximum sampling probability for the average
fusion of the K exemplars. Meanwhile, in order to make the sampling area large, the
center sampling probability should not be too large. Based on the above considerations,
we adopt the dirichlet distribution with 6; = 2.

4.4 Edge Matching (EM)

Different object instances may differ in color, while shape is a more reliable cue across
instances, leading to more robust counting. On the other hand, edge is a kind of class-
agnostic knowledge, which will not bring category bias. To allow our model more focus
on the shape cue, we introduce an additional stream for matching, where edge features
are used instead of RGB features.

The gray-scale edge image we use in this paper is generated by the RCF model [14]
trained on the BSDS500 dataset [1]. We obtain one edge image for each RGB image.
For instance, in Fig. 2, I® is predicted from /¢ with the trained RCF model.
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Fig. 3. Dirichlet sampling distributions with different configuration parameters.

The structure of the edge stream is the same as the RGB stream. The only difference
is that we use a shallower network for edge feature extraction. Since the gray-scale edge
image is much lighter than the RGB image, we employ a VGG-like net [23] with a
smaller number of channels as the edge backbone, and update it during training.

In the same way as depicted in Sec 4.2, for the k-th exemplar, we get 6 edge corre-
lation maps and append them to M} for the edge branch. Finally, the density prediction
module takes M and M} as input and then predicts the corresponding density map.
The final density map can be computed as:

Y = Mean(D(M?, M¢), ..., D(ML, M§)) (10)

5 Experiments

In this section, we first describe the datasets and evaluation metrics we use, followed
by implementation details; then we show our experimental results with comparisons to
the state-of-the-art; finally, we perform ablation studies.

5.1 Datasets

FSC-147 [19] is a recently proposed dataset for class-agnostic counting. It consists
of 6135 images with 147 object categories, from animals and plants to vehicles and
toys. The number of counted objects in a single picture varies greatly, ranging from
7 to 3731, and the average number is 56. Approximate center of each object instance
is annotated with a dot to generate the ground truth density map. On each image, three
object instances with bounding boxes are selected as exemplars. The training, validation
and test sets consist of 3659 images (89 categories), 1286 images (29 categories), and
1190 images (29 categories), respectively.

CARPK [9] is a car counting dataset which contains 459 images collected from dif-
ferent parking lots taken by drone cameras. There are nearly 90,000 cars in total and
each instance is annotated with one bounding box. We use the center points of bounding
boxes to get density maps. Moreover, same with [19], a set of 12 bounding boxes from
the training set are sampled randomly as exemplars used for all the training and test
images.
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5.2 Evaluation Metrics

Following previous works [19,15], we adopt Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) as evaluation metrics. They are formulated as follows:

1 .
MAE:N;’ZE—ZK‘, (11)
1 & 2
RMSE — N;‘ZYZ-—ZY;, (12)

where N is the number of test images; > Y;, > Y; represent ground truth and predicted
counts.

5.3 Implementation Details

The architectures of RGB image backbone (ResNet-50) and the density prediction mod-
ule are the same as [19]. For the edge backbone, we use the block of a Conv2d layer
(with a 3 x 3 kernel) in VGG [23] as the basic unit. The number of channels of Conv2d
layers are: [16, 16 (s=2), 32, 32 (s=2), 64, 64, 64 (s=2), 128, 128, 128, 128 (s=2), 128,
128], where ‘s’ denotes the stride of each unit with 1 for default. In fact, our VGG-
like network is quite light, even lighter than Resnet18. The numbers of parameters of
our VGG-like net and Resnet18 are 0.92M and 2.78M respectively. Following [19], we
generate the ground truth density maps using an Adaptive Gaussian kernel. No data
augmentation is applied in all experiments. For FSC-147, we set K = 3, and we gen-
erate N = 7 augmentation features. For CARPK, there are totally 12 exemplars, but at
each iteration we randomly take K = 5 and generate N = 25 augmentation features
for matching. We train the network with Adam optimizer, and the learning rate is set
to 107° and our model converges at 500 th epoch. All experiments are conducted on a
single NVIDIA RTX 2080TI GPU with 11GB of VRAM and our code is implemented
with Pytorch.

5.4 Comparisons with State-of-the-Art Methods

FSC-147 dataset. As shown in Tab. 2, we compare our method with previous published
class-agnostic counting methods on the FSC-147 dataset.

Table 1. Comparison on high-diversity subsets (w.r.t. MAE).

Subset FamNet* EFA A | EM A
Full Val Set 24.32 23.08 1.24 23.29 1.03
Color Diversity 42.32 38.43 3.89 35.84 6.84
Scale Diversity 42.65 38.95 3.70 39.09 3.56

Shape Diversity 29.68 27.82 1.86 28.07 1.61
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From the results in Tab. 2, we have the following observations. (1) Generally, regres-
sion based counting methods (GMN [15], MAML [8], FamNet [19] and Ours) perform
better than detection based approaches (FR [11], FSOD [7]). (2) Our method outper-
forms the baseline method FamNet [19] by a large margin. In particular, on the valida-
tion set, the gain is 3.21 pp w.r.t. MAE; on the test set, the improvement is as large as
17.68 pp. These improvements demonstrate the effects of our proposed two new mod-
ules. (3) Our method surpasses all existing methods, defining a new state-of-the-art on
the FSC-147 dataset.

Table 2. Comparison of our method and previous methods on the FSC-147 dataset.

Method Val Set Test Set
MAE RMSE MAE RMSE
Mean 53.38 124.53 47.55 147.67
Median 48.68 129.70 47.73 152.46
FR[11] 45.45 112.53 41.64 141.04
FSOD [7] 36.36 115.00 32.53 140.65
Pre-trained GMN [15] 60.56 137.78 62.69 159.67
GMN [15] 29.66 89.81 26.52 124.57
MAML [§8] 25.54 79.44 24.90 112.68
CFOCNet [25] 27.82 71.99 28.60 123.96
FamNet [19] 23.75 69.07 22.08 99.54
RCAC (Ours) 20.54 60.78 20.21 81.86

We further observe the improvements of our method to the baseline on high diver-
sity images. We show the effects of two modules on high-diversity subsets from the
comparison in Tab. 1. As stated in our abstract and introduction, EFA handles all kinds
of diversity, while EM focuses on handling color diversity, indicating that our method
is more robust to high intraclass diversity.

Additionally, Fig. 4 shows some qualitative results on the FSC-147 dataset. In row 1,
our method obtains stronger responses and a more accurate count number at the scenario
of high shape diversity led by severe occlusion. In row 2, our method produces cleaner
density maps with less noises at the background regions than the baseline by handling
color diversity. Inside each exemplar box, the background colors are dominant, resulting
in noisy responses at background regions on the baseline density map. In row 3, our
method produces more balanced density maps across different scales than the baseline
by handling scale diversity. In row 4, our method produces more uniform density maps
across different foreground color diversity.

CARPK dataset. Similar to [19], we further verify our method on the CARPK dataset,
due to the lack of class-agnostic counting datasets. The experiments are implemented
under the same few-shot setting. Since there is only one category for CARPK, it is
considered rather a simple version of class-agnostic object counting. The results are
shown in Tab. 3. Our model outperforms all previous approaches except GMN, which
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Table 3. Comparison of car counting performance on the CARPK dataset. *GMN uses extra
images of cars from the ILSVRC video dataset for training. “Fine-tuned” denotes whether the
models are further fine-tuned on CARPK.

Method Fine-tuned MAE RMSE
YOLO [9,20] v 48.89 57.55
Faster RCNN [9,21] v 47.45 57.39
One-look Regression [9,17] v 59.46 66.84
Faster RCNN (RPN-small) [9,21] v 24.32 37.62
Spatially Regularized RPN [9] v 23.80 36.79
GMN* [15] v 7.48 9.90

FamNet [19] v 18.19 33.66
RCAC (Ours) v 13.62 19.08
FamNet [19] X 28.84 44.47
RCAC (Ours) X 17.98 24.21

uses external training images of cars from the ILSVRC video dataset. It is notable that
our approach improves over FamNet by 4.57 pp w.r.t MAE and 14.58 pp w.r.t RMSE.
These results indicate that our method generalizes well to different datasets.

Query Baseline RCAC (Ours)

Cnt: 343.75 (err: 93.25) Cnt 428.28 (err: 8.72)

Fig. 4. Qualitative results of different methods on high intraclass diversity images from FSC-147.
Zoom in and colorful for better visualization.
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5.5 Ablation Studies

In the following, we conduct some ablation studies to analyze our proposed exemplar
feature augmentation and edge matching modules. All experiments are conducted on
the validation set of FSC-147.

Effects of two new modules. As shown in Tab. 4, the performance is improved by 1.24
pp w.r.t MAE (from 24.32 to 23.08) when exemplar feature augmentation is employed.
On the other hand, we also observe a remarkable improvement of 1.03 pp w.r.t MAE
(from 24.32 to 23.29) from edge matching. Moreover, we obtain a total gain of 3.78 pp
w.r.t MAE by adding both modules. These results indicate the effects of two proposed
modules.

Table 4. Effects of two proposed components.

Exemplar Fe?lture Edgt'e MAE RMSE
Augmentation Matching
X X 24.32 70.94
v X 23.08 67.23
X v 23.29 63.35
v v 20.54 60.78

Impact of Dirichlet distribution parameter §. From Tab. 5, we can see our method
obtains consistent improvements to the baseline by using exemplar feature augmenta-
tion no matter which sampling parameter we choose. By analyzing Fig. 3 and Tab. 5
simultaneously, we find it works better to set 6; evenly ({2,2,2} vs. {3,2,2}) such that
we have a high probability to include the average fusion of the K exemplars. Also, it
helps to have a larger sampling area ({2,2,2} vs. {5,5,5} such that more diverse com-
binations can be generated. Finally we set 6 to {2,2,2} for all our experiments as it
performs the best.

Table 5. Effect of different dirichlet distribution parameters.

0 MAE RMSE

- 23.29 63.35
{322} 21.44 63.40
{555} 20.46 61.70
{222} 20.54 60.78

Impact of feature augmentation quantity. We analyze how the value of N affects
the performance of our exemplar feature augmentation strategy. As shown in Tab. 6,
we find that in general larger IV leads to better performance and it does not seem to
saturate at N = 7. Due to the limited memory of our NVIDIA RTX 2080TI GPU, we
select N = 7 for our experiments. But we expect to achieve better performance with a
large value.
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Table 6. Impact of different values for augmentation quantity N.

Augmentation
Quantity N MAE RMSE
0 23.29 63.35
1 22.19 62.99
3 21.21 62.07
5 21.14 62.92
7 20.54 60.78

Inference time analysis. To verify the efficiency of our RCAC, we compare the infer-
ence time of our RCAC with FamNet* and FamNet in Tab. 7. We can see our RCAC
runs slightly slower than our baseline FamNet* (75ms vs. 47ms) due to additional com-
putations for edge detection. In order to accelerate our RCAC, we replace RCF with
Sobel operators, which reduces the inference time at a cost of small performance drop.
Please note our RCAC (w/ Sobel) still outperforms FamNet* by ~ 2pp at a similar
speed; and compared to previous top method FamNet, our RCAC (w/ RCF) not only
obtains better performance (by ~ 3pp), but also runs much faster (75ms vs. 3,900ms).

Table 7. Inference time analysis. “T” represents the inference time.

K=3N=0
Method MAE T (ms)
FamNet* 24.32 47
FamNet 23.75 3,900
RCAC (w/ Sobel) 22.41 59
RCAC (w/ RCF) 20.94 75

In the supplementary material, we provide more ablation studies on the impact of the
effect of using edge images at the 2nd branch, effect of number of exemplars, qualitative
results of augmented exemplars and application of EFA in another task.

6 Conclusion

In this paper, we analyze failure cases of previous top-performing class-agnostic object
counter and find high intraclass diversity in the query image has an adverse effect on
counting performance. To solve this problem, we propose two novel modules: exem-
plar feature augmentation and edge matching. They make our counter robust to high
intraclass diversity. Extensive experiments have demonstrated the effectiveness and ro-
bustness of our method.
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