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Abstract. In the context of online privacy, many methods propose com-
plex security preserving measures to protect sensitive data. In this paper
we note that: not storing any sensitive data is the best form of security.
We propose an online framework called “Burn After Reading”, i.e. each
online sample is permanently deleted after it is processed. Our framework
utilizes the labels from the public data and predicts on the unlabeled sen-
sitive private data. To tackle the inevitable distribution shift from the
public data to the private data, we propose a novel unsupervised domain
adaptation algorithm that aims at the fundamental challenge of this on-
line setting–the lack of diverse source-target data pairs. We design a
Cross-Domain Bootstrapping approach, named CroDoBo, to increase
the combined data diversity across domains. To fully exploit the valuable
discrepancies among the diverse combinations, we employ the training
strategy of multiple learners with co-supervision. CroDoBo achieves
state-of-the-art online performance on four domain adaptation bench-
marks. Code is available here

Keywords: domain adaptation, online learning, privacy preserving

1 Introduction

With the onslaught of the pandemic, the internet has become an even more
ubiquitous presence in all of our lives. Living in an enormous web connecting
us to each other, we now face a new reality: it is very hard to escape one’s
past on the Internet since every photo, status update, and tweet lives forever in
the cloud [54,13]. Moreover, recommender systems that actively explore the user
data [16,82] for data-driven algorithms have brought controversy that the right to
privacy is more important than the convenience. Fortunately, we have the Right
to Be Forgotten (RTBF), which gives individuals the right to ask organizations to
delete their personal data. Recently, many solutions [83,88] have been proposed
that try to preserve privacy in the context of deep learning, mostly focused on

* Work was done at Salesforce.
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Fig. 1. The data-flow of the proposed Burn After Reading framework at one itera-
tion. The iteration contains a training and a test phase. In training phase, the model
takes labeled data from the public source domain, and the current unlabeled target
data from the private target domain. The model updates based on the adaptation
loss and then moves to test phase. After prediction, the current target data is perma-
nently deleted from the target domain. Each target data is (1) trained (2) tested (3)
deleted. Best viewed in color.

the Federated Learning [75,24]. Federated Learning allows asynchronous update
of multiple nodes, in which sensitive data is stored only on a few specific nodes.
However, recent studies [87,23,79] show that private training data can be leaked
through the gradients sharing mechanism deployed in distributed models. In this
paper, we argue that: not storing any sensitive data is the best form of security.

The best form of security requires us to delete the user data after use,
which necessitates an online framework. However, existing online learning frame-
works [56,34] cannot meet this need without addressing the distribution shift
from public data, i.e. source domain, to the private user data, i.e. target domain.
Therefore, in this paper we propose an online domain adaptation framework in
which the target domain streaming data is deleted immediately after adapted.
We name the framework “Burn After Reading”, as illustrated in Figure 1. The
task that is seemingly an extended setting of unsupervised domain adaptation
(UDA), however, cannot simply be solved by the online implementation of the of-
fline UDA methods. We explain the reason with a comprehensive analysis of the
existing domain adaptation methods. To begin with, existing offline UDA meth-
ods rely heavily on the rich combinations of cross-domain mini-batches that grad-
ually adjust the model for adaptation [59,29,67,80,48,85,70,62,77,73,76], which
the online streaming setting cannot afford to provide. In particular, many domain
adversarial-based methods [72,27,19,3] depend on a slowly annealing adversar-
ial mechanism that requires discriminating large number of source-target pairs
to achieve the adaptation. Recently, state-of-the-art offline methods [25,32,33]
show promising results by exploiting target-oriented clustering, which requires
an offline access to the entire target domain. Therefore, the online UDA task
needs new solutions to succeed at scarcity of the data from target domain.
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We aim straight at the most fundamental challenge of the online task—the
lack of diverse cross-domain data pairs—and propose a novel algorithm based
on cross-domain bootstrapping for online domain adaptation. At each online
query, we increase the data diversity across domains by bootstrapping the source
domain to form diverse combinations with the current target query. To fully
exploit the valuable discrepancies among the diverse combinations, we train a
set of independent learners to preserve the differences. Inspired by [81], we later
integrate the knowledge of learners by exchanging their predicted pseudo-labels
on the current target query to co-supervise the learning on the target domain,
but without sharing the weights to maintain the learners’ divergence. We obtain
more accurate prediction on the current target query by an average ensemble of
the diverse expertise of all the learners. We call it CroDoBo: Cross-Domain
Bootstrapping for online domain adaptation, an overview of CroDoBo pipeline
is shown in Figure 3.

We conduct extensive evaluations on our method, including the classic UDA
benchmarkVisDA-C [49], a practical medical imaging benchmark COVID-DA [84]
and the large-scale distribution shift benchmark WILDS [26] subset Camelyon.
Moreover, we propose a new adaptation scenario in this paper from Fashion-
MNIST [78] to DeepFashion [35]. On all the benchmarks, our method outper-
forms the state-of-the-art UDA methods that are eligible for the online setting.
Further, without the reuse of any target sample, our method achieves comparable
performance to the offline setting. We summarize the contributions as follows.

– To our best knowledge, we are the first to propose an online domain adap-
tation framework to implement the right to be forgotten.

– We study the fundamental drawback of the online setting compared to
offline–the lack of data diversity, and designed a novel online domain adap-
tation method that improves, and exploits the data diversity.

– Our proposed algorithm achieves new state-of-the-art online results on four
challenging benchmarks.

– Although designed for online setting, our method yields comparable perfor-
mance to the offline setting, suggesting that it is a superior choice even just
for time efficiency.

2 Related Work

The Right to Be Forgotten [69,13,46,15], also referred to as right to vanish,
right to erasure and courtesy vanishing, is the right given to each individual to
ask organizations to delete their personal data. RTBF is part of the General
Data Protection Regulation (GDPR). As a legal document, the GDPR outlines
the specific circumstances under which the right applies in Article 17 GDPR 1.
The first item is: The personal data is no longer necessary for the purpose an
organization originally collected or processed it. Yet, the exercise of this right

1 Article 17 GDPR - Right to be forgotten
https://gdpr.eu/article-17-right-to-be-forgotten/

https://gdpr.eu/article-17-right-to-be-forgotten/
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has become a thorny issue in applications. Politou et al. [50] discussed that the
technical challenges of aligning modern systems and processes with the GDPR
provisions are numerous and in most cases insurmountable. In the context of
machine learning, Villaronga et al. [69] addressed that the core issue of the AI
and Right to Be Forgotten problem is the dearth of interdisciplinary scholarship
supporting privacy law and regulation. Graves et al. [15] proposed three defense
mechanisms against a general threat model to enable deep neural networks to
forget sensitive data while maintaining model efficacy. In this paper, we focus
on how to obtain model efficacy while erasing data online to protect the user’s
right to be forgotten.

Online Adaptation to Shifting Domains was first investigated in Signal
Processing [9] and later studied in Natural Language Processing [8] and Vision
tasks [52,22,40,42,6]. Jain et al. [22] assumed the original classifier output a
continuous number of which a threshold gives the class, and reclassify points
near the original boundary using a Gaussian process regression scheme. The
procedure is presented as a Viola-Jones cascade of classifiers. Moon et al. [42]
proposed a four-stage method by assuming a transformation matrix between
the source subspace and the mean-target subspace embedded in the Grassmann
manifold. The method is designed for handcrafted features. In the context of deep
neural network, one transformation matrix might not be sufficient to describe
the correlation between source and target deep representations [44]. Taufique
et al. [66] approached the task by selectively mixing the online target samples
with those that were saved in a buffer. Since in [66] the approach relies on saved
target samples, it is not applicable to the “Burn After Reading” framework.

Active Domain Adaptation [53,39,4,51] also benefits the online learning of
shifting domains. But it has a different setting: the target domain can actively
acquire labeled data online. Rai et al. [53] presented an algorithm that harnessed
the source domain data to learn a initializer hypothesis, which is later used for
active learning on the target domain. Ma et al. [39] allowed a small budget of
target data for the categories that appeared only in target domain and presented
an algorithm that jointly trains two sub-networks of different learning strategies.
Chen et al. [4] proposed an algorithm that can adaptively deal with interleaving
spans of inputs from different domains by a tight trade-off that depends on
the duration and dimensionality of the hidden domains. The active acquisition
of target labels is not feasible for the unsupervised domain adaptation, thus is
beyond the scope of this paper.

Test-Time Domain Adaptation [68,71,65] is another related task. Similar
to the “burn after reading”, test-time DA also aims at a fast adaptation to the
target samples. Differently, test-time DA is motivated by the unavailability of
the source domain [71], which is a variant of source-free domain adaptation [32].
Thus, it is based on a continual setting. Meanwhile, test-time domain adaptation
does not require target samples being deleted after training, although Wang et
al. [71] and Sun et al. [65] both discussed the extension to an online setting in the
experiments. Without the access to source samples, Varsavsky et al. [68] lever-
ages a combination of adversarial learning and consistency under augmentation.
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Sun et al. [65] exploits the self-supervision with auxiliary rotation prediction. In
this paper, we compare with test-time DA with a devised continual version of
our method in the supplementary.
Ensemble Methods for Online Learning [1,41] such as bagging and boosting
have shown advantages handling concept drift [38] and class imbalance, which are
common challenges in the online learning task. MinKu et al. [41] addressed the
importance of ensemble diversity to improve accuracy in changing environments
and proposed the measurement of ensemble diversity. Han et al. [17] proposed
a regularization for online tracking with a subset of branches in the neural net-
work that are randomly selected. Although online learning and online domain
adaptation share similar streaming form of data input, the two tasks face fun-
damentally different challenges. For online learning, the challenge is to select
the most trustworthy supervisions from the streaming data by differentiating
the informative vs. misleading data points, also known as the stability-plasticity
dilemma [21]. However, for online domain adaptation (our task), the stream-
ing data of target domain naturally comes unlabeled, and the challenge is the
scarcity of supervision. Thus the goal is how to maximize the utilization of the
supervision from a different but related labeled source domain.

3 Approach

In this section, we introduce the proposed method for “Burn After Reading”
framework, in which the samples from the public source domain are fully acces-
sible, while only one/a batch of the target samples is available at each iteration.
The model “reads” the current target data, updates, then predicts, after which
the target data is deleted permanently from the target domain. In Sec 3.1 we
describe the difference between online and the offline setting. In Sec 3.2, we first
introduce the cross-domain bootstrapping strategy and the theoretical insights
behind. Then we describe the details of the co-supervision.

3.1 Offline vs. Online

Given the labeled source data DS = {(si, yi)}NS
i=1 drawn from the source distri-

bution ps(x, y), and the unlabeled target data DT = {ti}NT
i=1 drawn from the

target distribution pt(x, y), where NS and NT represent the number of source
and target samples, both offline and online adaptation aim at learning a classifier
that make accurate predictions on DT . The offline adaptation assumes access
to every data point in both DS and DT , synchronous [12,59,62,67] or domain-
wise asynchronous [32]. The inference on DT happens after the model is trained
on both DS and DT entirely. Differently for online adaptation, we assume the
access to the entire DS , while the data from DT arrives in a streaming data of
random mini-batches {Tj = {tb}Bb=1}

MT
j=1. B is the batch size and MT is the total

number of target batches. Each mini-batch T is first adapted, tested and then
erased from DT without replacement, as shown in Figure 1 and 3. We refer each
online batch of target data as a target query.
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Fig. 2. Illustration of computing co-supervision loss (ℓz→k
t in Eq. 4), taking ℓ→1

t for
example. The co-supervision for learner 1 is from the other K-1 learners. The current
target data is repeatedly paired with each bootstrapped source data to improve data
diversity. Each learner takes a unique data combination and generates pseudo-label
ŷk of the current target data. Then ℓ→1

t receives co-supervision averagely from the
pseudo-labels {ŷ2, ŷ3, ..., ŷK}.

The fundamental challenge of our online task is the limited access to the
training data at each inference query, compared to the offline task. For generality,
we can assume there are 103 source and target batches, respectively. In an offline
setting, the model is tested after training on at most 106 combinations of source-
target data pairs, while in an online setting, an one-stream model can see at most
103+500 combinations at the 500-th query. Undoubtedly, the online adaptation
faces a significantly compromised data diversity. The training process of our
task suffers from two major drawbacks: (I) The model is prone to underfitting
on target domain due to the lack of seen target samples, especially at the early
stage of training. (II) Due to the deletion of previous data, the model lacks the
diverse combinations of source-target data pairs that enable the deep network
to find the optimal cross-domain classifier [30].

The goal of the proposed method is to minimize the two drawbacks of the
online setting. We first propose to increase the data diversity by cross-domain
bootstrapping, and we preserve the discrepancy in independently trained learn-
ers. Then we fully exploit the valuable discrepancies of these learners by ex-
changing their expertise on the current target query to co-supervise each other.

3.2 Proposed Method

Cross-domain Bootstrapping for Data Diversity The diversity of cross-
domain data pairs is crucial for most prior offline methods [12,48,59] to succeed.
Since the target samples cannot be reused in the online setting, we propose to
increase the data diversity across domains by bootstrapping the source domain
to form diverse combinations with the current target domain query, as shown
in Figure 2. Specifically, for each target query Tj , we randomly select a set of
K mini-batches {Sk

j = {(sb)Bb=1}}Kk=1 of the same size from the source domain

with replacement. Correspondingly, we define a set of K base learners {wk}Kk=1.
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At each iteration, a learner wk makes prediction for query Tj after trained on
{Tj , S

k
j }, and updates via

wk ← wk − η
(
∇L(wk, {Tj , S

k
j })

)
,

pkj = p
(
c|Tj ;w

k
)
, (1)

where η is the learning rate, c is the number of classes, pkj is the predicted
probability by the k-th learner, and L(, ) is the objective function. The predicted
class for Tj is the average of K predictions of the base learners. We justify our
design choice from the perspective of uncertainty estimation in the following
discussion.

Theoretical Insights As mentioned in Sec. 3.1, we aim at the best estimation
of the current target query. We first consider a single learner situation. At the
j-th query, the learner faces a fundamental trade-off: by minimizing the uncer-
tainty of the j-th query, the learner can attain the best current estimation. Yet
the risk of fully exploring the uncertainty is to spoil the existing knowledge from
the previous j-1 target domain queries. However, if we don’t treat the uncer-
tainty, the single observation on j-th query is less informative for current query
estimation. Confronting the dilemma, we should not ignore that the uncertainty
captures the variability of a learner’s posterior belief which can be resolved
through statistical analysis of the appropriate data [45]. This gives us hope for
a more accurate model via uncertainty estimation. One popular suggestion for
resolving uncertainty is to use Dropout [10,11,58] sampling, where individual
neurons are independently set to zero with a probability. As a sampling method
on the neurons, Dropout works in a similar form of bagging [74,60] of multiple
decision trees. It might equally reduce the overall noise of the network regardless
of domain shift but it does not address the problem of our task, which is the
lack of diverse cross-domain combinations.

Alternatively, we employ another pragmatic approach Bootstrap for uncer-
tainty estimation on the target domain that offsets the source dominance. With
the scarcity of target samples, we propose to bootstrap source-target data pairs
for a more balanced cross-domain simulation. At high-level, the bootstrap simu-
lates multiple realizations of a specific target query given the diversity of source
samples. Specifically, the bootstrapped source approximate a distribution over
the current query Tj via the bootstrap.

The bootstrapping brings multi-view observations on a single target query by
two means. First, given K sampling subsets from DS , let F be the ideal estimate
of Tj , F̂ be the practical estimate of the dataset, and F̂∗ be the estimate from

a bootstrapped source paired with the target query, F̂∗ = K−1
∑K

k=1 F̂∗
k will

be the average of the multi-view K estimates. Second, besides the learnable
parameters, the Batch-Normalization layers of K learners generate result in
a set of different means and variances {µk, σk}Kk=1 that serve as K different

initializations that affects the learning of F̂∗.
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Fig. 3. The full pipeline of the proposed CroDoBo K=2 method at j-th iteration.
Only one target query j is currently available from target domain in this iteration. We
bootstrap the source domain and combine with the current j-th query. The learners wu

(k=1) and wv (k=2) exchange the generated pseudo-labels ŷu
j and ŷv

j as co-supervision.
Each learner is updated by a supervised loss ℓs on source data, a self-supervised loss ℓself
on the target data and a co-supervised loss ℓt. The test result is recorded by averaging
the predictions of both learners. Once tested, query j is immediately deleted.

Exploit the Discrepancies via Co-supervision After the independent learn-
ers have preserved the valuable discrepancies of cross-domain pairs, the question
now is how to fully exploit the discrepancies to improve the online predictions
on the target queries. On one hand, we want to integrate the learners’ expertise
into one better prediction on the current target query, on the other we hope to
maintain their differences. Inspired by [81], we train the K learners jointly by
exchanging their knowledge on the target domain as a form of co-supervision.
Specifically, the K learners are trained independently with bootstrapped source
supervision, but they exchange the pseudo-labels generated for target queries.
We followed the FixMatch [63] to compute pseudo-labels on the target domain.
We first consider K=2 for simplicity, we denote the learners as wu for k = 1
and wv for k = 2, respectively.

Given the current target query Tj , the loss function L consists a supervised
loss term ℓs from the source domain with the bootstrapped samples, and a self-
supervised loss term ℓt from the target domain with pseudo-labels ŷb from the
peer learner, as illustrated in Figure 3. We denote the cross-entropy between
two probability distributions as H(; ). Thus, the co-supervision objective ℓt is
obtained via:

ℓv→u
t = B−1

B∑
b=1

1 (pvb ≥ τ)H
(
ŷvb ; p(c|t̃b;wu)

)
,

ℓu→v
t = B−1

B∑
b=1

1 (pub ≥ τ)H
(
ŷub ; p(c|t̃b;wv)

)
, (2)
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pub and pvb are the predicted probabilities of tb by wu and wv, respectively. τ is
the threshold for pseudo-label selection, and t̃b is a strongly-augmented version
of tb using Randaugment [5]. However, we note that RandAug is a technique
only employed to increase data diversity, but is not required for CroDoBo. We
denote the version without any augmentation as CroDoBo, and we denote the
version with RandAug as CroDoBo+.

To further exploit the supervision from the limited target query, from pub and
pvb we compute a self-supervised loss ℓself = ℓent+λℓdiv, in which ℓent is standard
entropy and ℓdiv is a balancing term for class-diversity, λ is a weighting factor.
The ℓself is widely used in prior domain adaptation works [70,57,32]. Finally, we
update the learners by

wu ← wu − η( ∇ℓs(wu, Su
j ) +∇ℓv→u

t +∇ℓself(wu, Tj)),

wv ← wv − η( ∇ℓs(wv, Sv
j ) +∇ℓu→v

t +∇ℓself(wv, Tj)). (3)

For K > 2, each learner wk is updated with the co-supervision from the
other K − 1 learners (Figure 2), weighted by 1/(K − 1) for each ℓz→k

t (z is the
learner’s index other than k). We update wk by

wk ← wk − η(∇ℓs(wk, Su
j ) +

1

K − 1

K−1∑
z=1

∇ℓz→k
t +∇ℓself(wk, Tj)). (4)

4 Experiments

We consider two metrics for evaluating online domain adaptation methods: on-
line average accuracy and one-pass accuracy. We provide formulations for our
metrics. Given a target sequence DT = {T0, T1, ..., Tj , ..., TNT

}, the online model
at time j is wj . The test accuracy on the current Tj is accj , then the online

accuracy ACConline =
1

NT

∑NT

j=1 accj(Tj ;wj) is the average of the entire stream-
ing accuracies. Once the model finishes online update, we freeze the weights
of wNT

and compute one-pass accuracy ACCone-pass =
1

NT

∑NT

j=1 acc(Tj ;wNT
).

One-pass measures the model’s generalizability to the entire target domain. We
keep track of this metric in case the model keeps overfitting to the new target
data only to achieve high online accuracy [43]. A one-pass accuracy much lower
than online average indicates that the model might have overfitted to the fresh
queries, but compromised its generalization ability to the early queries.
Dataset. We use VisDA-C [49], a classic benchmark adapting from synthetic
images to real. We followed the data split used in prior offline settings [49,32,59].
We also use COVID-DA [84], adapting the CT images diagnosis from common
pneumonia to the novel disease. This is a typical scenario where online domain
adaptation is valuable in practice. When a novel disease breaks out, without
any prior knowledge, one has to exploit a different but correlated domain to
assist the diagnosis of the new pandemic in a time-sensitive manner. We also
evaluate on a large-scale medical dataset Camelyon17 from the WILDS [26], a
histopathology image datasets with patient population shift from source to the



10 Yang et al.

target. Camelyon17 has 455k samples of breast cancer patients from 5 hospitals.
Another practical scenario is the online fashion where the user-generated content
(UGC) might be time-sensitive and cannot be saved for training purposes. Due
to the lack of cross-domain fashion prediction dataset, we propose to evaluate
adapting from Fashion-MNIST [78]-to-DeepFashion [35] category prediction
branch. We select 6 fashion categories shared between the two datasets, and
design the task as adapting from 36, 000 grayscale samples of Fashion-MNIST
to 200, 486 real-world commercial samples from DeepFashion.

Implementation details. We implement using Pytorch [47]. We follow [33,32]
to use ResNet-101 [18] on VisDA-C pretrained on ImageNet [7,55]. We follow [84]
to use pretrained ResNet-18 [18] on COVID-DA. We follow the leader-board on
WILDS challenge [26] 2 to use DenseNet-121 [20] on Camelyon17 with random
initialization, we use the official WILDS codebase (v1.1.0) for data split and eval-
uation. We use pretrained ResNet-101 [18] on Fashion-MNIST-to-DeepFashion.
Our target query batch-size and bootstrapped source batch-size are both set as
64. The confidence threshold τ = 0.95 and diversity weight λ = 0.4 are fixed
throughout the experiments. Our method is not sensitive to hyperparameters,
the results are reported in supplementary.

Baselines.We compareCroDoBo without data augmentation andCroDoBo+

with RandAug with eight state-of-the-art domain adaptation approaches, includ-
ingDAN [36],CORAL [64],DANN [12],ENT [14,57],MDD [85],CDAN [37],
SHOT [32] and ATDOC [33]. ATDOC has multiple variants of the auxil-
iary regularizer, we compared with the Neighborhood Aggregation (ATDOC-NA)
with the best performance in [33]. Among the compared approaches, SHOT and
ATDOC-NA require a memory module that collects and stores information of
all the target samples, thus only apply the offline setting. For the other six
approaches, we compare both offline and online results. Each offline model is
trained for 10 epochs. Each online model is trained batch-by-batch for 1 epoch,
during which the online test results are recorded after each model update. All the
online baselines take the same randomly-perturbed target queries to make a fair
comparison. The results of CroDoBo and CroDoBo+ reported in Table 1-4
have 2 learners (i.e. K=2), the results with K ≥ 3 are reported in Table 7.

Main results. We summarize the results on VisDA-C [49] in Table 1, and plot
the online results in Figure 4 We follow [49,25,32,33] to provide the VisDA-C one-
pass accuracy in class average. In Table 1: Online, the proposedCroDoBo largely
outperforms other baselines. Without augmentation, our method outperforms
the second by 11.5%. Our online result is on par with the state-of-the-art offline
performance ATDOC-NA [32], outperforming many other offline baselines.

Comparing across the offline and online setting, the Source-Only baseline drops
2.4% in the online average and 7.2% in the one-pass accuracy, which indicates
that the data diversity is also important in domain generalization. We observe
that ENT [57], which is an entropy regularizer on the posterior probabilities
of the unlabeled target samples, has a noticeable performance drop in the on-
line setting, and illustrates more obvious imbalanced results over the categories

2 https://wilds.stanford.edu/leaderboard/

https://wilds.stanford.edu/leaderboard/
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VisDA-C
TargetSource

Fig. 4. Results of online adaptation from synthetic source domain to real target do-
main on VisDA-C [49] with “Burn After Reading”. The x-axis is the online streaming
timestep. Each query contains 64 samples. Each approach takes the same randomly
perturbed sequence of target queries. Source-Only is in green, the proposed CroDoBo
is in blue. Smoothed with 1-D uniform filter with length=5. Best viewed in color.

(superior at class “knife” but poor at “person” and “truck”). We consider it a
typical example of bad objective choice for the online setting when the dataset
is imbalanced. Without sufficient rounds to provide data diversity, entropy mini-
mization might easily overfit the current target query. The 2.5% drop in one-pass
from online further confirmed the model has deviated from the beginning.
Results on two medical imaging datasets COVID-DA [84] and WILDS -
Camelyon17 [26] are respectively summarized in Table 2 and Table 3.The on-
line streaming accuracy is presented in Figure 5. COVID-DA* is the method
proposed along with the dataset in [84], which is a domain adversarial-based
multi-classifier approach with focal loss regularization. Our method outperforms
the other approaches on COVID-DA regarding the online and one-pass metric,
and achieves competitive performance against the best offline accuracy. On the
large-scale benchmark WILDS -Camelyon17, our CroDoBo is on par the the
best offline result, and CroDoBo+ outperforms the offline results by 1.7%,

Table 1. Accuracy on VisDA-C (%) using ResNet-101. In the online setting, individual
class reports accuracy after one-pass, one-pass is the class average. Best offline (italic
bold), best online (bold).

Methods (Syn → Real) plane bike bus car horse knife motor person plant skate train truck Online One-pass Per-Class Acc.

Offline

Source-Only 67.7 27.4 50.0 61.7 69.5 13.7 85.9 11.5 64.4 34.4 84.2 19.2 - - 49.1

DAN [36] 84.4 50.9 68.4 66.8 82.0 17.0 82.3 22.0 73.3 47.4 81.2 18.3 - - 57.8

CORAL [64] 94.7 46.8 78.0 62.4 86.5 70.1 90.4 73.5 84.2 34.9 87.7 24.9 - - 69.5

DANN [12] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 - - 57.4

ENT [57] 88.6 29.5 82.5 75.8 88.7 16.0 93.2 63.4 94.2 40.1 87.3 12.1 - - 64.3

MDD [85] 89.2 58.9 70.5 54.5 71.1 42.9 78.8 22.5 68.6 54.7 88.6 15.4 - - 59.6

CDAN [37] 89.4 40.3 74.6 65.2 81.5 62.2 90.1 69.3 73.3 58.6 84.8 19.1 - - 67.4

SHOT [32] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 - - 82.9

ATDOC-NA [33] 95.3 84.7 82.4 75.6 95.8 97.7 88.7 76.6 94.0 91.7 91.5 61.9 - - 86.3

Online

Source-Only 73.3 6.5 44.9 67.8 58.6 5.7 67.2 18.3 47.7 19.2 84.1 9.3 46.7 41.9 -

DAN [36] 87.7 45.9 69.9 70.9 77.4 17.7 80.7 18.6 79.9 29.9 82.7 16.6 57.8 56.5 -

CORAL [64] 94.7 51.0 79.6 63.2 88.2 69.4 91.1 73.1 87.7 41.8 88.4 24.2 66.7 71.0 -

DANN [12] 84.5 39.2 70.2 60.4 77.1 28.6 90.9 20.5 67.7 39.9 89.8 10.5 49.0 56.6 -

ENT [57] 87.1 14.8 87.9 71.9 87.8 98.9 90.3 0.0 5.2 15.0 80.4 0.2 55.8 53.3 -

MDD [85] 95.1 52.2 87.9 57.9 90.3 94.8 88.4 45.7 76.2 50.5 77.7 25.7 60.4 70.1 -

CDAN [37] 88.5 44.3 74.3 68.4 80.3 60.2 89.9 69.9 74.3 57.1 84.8 13.9 62.3 67.1 -

CroDoBo (ours) 93.7 76.4 86.3 77.4 92.5 94.0 90.8 77.6 90.1 88.4 85.4 37.7 77.9 82.5 -

CroDoBo+(ours) 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0 -
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WILDS-Camelyon17 COVID-DA

Fig. 5. Results of online accuracy on WILDS -Camelyon17 [26] with hospital patient
population shift, and COVID-DA [84] adapting from common pneumonia to COVID-
19 medical images with “Burn After Reading”. Source-Only is in green, the proposed
CroDoBo is the solid blue line. Smoothed with 1-D uniform filter with length=5 for
WILDS -Camelyon17.

which validates the effectiveness of the approach. The good performance on
larger number of target queries indicates that CroDoBo can well exploit the
underlying information from the target domain. Similar observations are made
on the large-scale Fashion benchmark [78,35]. Meanwhile, we reprint Domain
Generalization results from the WILDS leaderboard for reference.

Results on large-scale Fashion dataset, from Fashion-MNIST [78] to Deep-
Fashion [35] category prediction branch, is summarized in Table 4. We provide
the online results in Figure 6. To the best of our knowledge, we are the first to
report results on this meaningful adaptation scenario. The offline Source-Only
merely achieves 23.1% accuracy, only 6.5% gain on the basis of the probabil-
ity of guessing, which indicates the benchmark is challenging. The sharp drop
of performance from Source-Only online accuracy to one-pass accuracy (-6.8%)
indicates the large domain gap, and how easy the model is dominated by the
source domain supervision. Similar observation is made on WILDS -Camelyon17

Table 2. Offline and online accuracy (%)
on COVID-DA [84], adaptation from pneu-
monia to Covid. All the baselines use
ResNet-18 as the backbone. COVID-DA*
is the method proposed in [84] along with
dataset.

Methods (Pneumonia → Covid) Online One-pass Offline

Offline & Online

Source-Only 83.6 82.0 88.9
DAN [36] 84.4 85.7 87.7
CORAL [64] 67.6 45.4 65.4
DANN [12] 83.0 87.1 87.7
ENT [57] 84.3 87.3 89.8
MDD [85] 83.2 86.2 81.0
CDAN [37] 83.0 86.4 86.3
SHOT [32] - - 93.2
ATDOC-NA [33] - - 98.1
COVID-DA* [84] - - 98.1

CroDoBo (ours) 95.0 97.1 -
CroDoBo+(ours) 96.5 97.1 -

Table 3. Accuracy on WILDS -
Camelyon17 [26] (%) using DenseNet-
121. Domain Generalization results are
reprinted from WILDS leaderboard
(see Footnote 2).

Methods (Hospital 1,2,3 → Hospital 5) Online One-pass Offline

ERM [26] - - 70.3
Group DRO [26] - - 68.4

Domain IRM [26] - - 64.2
Generalization FISH [61] - - 74.7

Offline & Online

Source-Only 71.7 60.1 63.6
DAN [36] 76.3 78.0 69.0
CORAL [64] 66.0 87.1 85.0
DANN [12] 76.4 81.4 86.7
ENT [57] 83.1 82.3 87.5
MDD [85] 77.8 52.5 63.7
CDAN [37] 62.7 60.1 58.5
SHOT [32] - - 73.8
ATDOC-NA [33] - - 86.3

CroDoBo (ours) 87.5 89.2 -
CroDoBo+(ours) 89.2 91.9 -
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Fashion-MNIST to DeepFashion
Target

Source

Fig. 6. Results of online adaptation from Fashion-MNIST [78]to DeepFashion [35] with
“Burn After Reading”. Smoothed with 1-D uniform filter with length=10.

Source-Only results(-11.6% from online to one-pass), this usually happens when
the source domain is less challenging than the target domain, and the distri-
bution of the two domains are far from each other. Faced with this challenging
benchmark, CroDoBo improves the online performance to a remarkable 49.1%,

Table 4. Results on Fashion-MNIST [78] to DeepFashion [35] (%) using ResNet-101.

Methods (F-MNIST → DeepFashion) Online One-pass Offline

Offline & Online

Source-Only 22.7 15.8 23.1

DAN [36] 40.7 42.0 32.7

CORAL [64] 40.4 40.7 39.6

DANN [12] 35.6 26.5 40.5

ENT [57] 31.9 31.2 31.1

MDD [85] 36.5 38.0 39.0

CDAN [37] 45.4 47.6 47.2

SHOT [32] - - 42.3

ATDOC-NA [33] - - 47.4

CroDoBo (ours) 47.6 47.6 -

CroDoBo+ (ours) 49.1 46.3 -

Table 5. Ablation study of cross-
domain bootstrapping on four datasets
(%). VisDA-C one-pass accuracy is in
per-class. Number of learners K = 2 in
both w/ crodobo and w/o crodobo.

Method/Dataset VisDA-C COVID-DA Camelyon17 Fashion

Online
w/o CroDoBo 78.5 94.4 86.2 42.3
w/ CroDoBo 79.4 96.5 89.2 49.1

One-pass
w/o CroDoBo 84.0 97.1 89.4 39.9
w/ CroDoBo 84.0 97.1 91.9 46.3

Table 6. Ablation study on the objectives
on target domain on VisDA-C (%). T is
the sharpening temperature in the Mix-
Match [2].

Method Online One-pass

default (w/o CroDoBo, τ=0.95, λ=0.4) 78.5 (-) 84.0 (-)
w/o ℓent 63.7(↓) 53.1(↓)
w/o ℓdiv 72.6(↓) 73.0(↓)
replace ℓent + ℓdiv w/ Pseudo-labeling [28] (τ=0.95) 70.2(↓) 70.0(↓)
replace ℓent + ℓdiv w/ MixMatch [2] (T=0.5) 73.0(↓) 75.3(↓)
replace ℓt w/ MixMatch [2] (T=0.5) 76.3(↓) 81.5(↓)
use Randaug [5] on ℓent, ℓdiv 77.6(↓) 83.7(↓)

Table 7. Accuracy on VisDA-C (%) using ResNet-101 with different number of learners
K, and comparing the computation speed reported using 2 NVIDIA-P6000 GPUs.

CroDoBo+ plane bike bus car horse knife motor person plant skate train truck Online One-pass samples/sec

K = 2 94.8 87.5 90.5 76.0 94.9 93.7 88.7 80.1 94.8 89.4 84.6 30.7 79.4 84.0 25

K = 3 95.0 85.6 84.2 73.3 94.4 95.7 88.5 82.2 94.4 83.4 89.3 36.6 79.2 83.5 16

K = 4 95.5 85.0 85.0 76.1 95.3 96.0 92.7 81.8 92.7 88.9 86.8 37.3 81.3 84.4 12

K = 5 96.3 82.3 86.7 83.0 93.7 95.6 91.6 83.2 96.3 87.0 85.2 43.0 82.0 85.3 10
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outperforming the best result in the offline setting. Our one-pass accuracy is
slightly shy compared to CDAN [37], but is better in online metric.
Ablation study. We conduct ablation study on the impact of cross-domain
bootstrapping in Table 5. Following Table 1, we provide the VisDA-C one-pass
accuracy in class average. This study is to evaluate whether the improvement
is introduced by cross-domain bootstrapping or simply the strong baseline with
the objectives on the target domain (see Sec. 3.2). Thus, we devise a base-
line by removing only the cross-domain bootstrapping, called w/o CroDoBo.
The baseline model has one learner that is optimized by minimizing the ob-
jective ℓs + ℓt + ℓent + λℓdiv, where ℓt = B−1

∑B
b=1 1 (pb ≥ τ)H

(
ŷb; p(c|t̃b;w)

)
,

which is Eq. (2) without exchanging the pseudo-labels. In Table 5, we observe
that w/ CroDoBo is consistently better than w/o in the online average ac-
curacy on all the datasets. Regarding one-pass accuracy, the effectiveness of
cross-domain bootstrapping is unapparent on smaller datasets VisDA-C and
COVID-DA, yet clearly outperforms w/o on large-scale WILDS -Camelyon17
and Fashion-MNIST-to-DeepFashion.

We further conduct ablation study on the objective terms (see Sec. 3.2) and
report the results in Table 6. To eliminate the benefit of cross-domain boost-
ing, our default setting is the model w/o CRODOBO. We leave out ℓent and
observe significant performance drop. Without ℓdiv, the performance decrease
slight in the online metric, but far more sharply on the one-pass metric (which
is calculated per-class). We analyze that the diversity term is important for im-
balanced dataset like VisDA-C to achieve high class-average accuracy. We also
report the results by replacing ℓent and ℓdiv with Pseudo-labeling [28]. We replace
either {ℓent, ℓdiv} or ℓt with MixMatch, and observe decent performance when
employed together with {ℓent, ℓdiv} (see Table 6 row6). The RandAugment [5]
on the entropy and diversity terms does not enhance the performance.
Number of Learners K ≥ 3. We report the results of CroDoBo with varying
number of learners K ∈ {2, 3, 4, 5} on VisDA-C in Table 7. We observe that
when K=3 the performance is consistent with K=2. However, from K=4 the
performance is improved with more learners with discrepancies. This observation
reflects the effectiveness to exploit the discrepant learners via bootstrapping and
co-supervision. The choice of K is a trade-off between computation cost and
performance. We find thatK=2 is sufficient to yield state-of-the-art performance
in most times, thus is a better choice considering its computation efficiency.

5 Conclusion

In the context of the the right to be forgotten, we propose an online domain
adaptation framework in which the target data is erased immediately after pre-
diction. A novel online UDA algorithm is proposed to tackle the lack of data
diversity, which is a fundamental drawback of the online setting. The proposed
method achieves state-of-the-art online results and comparable results to the
offline domain adaptation approaches. We would like to extend CroDoBo to
more tasks like semantic segmentation [31,86].
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