
Improving Test-Time Adaptation via
Shift-agnostic Weight Regularization and Nearest

Source Prototypes

Sungha Choi⋆ Seunghan Yang Seokeon Choi Sungrack Yun

Qualcomm AI Research†

{sunghac,seunghan,seokchoi,sungrack}@qti.qualcomm.com

Abstract. This paper proposes a novel test-time adaptation strategy
that adjusts the model pre-trained on the source domain using only
unlabeled online data from the target domain to alleviate the performance
degradation due to the distribution shift between the source and target
domains. Adapting the entire model parameters using the unlabeled online
data may be detrimental due to the erroneous signals from an unsupervised
objective. To mitigate this problem, we propose a shift-agnostic weight
regularization that encourages largely updating the model parameters
sensitive to distribution shift while slightly updating those insensitive
to the shift, during test-time adaptation. This regularization enables
the model to quickly adapt to the target domain without performance
degradation by utilizing the benefit of a high learning rate. In addition,
we present an auxiliary task based on nearest source prototypes to align
the source and target features, which helps reduce the distribution shift
and leads to further performance improvement. We show that our method
exhibits state-of-the-art performance on various standard benchmarks
and even outperforms its supervised counterpart.

Keywords: Test-time adaptation, Domain generalization, Source-free
domain adaptation, On-Device AI

1 Introduction

After deep neural networks (DNNs) trained on a given dataset (i.e., source do-
main) are deployed to a new environment (i.e., target domain), the DNNs make
predictions from the data in the target domain. However, in most cases, the dis-
tribution of the source and target domains varies significantly, which degrades the
model’s performance in the target domain. If the deployed model does not remain
stationary during test time but adapts to the new environment using clues about
unlabeled target data, its performance can be improved [52,59,63,42,25,38,39,66].

Recently, several studies [59,63,42,25] have proposed test-time adaptation
to update the model during test time after model deployment. However, it
is extremely challenging to adapt the model to the target domain with only

⋆ Corresponding author.
† Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

https://orcid.org/0000-0003-2313-9243
https://orcid.org/0000-0002-0411-8407
https://orcid.org/0000-0002-1695-5894
https://orcid.org/0000-0003-2462-3854


2 S. Choi et al.

1e-5 5e-4 1e-35e-42e-4

38.27

Learning Rate

3.89%

1e-4

Source model (No adapt)

2.62%

Loss Layers to
fine-tune

Ground-
truth

Cross entropy All layers O
Entropy min. BN layers X

Ours (Full) All layers X

1e-5 5e-5 5e-43e-42e-41e-4

2.31%

1e-3
Learning Rate

Ent. min
+ Ours (SWR)

37.96

Source model (No adapt)

Error Rate

70%

60%

50%

40%

70%

60%

50%

40%

Loss Layers to
fine-tune

Ground-
truth

Entropy min. All layers X
Ent. min + SWR All layers X

Ours (Full) All layers X

1.85%

(e)
Ent. min.

39.81

Source 
60.35

Ours
35.65

Ent. min.
83.69

(b)

(a)

TENT
39.54

Oracle
49.73

Source 
60.35

Ours
35.65

(d)

(c)

(a)

Error Rate

Fig. 1: Comparison of average error (%) between our approach and other methods
with varying learning rates on CIFAR-100-C [20]. The x- and y-axes are the
learning rate and average error rate, respectively. (a) Our method significantly
outperforms the other three methods: (b) updating the entire parameters with
only entropy minimization, (c) the state-of-the-art method, TENT [59], and (d)
a supervised method. (e) Our proposed SWR keeps the performance stable with
the combining of entropy minimization even at higher learning rates: [1e-3, 1e-4].

unlabeled online data. As shown in Fig. 1(b), the adaptation of the entire
model parameters may be detrimental due to the erroneous signals from the
unsupervised objective such as entropy minimization [15,26,40,57,59], and the
performance may be highly dependent on the learning rate. In addition, since
the test-time adaptation can access unlabeled target data only once, and the
adaptation proceeds simultaneously with the evaluation, updating all network
parameters may result in overfitting [62,17]. Thus, several approaches present
the methods to update only some part of the network architecture [59,63,42,25]
such as batch normalization [24] or classifier layers. Especially, T3A [25] proposes
an optimization-free method to adapt only the classifier layers using unlabeled
target data, and TENT [59] updates batch statistics and affine parameters in the
batch normalization layers by entropy minimization on unlabeled target data.
However, updating only partial parameters or layers of the model may only result
in marginal performance improvement, as shown in Fig. 1(c). Furthermore, such
methods cannot be applied to the model architecture without a specific layer
such as batch normalization or classifier layers.

Other approaches [52,39] propose to jointly optimize a main task1 and a self-
supervised task, such as rotation prediction [13] or instance discrimination [18,6],
during pre-training in the source domain, and then update the model using only
the self-supervised task during test time. In contrast to the unsupervised objective
for the main task that highly depends on the model’s prediction accuracy, the
self-supervised task always obtains a proper supervisory signal. However, the self-

1 refers to the ultimate objective of the model (e.g., classification).



SWR & NSP 3

supervised task may interfere with the main task if both tasks are not properly
aligned [39,50,64]. In addition, these approaches cannot be applied to adapt
arbitrary pre-trained models to the target domain since they require specific
pre-training methods in the source domain.

To resolve these issues, we present two novel approaches for the test-time
adaptation. First, we consider a shift-agnostic weight regularization (SWR) that
enables the model to quickly adapt to the target domain, which is beneficial
when updating the entire model parameters with a high learning rate. In contrast
to Fig. 1(b), the entropy minimization with the proposed SWR shows superior
performance and less dependency on the learning rate choice, as shown in Fig. 1(e).
In terms of distribution shift, the SWR identifies the entire model parameters
into shift-agnostic and shift-biased parameters, updating the former less and the
latter more. Second, we present an auxiliary task based on a non-parametric
nearest source prototype (NSP) classifier, which pulls the target representation
closer to its nearest source prototype. With the NSP classifier, both source
and target representations can be well aligned, which significantly improves the
performance of the main task. Our proposed method (Fig. 1(a)) outperforms the
state-of-the-art method [59] (Fig. 1(c)) and even the supervised method using
ground-truth labels (Fig. 1(d)).

Our method requires access to the source data to identify shift-agnostic and
biased parameters and generate source prototypes before the model deployment,
but it is applicable to any model regardless of its architecture or pre-training
procedure. If a given model is pre-trained on open datasets, or if the source data
owner deploys the model, source data is accessible before model deployment. In
this case, our method significantly enhances the test-time adaptation capability
by leveraging the source data without modifying the pre-trained model. Unlike
TTT [52] and TTT++ [39], we do not change the pre-training method of a given
model, so our method can take benefit from any pre-trained strong models, such
as AugMix [21] (Table 1) or CORAL [51] (Table 6), as a good starting point for
test-time adaptation. In these respects, we believe our method is practical.

The major contributions of this paper can be summarized as follows

• Two novel approaches for test-time adaptation are presented in this paper.
The proposed SWR enables the model to quickly and reliably adapt to the
target domain, and the NSP classifier aligns the source and target features to
reduce the distribution shift, leading to further performance improvement.

• Our test-time adaptation method is model-agnostic and not dependent on the
pre-training method in the source domain, and thus it can be applied to any
pre-trained model. Therefore, our method can also complement other domain
generalization approaches that mainly focus on the pre-training method in
the source domain before model deployment.

• We show that our method achieves state-of-the-art performance through
extensive experiments on CIFAR-10-C, CIFAR-100-C, ImageNet-C [20] and
domain generalization benchmarks including PACS [31], OfficeHome [55],
VLCS [10], and TerraIncognita [5]. Especially, our method even outperforms
its supervised counterpart on CIFAR-100-C dataset.



4 S. Choi et al.

2 Related Work

2.1 Source-Free Domain Adaptation

Unsupervised domain adaptation (UDA) [51,57,53,11,46,22,12] assumes simulta-
neous access to both the source and target domains. Data is often distributed
across multiple devices. In such cases, UDA requires data sharing for simulta-
neous access to all data. However, it is often impossible due to data privacy
concerns, limited bandwidth, and computational cost. Source-free domain adap-
tation [38,36,30,58,60,61,1] overcomes this challenge by adapting a source pre-
trained model to the target domain using only unlabeled target data. These
approaches focus on offline adaptation in which the same target sample is fed
to the model multiple times during target adaptation, whereas our method
concentrates on online adaptation.

2.2 Test-Time Adaptation and Training

Test-time adaptation focuses on online adaptation in which all target data can be
accessed only once at test time, and adaptation is performed simultaneously with
evaluation. More specifically, it forward propagates target samples through the
model for evaluation and then backpropagates the error signal from the model’s
output in an unsupervised manner for training [59]. Several studies adopt self-
supervised learning, such as rotation prediction [52] or instance discrimination [39],
to jointly optimize the main and self-supervised tasks on the source domain and
then optimize only the self-supervised task on the target domain. However, these
methods are not universally applicable to arbitrary pre-trained models as they
require specific pre-training methods in the source domain. Recently, model-
agnostic test-time adaptation methods independent of the pre-training method in
the source domain have been proposed [59,25,42,63]. TENT [59] uses the batch
statistics of the target domain and optimizes channel-wise affine parameters using
entropy minimization loss. T3A [25] proposes an optimization-free method that
adjusts a pre-trained linear classifier by updating the prototype for each class
during test time. However, since these methods update only partial parameters
or layers of the model, such as the batch normalization [59,42,63] or classifier
layer [25], they may be suboptimal for target adaptation.

2.3 Domain Generalization

Since UDA aims to adapt the model to the predefined target domain before
model deployment, it is not suitable to guarantee generalization performance to
other arbitrary target domains. On the other hand, domain generalization (DG)
differs from UDA in that it assumes that the model accesses only the source
domain during training time before model deployment and aims to improve
the generalization capability in arbitrary unseen target domains. Numerous DG
approaches using meta-learning [32,3,33], normalization [44,47,8,7], adversarial
training [34,37,45], and data augmentation [67,56,14,35] have been proposed to
learn domain-agnostic feature representations for the target domain. However,
these studies only focus on methods at training time before model deployment,
whereas our method focuses on a test-time adaptation after model deployment.



SWR & NSP 5

encoderencoderencoder

(Model-agnostic) our proposed method

projector

Any model (architecture, training procedure)

Before deployment After deploymentfreezeupdate optional

(b) Stage 1 (c) Stage 2(a) Pre-training

classifierclassifier classifier

projector

ℎ

: weight regularization

Eq. (1)
Eq. (3)
Eq. (7)
Eq. (8)
Eq. (9)

Eq. (2)
Eq. (4)
Eq. (5)
Eq. (6)

classifierencoder projector

Fig. 2: Our method consists of two stages: (b) and (c). (a) our method takes the
pre-trained model in an off-the-shelf manner and (b) generates penalty vector w
and source prototypes q while keeping the model frozen before model deployment.
After model deployment, (c) our method does not access labeled source data Ds

other than unlabeled online target data Dt during test-time adaptation.

3 Proposed Method

Assume that the model parameters θ trained on the source domain consist of
an encoder part θe and a classifier part θc, as shown in Fig. 2(c). After being
deployed to the target domain, the model infers the class probability distribution
of the target sample and then optimizes our proposed test-time adaptation loss
Ltarget
θe,θc

. The overall loss of our proposed method is defined as

Ltarget
θe,θc

= Lmain
θe,θc + Laux

θe + λr
∑
l

wl∥θl − θ∗
l ∥22, (1)

where wl denotes the l-th element of the penalty vector w used to control the
update of the model parameters, θl is the parameter vector of the l-th layer2

of the model, θ∗ is the parameters from the previous update step, λr is the
importance of the regularization term, and Lmain

θe,θc
and Laux

θe
denote the main

and auxiliary task losses, respectively. Optimizing the main task loss updates
the entire model parameters θe and θc, whereas optimizing the auxiliary task
loss updates only the encoder part θe. We first present a shift-agnostic weight
regularization (SWR) and then describe an entropy objective of the main task.
Finally, we propose an auxiliary task based on a nearest source prototype (NSP)
classifier, which directly benefits the main task.

3.1 Shift-agnostic Weight Regularization

The main idea of the SWR is to impose different penalties for each parameter
update during test-time adaptation, depending on the sensitivity of each model
parameter to the distribution shift. Assuming that the distribution shift is
mainly caused by color and blur shifts, we mimic the distribution shift using
transformation techniques such as color distortion and Gaussian blur. Experiments
on variations of the SWR, including the use of other transform functions, can be
found in the supplementary Section B.

To obtain the penalty vector w specified in Eq. (1), we first forward-propagate
two input images (i.e., an original and its transformed image) through the pre-
trained source model and then back-propagate the task loss (i.e., cross entropy)

2 denotes a part divided into torch.nn.Module units defined in Pytorch. The gradient
vector of each layer can be easily obtained using torch.nn.module.parameters().



6 S. Choi et al.

0.1 0.1 0.6 0.2 0.8 0.9 0.9

Source data

Tr
an
sf
or
m

encoder

encoder

classifier

classifier

Backpropagation

[0,1] normalized 
cosine similarity

Prediction Label

CE loss

CE loss

𝑔

𝑔!

Test-time
adaptation

Loss

Target data

encoder classifier

0.1 0.1 0.6 0.2 0.8 0.9 0.9
2

Slightly updateLargely update

Layers 0

1

0.5

0 50 100

Penalty

FinetuneFreeze

Before
Deployment

After
Deployment

Fig. 3: Overall process of our proposed SWR. We first obtain the penalty vector
w before model deployment and then use it as layer-wise penalties to control the
update of the model parameters at test-time adaptation after model deployment.

using the source labels to produce two sets g and g′ of L gradient vectors,
respectively. Note that L is the total number of layers in the model. Then the l-th
element wl of the penalty vector w is calculated by employing the average cosine
similarity sl between two gradient vectors, gl and g′

l from N source samples as

sl =
1

N

N∑
i=1

gil · g′i
l

∥gil∥∥g′i
l ∥

∈ R,

w = (ν [s1, . . . , sl, . . . , sL])
2 ∈ RL,

(2)

where ν [·] denotes min-max normalization with the range of [0,1], gil and g′i
l

denote the l-th gradient vectors for i-th source sample and its transformed sample,
respectively. N denotes the total number of samples. Note that the penalty vector
w is obtained from a frozen pre-trained source model before model deployment.
Therefore, this process is independent of the source model’s pre-training method
and does not require source data after model deployment, as shown in Fig. 2.

As shown in Eq. (1) and Fig. 3, during test-time adaptation, we apply the
layer-wise penalty value wl to the difference between previous and current model
parameters for each layer, and this controls the update of model parameters
differently for each layer. Therefore, the model parameters belonging to the
layers with high cosine similarity between the two gradient vectors are considered
shift-agnostic, and we less update them by imposing high penalties. Section 4.6
experimentally shows that SWR takes advantage of using high learning rates to
adapt the model to the target domain quickly.

3.2 Entropy Objective for the Main Task

The main task of the model fθ is defined as the task performed by the parameters
θe and θc. The loss function for the main task during test time is built using
the entropy of model predictions ỹ on test samples from the target distribution.
We adopt information maximization loss [27,48,23], validated in several test-
time adaptation and source-free domain adaptation methods [38,58,42], as an
unsupervised learning objective for the main task. This loss consists of entropy
minimization [59,38,57,49] and mean entropy maximization [28,38,2,58] as



SWR & NSP 7

Source domain

ℎ!

ℎ

𝑧!

𝑧

𝑦! 𝑦" 𝑦#𝑦

𝑦

$𝑦

$𝑦!
//encoder

encoder
//classifier

projector

projector

Ground truth

...
NSP classifier

Freeze Finetune

EMA update

Cross entropy loss

//
Cosine similarity

Cosine similarity

𝑞! 𝑞" 𝑞#
Tr

an
sf

or
m

● Class B
● Class A

● Source data embedding
Augmented data embedding
Prototypes
Classifier (Decision boundary)

⨯

(a)

(b)

(a)
(a)

(b)

(b)

Transformation Optimization

(1)
(2)

(4)

(3)

(5)

(6) // Stop gradient operation

Fig. 4: Source prototype generation phase before model deployment. First, we
repeat steps (1) and (2) until prototypes of all classes are generated, then train
the projector and update the source prototype at the same time through an
iterative process from (1) to (6) on the source data. (a) and (b) pull the original
source projection and its transformed source projection, respectively, such that
they become closer to the nearest source prototype from the original one.

Lmain
θe,θc = λm1

1

N

N∑
i=1

H(ỹi)− λm2
H(ȳ), (3)

where H(p) = −
∑C
k=1 p

k log pk, ȳ = 1
N

∑
i ỹi, λm1

and λm2
indicate the impor-

tance of each term. The number of classes and the batch size are denoted by C
and N . Intuitively, entropy minimization makes individual predictions confident,
and mean entropy maximization encourages average prediction within a batch to
be close to the uniform distribution.

3.3 Auxiliary Task based on the Nearest Source Prototype

Due to the distribution shift between the source and target domains, the target
features deviate from the source features at test time. To resolve this issue, we
propose an auxiliary task based on the nearest source prototype (NSP) classifier,
which pulls the target embeddings closer to their nearest source prototypes in the
embedding space. Eventually, optimizing the auxiliary task improves performance
significantly since it directly supports the main task by aligning the source and
target representations. We first explain how to generate source prototypes and
define the NSP classifier based on them.

Source prototype generation The source prototypes are defined as the
averages over source embeddings for each class. As shown in Fig. 4, we freeze the
model fθ trained on the source data and attach an additional projection layer
hψ behind the encoder fθe . The encoder fθe infers the representation h from the
source sample x, and the projector hψ maps h to the projection z in another
embedding space where the loss Lemb

ψ is applied as z = hψ(fθe(x)). The source

prototype qkt for class k is updated through exponential moving average (EMA)
with the projection zkt of the source sample (x, yk)k∈[1,C] at time t during the
optimization trajectory as



8 S. Choi et al.

NSP classifier

Freeze Finetune

Cross entropy loss

Entropy min.
+ Mean entropy max.

Class B
Class A

Target data embedding
Augmented data embedding
Source prototypes
Classifier (Decision boundary)

⨯

ℎ!

ℎ

𝑧!

𝑧

𝑦! 𝑦" 𝑦#

#𝑦

%𝑦

%𝑦!
encoder

encoder

classifier

projector

projector

...𝑞! 𝑞" 𝑞#

Target domain

(c)
Tr
an
sf
or
m

Cosine similarity

Cosine similarity

(b)

(a)
Transformation Optimization

(c)

(b)

(c)

(b)

Fig. 5: Test-time adaptation phase after model deployment. (a) main task loss.
(b),(c) auxiliary task loss. (b) and (c) pull the original target projection and its
transformed target projection, respectively, such that they become closer to the
nearest source prototype from the original one.

qkt = α · qkt−1 + (1− α) · zkt , (4)

where α=0.99 and qk0 = zk0 .
We define the NSP classifier as a non-parametric classifier. It measures the

cosine similarity of a given target embedding to the source prototypes for all
classes and then generates a class probability distribution ŷ as

ŷ =

C∑
k=1

(
exp

(
S(z, qk)/τ

)∑C
j=1 exp (S(z, q

j)/τ)

)
yk, (5)

where S(·, ·) is a cosine similarity function, S(a, b) = (a · b)/∥a∥∥b∥, τ denotes
a temperature that controls the sharpness of the distribution, and yk is the
one-hot ground-truth label vector of k-th class. In addition, inspired by recent
self-supervised contrastive learning methods [6,18,4], we enable the projector
hψ to learn transformation-invariant mapping. We obtain projection z′ of the
transformed source sample by z′ = hψ(fθe(T (x))), where T (·) denotes an image
transform function. The embedding loss Lemb

ψ consisting of two cross entropy loss
terms is applied to the embedding space to train the projector hψ as

Lemb
ψ =

1

N

N∑
i=1

(CE (yi, ŷi) + CE (yi, ŷ
′
i)) , (6)

where CE (p, q) = −
∑C
k=1 p

k log qk, and yi is the ground-truth label of i-th
source sample. Here, ŷ and ŷ′ denote the outputs of the NSP classifier for the
projections z and z′ of the source sample and its transformed one, respectively.
As shown in Fig. 4, optimizing the embedding loss encourages the projector hψ
to learn a mapping that pulls the projections belonging to the same class closer
together and pushes source prototypes farther away from each other.

Note that this process is applied to a frozen pre-trained source model and
completed before model deployment. Therefore, it is model-agnostic and does
not require source data during test time.



SWR & NSP 9

Auxiliary task loss at test time Once the source prototypes are generated
and the projection layer is trained, we can deploy the model and then jointly
optimize both main and auxiliary tasks on unlabeled online data. The auxiliary
task loss Laux

θe
consists of two objective functions: the entropy objective Laux ent

θe
using the entropy of the NSP classifier’s prediction ŷ, and the self-supervised loss
Laux sel
θe

that encourages the model’s encoder fθe to learn transformation-invariant
mappings as

Laux
θe = Laux ent

θe + λsLaux sel
θe , (7)

where λs denotes the importance of the self-supervised loss term. Similarly to
Eq. (3), the entropy objective is built by using the entropy of the prediction ŷ of
the NSP classifier on the target sample as

Laux ent
θe = λa1

1

N

N∑
i=1

H(ŷi)− λa2H(ȳ), (8)

where N is batch size, λa1 and λa2 indicate the importance of each term, H(p) =

−
∑C
k=1 p

k log pk, and ȳ = 1
N

∑N
i=1 ŷi. The self-supervised loss is applied to the

prediction ŷ′ of the NSP classifier on the transformed target sample as

Laux sel
θe = − 1

N

N∑
i=1

C∑
k=1

ŷki log ŷ
′k
i . (9)

As shown in Fig. 5, the entropy objective function (Fig. 5(b)) pulls the projection
z of the target sample to move closer to its nearest source prototype, and the self-
supervised objective (Fig. 5(c)) encourages the projection z′ of the transformed
target sample to get closer to the same target as z.

4 Experiments

This section describes the experimental setup, implementation details, and the
experimental results of the comparisons with other state-of-the-art methods
in test-time adaptation. We also show that generalization performance can be
further improved by combining our proposed method with an existing domain
generalization strategy that mainly focuses on training time in the source domain.

4.1 Experimental Setup

Following TENT [59] and T3A [25], all experiments in this paper are conducted
on the online adaptation setting, where adaptation is performed concurrently
with evaluation at test time without seeing the same data twice or more. After a
prediction is obtained, the model is updated via back-propagation. We evaluate
our proposed method on CIFAR-10-C, CIFAR-100-C, ImageNet-C3 [20] and
four domain generalization benchmarks such as PACS [31], OfficeHome [55],
VLCS [10], andTerraIncognita [5]. Since our method can be used independently
of the backbone networks and its pre-training method, we apply our method to
publicly available pre-trained models for evaluation. We perform experiments

3 Experiments on ImageNet-C are in the supplementary Section B.



10 S. Choi et al.

on CIFAR datasets using WideResNet-28-10 [65] and WideResNet-40-2 [65] as
backbone networks, based on RobustBench [9]. In the domain generalization setup,
we use ResNet-50 [19] without the batch normalization layer, which is the default
setting of DomainBed [16], DG benchmark framework. CIFAR-10/100 dataset [29]
contains 50k images for training and 10k images for testing. Corruptions such as
noise, blur, weather, and digital are applied to 10k images from CIFAR-10/100
test set to create CIFAR-10/100-C test images. For test-time adaptation, 50k
images for CIFAR training set are defined as the source domain, and 10k images
for CIFAR-C test set are defined as the target domain.

4.2 Implementation details

We integrate our proposed method within the frameworks officially provided by
other state-of-the-art methods [59,39,25] for fair comparisons. Specifically, differ-
ent frameworks are used for each experiment as follows: TENT framework [59]
for all experiments with WRN-40-2 and WRN-28-10 backbone networks on
CIFAR-10/100-C, TTT++ framework [39] for all experiments with ResNet-50
on CIFAR-10/100-C, and T3A framework [25] for all domain generalization
benchmarks. For experiments on CIFAR, we follow the default values provided
by each framework for experimental settings such as batch size and optimizer.

Color distortion, random grayscale and Gaussian blurring are used as the image
transformations specified in Fig. 3 and Fig. 5, and random cropping and random
horizontal flipping are additionally applied for the image transformations in Fig. 4.
We use batch statistics on test data instead of using running estimates. The
hyper-parameters are empirically set as λm1

=0.2, λa1=0.8 λm2
=0.25, λa2=0.25,

λs=0.1, λr=250, and softmax temperature τ=0.1. The epoch for training the
projector is 20, and N=1024 in Eq. (2). Since these hyper-parameters are not
sensitive to the backbone and datasets, they are fixed without individual tuning
in most experiments in this paper unless noted otherwise. The projector as
described in Section 3.3 can be configured as a single- or multi-layer perceptron
(MLP). The MLP consists of a linear layer followed by batch normalization [24],
ReLU [43], and a final linear layer with output dimension 512. The performance
change according to the projector configuration is shown in Table 3, and the
detailed architecture is described in the supplementary Section C.

4.3 Robustness against Image Corruptions

Table 1(a) shows a comparison of the robustness between our method and recent
test-time adaptation methods for the most severe corruptions on CIFAR-100-C.
TFA [39] and TTT++ [39] were originally implemented as offline adaptation
methods that train a model by observing the same data multiple times across
numerous epochs, so we change these methods to the online adaptation setting
to reproduce the results. Our proposed method significantly outperforms other
state-of-the-art methods with large margins of 3.89% for ResNet-50 and 2.59%
for WRN-40-2. Table 1(b) shows the results on the most severe corruptions of
CIFAR-10-C. Our method consistently outperforms other methods on CIFAR-
10/100-C datasets across various backbone networks. In particular, WRN-40-2,
which is trained with AugMix [21] for a data processing to increase the robustness

https://github.com/DequanWang/tent
https://github.com/vita-epfl/ttt-plus-plus
https://github.com/matsuolab/T3A


SWR & NSP 11

Table 1: Comparison with other methods. * denotes the reported results from the
original paper, and the others are reproduced values in our environment based on
the official framework provided by TENT [59] and TTT++ [39]. Source denotes
the source pre-trained model without test-time adaptation.

(a) Comparison of error rate (%) on CIFAR-100-C with severity level 5

Backbone Methods Avg. err Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg

WRN-40-2
(AugMix)

[65,21]

Source 46.75 65.7 60.1 59.1 32.0 51.0 33.6 32.3 41.4 45.2 51.4 31.6 55.5 40.3 59.7 42.4

TENT [59] 35.53 40.1 39.5 42.0 29.6 41.9 30.7 29.7 34.5 34.8 39.1 27.5 32.9 37.6 32.8 40.3

Core* [63] 35.30 39.8 39.3 41.5 29.5 41.7 30.6 29.8 34.2 34.9 38.6 27.5 32.6 37.1 32.7 40.1

Ours 32.71 37.6 36.6 35.1 28.0 39.5 28.7 28.5 31.3 32.6 34.4 26.3 29.0 35.5 30.1 37.7

ResNet-50
[19]

Source 60.35 80.8 77.8 87.8 39.6 82.3 54.2 38.4 54.6 60.2 68.1 28.9 50.9 59.5 72.3 50.0

SHOT [38] 43.53 49.0 47.1 61.2 33.8 58.3 41.0 31.3 45.0 42.0 52.0 29.7 33.4 47.9 41.8 39.4

TFA [39] 44.13 49.0 47.0 61.4 34.2 58.9 41.5 32.1 46.8 43.0 54.6 31.2 33.7 48.9 39.8 39.7

TTT++ [39] 44.38 50.2 47.7 66.1 35.8 61.0 38.7 35.0 44.6 43.8 48.6 28.8 30.8 49.9 39.2 45.5

TENT [59] 39.54 43.8 42.0 54.1 31.2 51.7 37.0 29.9 42.3 39.6 45.6 30.1 30.9 44.5 34.2 36.4

Ours 35.65 40.0 38.4 46.3 29.3 46.0 32.5 27.9 37.3 36.6 37.3 27.5 28.8 41.0 31.4 34.7

(b) Comparison of error rate (%) on CIFAR-10-C with severity level 5

Backbone Methods Avg. err Gaus. Shot Impu. Defo. Glas. Moti. Zoom Snow Fros. Fog Brig. Cont. Elas. Pixe. Jpeg

WRN-40-2
(AugMix)

[65,21]

Source 18.27 28.8 23.0 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7

TENT [59] 12.08 15.6 13.2 18.8 7.9 18.2 9.0 8.0 10.4 10.9 12.4 6.7 10.0 14.0 11.4 14.8

Ours 10.37 13.1 11.4 14.7 7.4 15.8 8.3 7.4 9.2 9.4 9.5 6.3 7.8 13.1 9.4 12.9

WRN-28-10
[65]

Source 43.51 72.3 65.7 72.9 49.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3

TENT [59] 18.58 24.8 23.5 33.1 11.9 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.0 22.0 17.3 24.2

Core* [63] 16.80 22.5 20.3 29.8 11.0 29.2 12.3 10.2 14.4 14.8 12.4 7.7 10.6 20.4 15.3 21.4

Ours 15.70 20.1 18.4 26.2 10.8 28.9 12.1 10.2 13.7 13.9 11.1 7.6 8.8 20.2 14.2 19.4

ResNet-50
[19]

Source 29.14 48.7 44.0 57.0 11.8 50.8 23.4 10.8 21.9 28.2 29.4 7.0 13.13 23.4 47.9 19.5

SHOT [38] 16.19 20.0 18.8 29.6 9.9 27.1 15.0 8.5 15.4 14.5 19.8 7.3 8.5 18.7 15.8 14.0

TFA [39] 15.97 18.8 17.9 29.2 9.8 27.3 14.6 8.0 16.0 14.0 20.3 7.8 8.6 19.4 14.1 13.9

TTT++ [39] 15.82 18.0 17.1 30.8 10.4 29.9 13.0 9.9 14.8 14.1 15.8 7.0 7.8 19.3 12.7 16.4

TENT [59] 14.02 16.0 14.5 24.7 9.1 23.5 12.6 7.6 14.3 13.1 16.8 8.2 8.0 18.1 10.8 13.3

Ours 12.52 14.1 13.4 20.9 8.3 20.7 11.2 7.3 12.4 11.7 14.4 7.3 7.4 16.5 9.7 12.4

(c) Comparison of average error (%) on CIFAR-100-C with all severity levels

Methods Backbone Lv.5 Lv.4 Lv.3 Lv.2 Lv.1

TENT [59]
ResNet-50

39.54
3.89 ↓

36.09
3.27 ↓

33.35
2.81 ↓

31.30
2.38 ↓

29.62
2.11 ↓

Ours 35.65 32.82 30.54 28.92 27.51

TENT [59]
WRN-40-2

35.53
2.82 ↓

32.89
2.40 ↓

30.72
1.87 ↓

29.06
1.53 ↓

27.67
1.29 ↓

Ours 32.71 30.49 28.85 27.53 26.38

of the model, outperforms the other backbone networks, and our method further
enhances the performance by complementing it. Table 1(c) shows the results
on CIFAR-100-C with all severity levels. Because severity denotes the strength
of the corruption, it shows how much the distribution shift presents, and our
method outperforms TENT [59] at all levels with a large margin.

4.4 Ablation Studies

Table 2 shows the effectiveness of our proposed shift-agnostic weight regularization
(SWR) and nearest source prototype (NSP) classifier through ablation studies.
At a high learning rate, optimizing only the main task loss based on the entropy
of the model prediction results in poor performance, but adjusting the learning
rate reduces the error rate to 39.44%. Adding the NSP to the main task loss leads
to the performance improvement of 1.89%, and including the SWR improves
the performance by 1.68% even at a high learning rate. Our method with both



12 S. Choi et al.

Table 2: Ablation study on CIFAR-100-C. ResNet-50 is used.

Methods Learning rate Average err (%)

Main 1e-3 75.70

Main (optimal learning rate) 1e-4 39.44

Main + NSP
(
Laux ent

θe + Laux sel
θe

)
1e-4 37.55

Main + SWR 1e-3 37.76

Main + SWR + NSP
(
Laux ent

θe

)
1e-3 35.80

Main + SWR + NSP
(
Laux ent

θe + Laux sel
θe

)
1e-3 35.65

Table 3: Comparison of error rate (%) according to changes in projector depth.

Datasets Backbone
Projector depth

None 1 2 3

CIFAR-100-C
WRN-40-2 33.04 32.79 32.71 32.89

ResNet-50 36.34 35.43 35.65 36.81

CIFAR-10-C

WRN-40-2 10.37 10.52 10.42 10.46

WRN-28-10 15.70 16.45 16.09 16.39

ResNet-50 12.52 12.91 12.95 12.87

SWR and NSP achieves 35.65% error rate with 3.79% performance enhancement
compared to using only the main task loss.

4.5 Projector Design and Hyper-parameter Impacts

Table 3 shows the performance impact of changing the projector depth (i.e.,
number of projection layer). In addition, we conduct experiments to apply the
auxiliary task loss Laux

θe
directly to the feature representation h, the encoder’s

output without using the projector. The model with the projector outperforms the
one without the projector on CIFAR-100-C, and opposite results are obtained on
CIFAR-10-C. Since the auxiliary task loss is applied to the embedding space based
on the cosine similarity between the source prototypes and the target embeddings,
its effect may be minimal if they are severely misaligned. To compensate for this
issue, we attach and train the projector that minimizes the misalignment between
the source and target embeddings by enabling transformation-invariant mapping
and bringing the projections belonging to the same class closer together in the
new embedding space. However, if the number of classes is small (e.g., CIFAR-
10-C), the source and target may already be relatively well aligned compared
to the case with a large number of classes (e.g., CIFAR-100-C). In this case, we
conjecture that applying the auxiliary task loss directly to the encoder’s output
h rather than the new embedding space z, the projector’s output, generates a
better-aligned representation h between the source and target, which can be
more helpful to the classifier.

Table 4 shows the experimental results according to (a) the projector width
(i.e., output dimension of the last layer), (b) the transformation used for training
the projector, and (c) whether to fine-tune or freeze the projector during test-time
adaptation. Our default settings are marked with gray-colored cells, and these



SWR & NSP 13

Table 4: Hyper-parameter impacts on CIFAR-100-C. ResNet-50 is used.

(a)

Width Error (%)

128 36.34

256 35.85

512 35.65

1024 36.09

(b)

Transformation Error (%)

No transform 37.88

Color distortion 35.79

+Crop. & Blur. 35.65

(c)

Backbone
Error (%)

WRN-40-2 ResNet-50

Freeze. 32.71 35.65

Finetune. 32.85 35.96

Table 5: Comparison of error rate (%) on CIFAR-100-C. Our method outperforms
the supervised method in an online setting. LR denotes a learning rate.

Methods GT
Label

Optimal
LR

Epoch

1 (online) 2 (offline) 3 (offline)

Entropy Minimization No 1e-4 39.81 38.84 39.08

Cross Entropy (Supervised) Yes 2e-4 38.27 7.41 0.86

Ours No 1e-3 35.65 33.34 33.25

settings are also applied to the domain generalization benchmarks in the following
section without additional tuning.

4.6 Quick Adaptation

As shown in Table 5, it is natural that the supervised method performs perfectly
when learning and evaluating the same test samples iteratively. However, inter-
estingly our method outperforms the supervised one in an online setting where
the test sample is seen only once. Unlike the other methods that require a low
learning rate to train (Fig. 1(b),(d)), our method updates the entire parameters at
a high learning rate. We conjecture that SWR enables quick convergence without
performance degradation because only parameters sensitive to distribution shift
(i.e., parameters that need to quickly adapt to a new domain) are largely updated
with a high learning rate.

4.7 Domain Generalization Benchmarks

To evaluate our method on the DG benchmarks, we follow the protocol proposed
by DomainBed [16] and T3A [25]. Our method is model-agnostic, so we apply
it to the pre-trained models using empirical risk minimization (ERM) [54] or
CORAL [51] on the source domain in order to adapt the models to the target
domain at test time. We use the leave-one-domain-out validation [16] for model
selection in all experiments in Table 6. Our methods show state-of-the-art per-
formance on average over four datasets and especially outperform T3A [25] and
the source pre-trained models with a large margin on PACS, OfficeHome, and
TerraIncognita datasets. The detailed experimental setup can be found in the
supplementary Section C.

4.8 Qualitative Results

Fig. 6 visualizes the features on CIFAR-10-C using t-SNE [41]. The results in the
first row are from WRN-40-2 as a source pre-trained model, and the results in the



14 S. Choi et al.

Table 6: Comparison of accuracy (%) on four DG benchmarks. † denotes the
reported results from DomainBed [16], and the others are reproduced values.

Methods VLCS PACS OfficeHome Terra Average

ERM† 76.8±1.0 83.3±0.6 67.3±0.3 46.2±0.2 68.4

CORAL† 77.0±0.5 83.6±0.6 68.6±0.2 48.1±1.3 69.3

ERM 77.4±0.9 83.5±0.7 65.6±0.4 47.1±1.1 68.4
+T3A 79.4±0.4 86.5±0.3 67.8±0.5 45.6±0.7 69.8
+Ours 77.0±0.5 88.9±0.1 69.2±0.1 49.5±0.8 71.2

CORAL 77.9±0.9 85.3±0.1 67.8±0.3 44.1±0.4 68.8
+T3A 79.3±0.3 86.3±0.2 69.5±0.2 45.4±1.2 70.1
+Ours 78.7±0.4 89.9±0.1 71.0±0.0 47.5±0.6 71.8

Motion Blur FrostContrast

Impulse Noise Snow

No Adapt Ours

Pixelate

W
RN

-4
0-

2
Re

sN
et

-5
0

No Adapt Ours No Adapt Ours

Fig. 6: t-SNE visualization of features from the target domain (CIFAR-10-C).

second row are from ResNet-50. Even without test-time adaptation, WRN-40-2
(AugMix) [21] is more robust against corruptions than ResNet-50, so better
results can be obtained. Our method significantly improves the performance in
terms of intra-class cohesion and inter-class separation in both backbones.

5 Conclusions

This paper proposed two novel approaches for model-agnostic test-time adap-
tation. Our proposed shift-agnostic weight regularization enables the model to
reliably and quickly adapt to unlabeled online data from the target domain by
controlling the update of the model parameters according to their sensitivity
to the distribution shift. In addition, our proposed auxiliary task based on the
nearest source prototype classifier boosts the performance by aligning the source
and target representations. Test-time adaptation is a challenging but promising
area in terms of allowing the model to evolve itself while adapting to a new envi-
ronment without human intervention. In this regard, our efforts aim to promote
the importance of this field and stimulate new research directions.

Acknowledgement We would like to thank Kyuwoong Hwang, Simyung Chang,
Hyunsin Park, Juntae Lee, Janghoon Cho, Hyoungwoo Park, Byeonggeun Kim,
and Hyesu Lim of the Qualcomm AI Research team for their valuable discussions.



SWR & NSP 15

References

1. Agarwal, P., Paudel, D.P., Zaech, J.N., Van Gool, L.: Unsupervised robust domain
adaptation without source data. In: IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV) (2022) 4

2. Assran, M., Caron, M., Misra, I., Bojanowski, P., Joulin, A., Ballas, N., Rabbat,
M.: Semi-supervised learning of visual features by non-parametrically predicting
view assignments with support samples. In: International Conference on Computer
Vision (ICCV) (2021) 6

3. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-
alization using meta-regularization. In: Advances in Neural Information Processing
Systems (NeurIPS) (2018) 4

4. Bardes, A., Ponce, J., LeCun, Y.: Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906 (2021) 8

5. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: European
Conference on Computer Vision (ECCV) (2018) 3, 9

6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: International Conference on Machine Learning
(ICML) (2020) 2, 8

7. Choi, S., Kim, T., Jeong, M., Park, H., Kim, C.: Meta batch-instance normalization
for generalizable person re-identification. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2021) 4

8. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: Improving
domain generalization in urban-scene segmentation via instance selective whitening.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
4

9. Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N.,
Chiang, M., Mittal, P., Hein, M.: Robustbench: a standardized adversarial robustness
benchmark. arXiv preprint arXiv:2010.09670 (2020) 10

10. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of
multiple datasets and web images for softening bias. In: International Conference
on Computer Vision (ICCV) (2013) 3, 9

11. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
In: International Conference on Machine Learning (ICML) (2015) 4

12. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
journal of machine learning research (2016) 4

13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by pre-
dicting image rotations. In: International Conference on Learning Representations
(ICLR) (2018) 2

14. Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: Domain flow for adaptation and
generalization. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019) 4

15. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In:
Advances in Neural Information Processing Systems (NeurIPS) (2004) 2

16. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International
Conference on Learning Representations (ICLR) (2020) 10, 13, 14

17. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.: Spottune: transfer
learning through adaptive fine-tuning. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2019) 2



16 S. Choi et al.

18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2020) 2, 8

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
10, 11

20. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common
corruptions and perturbations. In: International Conference on Learning Represen-
tations (ICLR) (2018) 2, 3, 9

21. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: A simple data processing method to improve robustness and uncertainty.
In: International Conference on Learning Representations (ICLR) (2019) 3, 10, 11,
14

22. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: International
Conference on Machine Learning (ICML) (2018) 4

23. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete rep-
resentations via information maximizing self-augmented training. In: International
Conference on Machine Learning (ICML) (2017) 6

24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(ICML) (2015) 2, 10

25. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-
agnostic domain generalization. Advances in Neural Information Processing Systems
(NeurIPS) (2021) 1, 2, 4, 9, 10, 13

26. Jain, H., Zepeda, J., Pérez, P., Gribonval, R.: Learning a complete image indexing
pipeline. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2018) 2

27. Krause, A., Perona, P., Gomes, R.: Discriminative clustering by regularized informa-
tion maximization. Advances in Neural Information Processing Systems (NeurIPS)
(2010) 6

28. Krause, A., Perona, P., Gomes, R.: Discriminative clustering by regularized infor-
mation maximization. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R.,
Culotta, A. (eds.) Advances in Neural Information Processing Systems (NeurIPS)
(2010) 6

29. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009) 10

30. Kundu, J.N., Venkat, N., Babu, R.V., et al.: Universal source-free domain adaptation.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
4

31. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: International Conference on Computer Vision (ICCV) (2017) 3,
9

32. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning
for domain generalization. arXiv preprint arXiv:1710.03463 (2017) 4

33. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training
for domain generalization. In: International Conference on Computer Vision (ICCV)
(2019) 4

34. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018) 4



SWR & NSP 17

35. Li, L., Gao, K., Cao, J., Huang, Z., Weng, Y., Mi, X., Yu, Z., Li, X., Xia, B.:
Progressive domain expansion network for single domain generalization. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2021) 4

36. Li, R., Jiao, Q., Cao, W., Wong, H.S., Wu, S.: Model adaptation: Unsupervised
domain adaptation without source data. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2020) 4

37. Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain gen-
eralization via conditional invariant adversarial networks. In: European Conference
on Computer Vision (ECCV) (2018) 4

38. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hy-
pothesis transfer for unsupervised domain adaptation. In: International Conference
on Machine Learning (ICML) (2020) 1, 4, 6, 11

39. Liu, Y., Kothari, P., van Delft, B., Bellot-Gurlet, B., Mordan, T., Alahi, A.: Ttt++:
When does self-supervised test-time training fail or thrive? Advances in Neural
Information Processing Systems (NeurIPS) (2021) 1, 2, 3, 4, 10, 11

40. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with
residual transfer networks. In: Advances in Neural Information Processing Systems
(NeurIPS) (2016) 2

41. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research (2008) 13

42. Mummadi, C.K., Hutmacher, R., Rambach, K., Levinkov, E., Brox, T., Metzen,
J.H.: Test-time adaptation to distribution shift by confidence maximization and
input transformation. arXiv preprint arXiv:2106.14999 (2021) 1, 2, 4, 6

43. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines.
In: International Conference on Machine Learning (ICML) (2010) 10

44. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: Enhancing learning and generaliza-
tion capacities via ibn-net. In: European Conference on Computer Vision (ECCV)
(2018) 4

45. Rahman, M.M., Fookes, C., Baktashmotlagh, M., Sridharan, S.: Correlation-aware
adversarial domain adaptation and generalization. Pattern Recognition (2020) 4

46. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy
for unsupervised domain adaptation. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2018) 4

47. Seo, S., Suh, Y., Kim, D., Han, J., Han, B.: Learning to optimize domain specific
normalization for domain generalization. arXiv preprint arXiv:1907.04275 (2019) 4

48. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for
unsupervised domain adaptation. In: International Conference on Machine Learning
(ICML) (2012) 6

49. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical gen-
erative adversarial networks. International Conference on Learning Representations
(ICLR) (2016) 6

50. Su, J.C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot
learning? In: European Conference on Computer Vision (ECCV) (2020) 3

51. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
In: European Conference on Computer Vision (ECCV) (2016) 3, 4, 13

52. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training
with self-supervision for generalization under distribution shifts. In: International
Conference on Machine Learning (ICML) (2020) 1, 2, 3, 4

53. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017) 4



18 S. Choi et al.

54. Vapnik, V.N.: An overview of statistical learning theory. IEEE transactions on
neural networks (1999) 13

55. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing
network for unsupervised domain adaptation. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017) 3, 9

56. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Gener-
alizing to unseen domains via adversarial data augmentation. Advances in neural
information processing systems 31 (2018) 4

57. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy
minimization for domain adaptation in semantic segmentation. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2019) 2, 4, 6

58. Wang, D., Liu, S., Ebrahimi, S., Shelhamer, E., Darrell, T.: On-target adaptation.
arXiv preprint arXiv:2109.01087 (2021) 4, 6

59. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time
adaptation by entropy minimization. In: International Conference on Learning
Representations (ICLR) (2020) 1, 2, 3, 4, 6, 9, 10, 11

60. Yang, S., Wang, Y., van de Weijer, J., Herranz, L., Jui, S.: Generalized source-free
domain adaptation. In: International Conference on Computer Vision (ICCV) (2021)
4

61. Yeh, H.W., Yang, B., Yuen, P.C., Harada, T.: Sofa: Source-data-free feature align-
ment for unsupervised domain adaptation. In: IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV) (2021) 4

62. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep
neural networks? Advances in Neural Information Processing Systems (NeurIPS)
(2014) 2

63. You, F., Li, J., Zhao, Z.: Test-time batch statistics calibration for covariate shift.
arXiv preprint arXiv:2110.04065 (2021) 1, 2, 4, 11

64. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient
surgery for multi-task learning. Advances in Neural Information Processing Systems
(NeurIPS) (2020) 3

65. Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision
Conference (BMVC) (2016) 10, 11

66. Zhang, Y., Borse, S., Cai, H., Porikli, F.: Auxadapt: Stable and efficient test-time
adaptation for temporally consistent video semantic segmentation. In: IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV) (2022) 1

67. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains
for domain generalization. In: European Conference on Computer Vision (ECCV)
(2020) 4


