
Learning Instance-Specific Adaptation
for Cross-Domain Segmentation

Yuliang Zou1 Zizhao Zhang2 Chun-Liang Li2 Han Zhang3

Tomas Pfister2 Jia-Bin Huang4

1Virginia Tech 2Google Cloud AI 3Google Brain 4University of Maryland, College Park

C
ro
ss
-d
om

ai
n

se
gm

en
ta
ti
on

Prediction Ground truth

Loss

Sunny images

Training time Test time

𝜃

A segmentation model

PredictionImages from other domains

A segmentation model

S
em

a
n
ti
c

(s
y
n
→

re
a
l)

P
an

o
p
ti
c

(s
u
n
→

fo
g)

Target domain input Pre-trained Ours

Fig. 1: Cross-domain segmentation. Models trained with the standard recipe on
source domain data perform poorly on unseen target domains. On the contrary, the
proposed method significantly improves upon off-the-shelf pre-trained models, without
accessing the target domain at training time or parameter optimization at test-time.

Abstract. We propose a test-time adaptation method for cross-domain
image segmentation. Our method is simple: Given a new unseen instance
at test time, we adapt a pre-trained model by conducting instance-specific
BatchNorm (statistics) calibration. Our approach has two core compo-
nents. First, we replace the manually designed BatchNorm calibration rule
with a learnable module. Second, we leverage strong data augmentation
to simulate random domain shifts for learning the calibration rule. In con-
trast to existing domain adaptation methods, our method does not require
accessing the target domain data at training time or conducting compu-
tationally expensive test-time model training/optimization. Equipping



2 Y. Zou et al.

our method with models trained by standard recipes achieves significant
improvement, comparing favorably with several state-of-the-art domain
generalization and one-shot unsupervised domain adaptation approaches.
Combining our method with the domain generalization methods further
improves performance, reaching a new state of the art. Our project page
is https://yuliang.vision/InstCal/.

1 Introduction

Deep neural networks have shown impressive results in many computer vision
applications. However, these models suffer from inevitable performance drops
when deployed in out-of-distribution environments due to domain shift [3]. For
example, segmentation models trained on sunny images may perform poorly on
foggy or rainy scenes [9]. Improving the cross-domain performance of deep vision
models has thus received considerable attention in recent years.
Domain adaptation. One straightforward approach for reducing the domain
shift is to collect diverse labeled data in the target domain of interest for supervised
fine-tuning. However, collecting sufficient annotated data in the target domain
could be expensive or infeasible (e.g., in continuously changing environments).
This is particularly challenging for many dense prediction tasks such as image
segmentation as it requires dense (pixel-wise) labels. Unsupervised domain
adaptation (UDA) [17,32,50,53] is an alternative route for reducing the domain
gap by using unlabeled target data. However, UDA methods require accessing
target domain data for model training before deployment. Such assumptions may
not hold as we are not able to anticipate what scenarios the model would encounter
(e.g., different weather conditions) and therefore cannot collect the unlabeled
data accordingly. One-shot UDA [4,31] relaxes the constraint by requiring only
one target example for model training. The model can thus use the first example
encountered in the unseen target domain as the training example. However, the
adaptation procedure often requires thousands of training steps [31], hindering its
applicability as a plug-and-play module when deployed on new target domains.
These UDA methods also require access to source data during the adaptation
process, which may be unrealistic at test time.
Domain generalization (DG) [1,27,34,60] overcomes the above limitations
by learning invariant representations using multiple source domains to improve
model robustness on unseen or continuously changing environments. Recent
approaches [40,59] relax the constraint by requiring one single source domain
only. However, as Dubey et al. [14] points out, the optimal model learned from
training domains may be far from being optimal for an unseen target domain.
Test-time adaptation approaches have been proposed to tackle exactly the
same problem. These methods can be roughly categorized into two groups: 1)
optimizing model parameters at test time with a proxy task [2,49], prediction
pseudo-label [29], or entropy regularizations [54], and 2) BatchNorm calibra-
tion [22,36,46]. These approaches can be applied to update models along with
observing each target test data, thus observing the entire test distribution. Al-
ternatively, they can be used to create an instance-specific model for each test

https://yuliang.vision/InstCal/


Learning Instance-Specific Adaptation for Cross-Domain Segmentation 3

example individually. Despite the flexibility, the optimization-based methods all
require time-consuming backprop computation to update model parameters.
Our work. In this paper, we present a simple test-time adaptation method for
cross-domain segmentation (Figure 1). Building upon BatchNorm calibration
methods [36,46], we propose to learn instance-specific calibration rules using
strong data augmentations to simulate various pseudo source domains. Our
approach offers several advantages. First, compared with existing work [36,46]
with manually determined calibration rules that require time-consuming grid
searches and may not transfer to different models, our approach is data-driven and
instance-specific. Second, unlike other test-time adaptation methods [2,29,49,54],
our work does not involve expensive gradient-based optimization for updating
model parameters at test time. Third, our method learns to calibrate BatchNorm
statistics with one single instance (i.e., without accessing to a batch of samples).
We validate our proposed methods on cross-domain semantic and panoptic
segmentation tasks on several benchmarks. Our experiments show a sizable boost
over existing adaptation methods.
Contributions. In summary, we make the following contributions:

– We propose a simple instance-specific test-time adaptation method and show
its applicability to off-the-shelf segmentation models containing BatchNorm.

– We conduct a detailed ablation study and analysis to validate our design
choices in semantic segmentation. Applying the optimal configuration to the
more complex panoptic segmentation task leads to promising performance.

– When combined with the models pre-trained by standard recipes, our method
compares favorably with state-of-the-art one-shot UDA methods and domain
generalizing semantic segmentation methods. Our approach can also be
combined with existing DG methods to improve the performance further.

2 Related Work

Domain adaptation. Models trained on one (source) domain often suffers from
a severe performance drop when processing samples from unseen (target) domains.
Domain adaptation methods aim to mitigate this issue by adapting a pre-trained
model using samples from target domains. Unsupervised domain adaptation
(UDA) methods show promising results by leveraging unlabeled target data. These
UDA techniques include 1) domain invariant learning, 2) generative models, and
3) self-training. Domain invariant learning methods learn invariant features for
the source and target domains by imposing an adversarial loss [17,32,50,53],
minimizing the domain distribution distance (e.g., MMD) [30,51] or correlation
distance [48]. Applying data augmentation with generative models can also reduce
domain gap using image-to-image translation [5,47,61], style transfer [15], or
hybrid methods that integrate with domain invariance learning methods [7,21].
Self-training methods [62,63] select confident/reliable target data predictions and
convert them into pseudo labels. These methods then iterate the fine-tuning and
pseudo-labeling procedures until convergence. While we have observed remarkable
progress in UDA, pre-collected target domain data requirement makes it less



4 Y. Zou et al.

practical. Recently, one-shot UDA methods [4,31] have been proposed to tackle
this problem. Instead of training on many unlabeled target data, these approaches
require only one unlabeled target data. However, these methods require time-
consuming offline training before deploying on the target domain. In contrast,
our proposed method efficiently adapts the model by calibrating BatchNorm on
each target example on the fly, without offline training on each target domain
separately. Models trained with our method can be easily applied to many
different unseen domains.
Domain generalization. Instead of adapting models to using target domain
data, domain generalization [1,27,34,60] aims to train a model on source domains
that are generalizable to unseen target domains by encouraging the networks to
learn domain-invariant representations. However, these approaches require multi-
ple source domains for training, which poses additional challenges in (labeled)
data collection and restricts their feasibility in practical usage. To mitigate the
data collection issues, single domain generalization [40] trains models on one
single source domain only by either exploiting strong data augmentation strate-
gies [40,52,59] to diversify the source domain training data, or performing feature
whitening operations or normalization [9,16,23,39] to remove domain-specific
information during training. Similar to these methods, our method also exploits
data augmentation to diversify one single source domain data. However, instead
of enforcing models to learn domain-invariant features, we encourage models to
calibrate BatchNorm on each unseen target data at test time, by training them
on diverse pseudo domains generated with strong data augmentation strategies
in training time. Our proposed method can also complement (single) domain
generalization approaches to improve the performance further.
Test-time adaptation. Depending on the use of online training/optimization,
test-time adaptation methods can be divided into two groups. First, optimization-
free test-time adaptation methods mostly focus on calibrating the running statis-
tics inside BatchNorm layers [22,25,35,36,46] because these feature statistics carry
domain-specific information [28]. However, these methods either directly replace
the running statistics with current input batch statistics or mix the running
statistics and current input batch statistics with a pre-defined calibration rule.
In contrast, we propose to learn the instance-specific BatchNorm calibration rule
from source domain data. Second, test-time optimization methods adapt the
model parameters using a training objective such as entropy minimization [54],
pseudo-labeling [29], or self-supervised proxy tasks [10,49]. Our experiments show
that integrating our method with test-time optimization boosts performance.

3 Learning Instance-Specific BatchNorm Calibration

Our method applies to off-the-shelf pre-trained segmentation models containing
BatchNorm layers [24], a reasonable assumption in most modern CNN models.
In section 3.1, we first review BatchNorm and recent test-time calibration tech-
niques. We then introduce our method (unconditional and conditional BatchNorm
calibration) in section 3.2.



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 5

Prediction

Ground truthSource domain data

Loss

Learning BatchNorm 
calibration rule

Strongly-augmented

PredictionTarget domain data

Calibrate BatchNorm 
w/ the learned rule

(a) Training time (b) Test time

Pre-trained model
(parameters fixed)

Pre-trained model
(parameters fixed)

Fig. 2: Overview. (a) At training time, we learn the BatchNorm calibration rule
(equation 8) by training only the newly initialized parameters on the strongly-augmented
source domain data; (b) At test time, we conduct instance-specific BatchNorm calibration
using the learned calibration rule. Note that our method does not perform test-time
training or optimization, and thus the model parameters are fixed after training.

3.1 Background

A brief review of BatchNorm. BatchNorm has been empirically shown
to stabilize model training and improve model convergence speed [55], making
it an essential component in most modern CNN models. The inputs to each
BatchNorm layer are CNN features x ∈ RB×C×H×W , where B denotes the batch
size, C denotes the number of feature channels, H ×W denotes the spatial size.
BatchNorm conducts normalization followed by an affine transformation on the
inputs x to get outputs y ∈ RB×C×H×W

y =
x− µ√
σ2 + ϵ

× γ + β, (1)

where ϵ is a small constant for numerical stability, γ ∈ RC and β ∈ RC are learn-
able parameters. We generalize the tensor operations by assuming broadcasting
when the dimensions are not exactly the same. Note that the definition of µ and
σ2 differs in training and test time. In training time, µ and σ2 are set as the
input batch statistics.1

µB = mean(x, axis = (B,H,W )) (2)

σ2
B = var(x, axis = (B,H,W )) (3)

At test time, µ and σ2 are set to population statistics µpop, σ
2
pop, accumulated

in training time using exponential moving averaging

µpop,t = (1− α)× µpop,t−1 + α× µB (4)

σ2
pop,t = (1− α)× σ2

pop,t−1 + α× σ2
B (5)

1 Following the “NamedTensor” practice [43], this computes the statistics over the B,
H, W dimensions and return vectors with dimension C.



6 Y. Zou et al.

where α is a scalar called momentum, and the default value is 0.1 (in PyTorch
convention). Note that the population statistics update happens during training
in every feed-forward step.

Manual BatchNorm calibration. Despite the empirical success in in-domain
testing, models with BatchNorm layers suffer from a significant performance
drop when testing on out-of-distribution data. One potential reason is that
the population statistics within the BatchNorm layers carry domain-specific
information [28], and thus these statistics are not suitable for normalizing inputs
from a different domain. Recent studies [28,46,54] show that, by calibrating the
population statistics with input statistics, the cross-domain performance can be
significantly improved:

y =
x− ((1−m)× µpop +m× µins)√(

(1−m)× σ2
pop +m× σ2

ins

)
+ ϵ

× γ + β, (6)

where m indicates calibration strength, each method has a different empirically
specified value, µins ∈ RB×C and σ2

ins ∈ RB×C indicate instance mean and
variance. Note that the above calibration step happens in every BatchNorm layer,
and thus the input features in later BatchNorm layers will be increasingly more
calibrated.

In our study (Table 1(a)), we show that simply setting calibration strength m
as the default momentum value 0.1 can improve overall cross-domain performance.
However, we find several potential issues. First, the calibration strength m
is specified empirically, requiring a grid search to obtain the optimal value.
Nevertheless, the optimal value for one setting might not well transfer to other
settings with different pre-trained models or target domains of interest. Second,
the calibration strength m is a scalar. However, different feature channels may
encode different semantic information [56]. Therefore, we may use different
calibration strengths for different feature channels. Third, calibrating the mean
and variance with the same strength leads to sub-optimal results.

3.2 The proposed method

Learning to calibrate BatchNorm (InstCal-U). To address the aforemen-
tioned issues, we propose to learn the calibration strengths during training instead
of manually specifying them at test time. For simplicity, we define the following
function

fc(a, b,m) = (⃗1−m)× a+m× b (7)

The proposed calibration and normalization process can thus be written as

y =
x− fc (µpop, µins,mµ)√
fc

(
σ2
pop, σ

2
ins,mσ

)
+ ϵ

× γ + β, (8)



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 7

where mµ ∈ RC and mσ ∈ RC are two learnable parameters. More specifically,
we initialize two learnable parameters mµ and mσ with the default momentum
value 0.1.

Given an off-the-shelf model, we convert all BatchNorm layers into the instance-
specific calibrated format in equation 8. Note that we only train the newly
initialized calibration parameters mµ and mσ, and we keep the other learnable
parameters (including γ and β) fixed.

Using training data in the source domain, we train parameters mµ and mσ

on a diverse set of domains. Our intuition is that, by exposing the model to
diverse (simulated) domains, we implicitly constrain the learnable calibration
parameters mµ and mσ to be robust and invariant to unseen target domains.
However, since we only have one single source domain, we need to generate
multiple pseudo domains based on the source domain. Instead of adopting complex
generative models to generate pseudo domains, we find that applying appropriate
strong data augmentation during training leads to promising results. We explore
three different augmentation strategies: RandAugment [12], AugMix [20], and
DeepAugment [19], and empirically find that DeepAugment performs the best
(Table 1(b)). The details of augmentations are in supplementary materials.

Learning to conditionally calibrate BatchNorm (InstCal-C). While the
goal is to learn the BatchNorm calibration parameters so that the models can
adapt to unseen domains at test time, the learnable parameters mµ and mσ

are fixed after training. We propose an optional module to enable conditional
calibration to increase the flexibility.

Instead of directly learning the parameters mµ and mσ, we propose to learn
a set of parameters mµ,i and mσ,i for mean and variance, respectively. These
parameters can be viewed as the basis of calibration rules. We will use two
lightweight MLPs (one for each statistic) to predict the coefficients to combine
the basis to get the actual calibration strength for each test example, given the
concatenation of instance and population statistics. Take mµ as an example, the
computation step can be written as follows

{cµ,i}K1 = Softmax (gµ (Concat(µpop, µins))) (9)

mµ =

K∑
i

cµ,imµ,i (10)

where cµ,i is a scalar, Concat(·) is the channel-wise concatenation operation,
and gµ(·) is a small 2-layer MLP. The computation of mσ is similar.

Thanks to the redesign, we further increase the learnable instance-specific
BatchNorm calibration flexibility by setting the calibration rule to be conditional
on the input features. As a result, the calibration rule is now dynamically changing
according to different test target samples, while the inference process is still done
within one forward pass. As shown in section 4, in general, the performance
of instance-specific calibration (InstCal-C) improves upon the unconditional
calibration (InstCal-U) on synthetic-to-real settings where significant domain
shifts exist.



8 Y. Zou et al.

4 Experimental Results

We mainly validate and analyze our method using the semantic segmentation
tasks. In section 4.8, we also apply the proposed method to panoptic segmentation
and observe promising results.

4.1 Experimental setup

We conduct experiments on the public semantic segmentation benchmarks:
GTA5 [41], SYNTHIA [42], Cityscapes [11], BDD100k [57], Mapillary [37], and
WildDash2 [58] datasets. The GTA5 and SYNTHIA datasets are synthetic, while
the others are real-world datasets. For both synthetic datasets, we split the
data following Chen et al. [6]. For the WildDash2 dataset, we only evaluate the
19 classes overlapping with Cityscapes and ignore the remaining classes. We
evaluate model performance using the standard mean intersection-over-union
(mIoU) metric. We provide the implementation details in the supplementary
material.

4.2 Ablation study

We use GTA5 as the source domain for ablation experiments and Cityscapes
as the unseen target domain. We use the DeepLabv2 model with a ResNet-101
backbone.

Table 1: Ablation study. We show results from a DeepLabv2 model with a ResNet-
101 backbone. We train models on the GTA5 dataset and treat the Cityscapes dataset
as the unseen target domain for evaluation.
(a) Calibration parameters to learn (b) Different augmentations

Strategy mIoU (%)

Pre-trained 35.7
m = 0.1, fixed 40.1

m ∈ R (scalar) 39.8
m ∈ RC (vector) 41.1
mµ ∈ RC , mσ ∈ RC 41.5

Augmentation InstCal-U InstCal-C

Default 39.7 40.9
AugMix [20] 40.6 41.3
RandAugment [12] 41.1 40.0
DeepAugment [19] 41.5 42.2

(c) Not enough to pre-train with strong aug. (d) Number of basis for InstCal-C

Augmentation mIoU (%)

Default 35.7
AugMix [20] 35.9
RandAugment [12] 37.9
DeepAugment [19] 31.7

#basis mIoU (%)

2 40.9
4 41.6
8 42.2
16 40.7

What calibration parameters should we learn? We first conduct experi-
ments to study what calibration parameters should be learned. As shown in Ta-
ble 1(a), suppose we directly learn a scalar parameter shared by the mean and



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 9

variance. The performance is worse than using a default value of calibration
strength (0.1) to calibrate BatchNorm. Learning a vector parameter works much
better than a single scalar and outperforms the baseline calibration. Separating
the learned vector for mean and variance leads to further improved performance.
Which data augmentation strategy should we use? As we mentioned
in section 3.2, since we only require one source domain for model training, we
need to use strong data augmentation to simulate a diverse set of training domains.
In this experiment, we study the impact of data augmentation methods.

Table 1(b) shows that using the default weak augmentation, e.g., random
scaling, cropping, the performance is even worse than the default baseline. While
RandAugment [12] and AugMix [20] work well for InstCal-U or InstCal-C sepa-
rately, these two augmentation strategies do not work well in both variants. Our
results show that DeepAugment [19] achieves the best overall performance. We
thus adopt DeepAugment as our default strong data augmentation strategy.
Pre-training with strong data augmentation is not sufficient. In the
previous study, we show that the selection of strong data augmentation is critical.
One may wonder if pre-training with strong data augmentation without the
proposed adaptation (InstCal-U and InstCal-C) is sufficient for performance
improvement. Table 1(c) shows that pre-training models using strong data
augmentations do not achieve the models trained with our proposed adaptation
methods. AugMix [20] and RandAugment [12] can improve the performance over
the baseline with standard weak augmentation, but not as significant as using
them in InstCal-U or InstCal-C. If we directly use DeepAugment [19] for model
pre-training, the performance even drops significantly. The results suggest that
it is necessary to apply strong data augmentation, but we need to use them
in the InstCal-U/InstCal-C training stage instead of simply using them during
pre-training.
Number of basis for conditional calibration. In Table 1(d), we study the
impact of number of basis (K in equation 9) for InstCal-C. Using eight basis
leads to the best results among several options.

4.3 Comparison with other test-time adaptation methods

We conduct experiments using the DeepLabv2 model with a ResNet-101 back-
bone. We first construct a baseline using a default value (m = 0.1) to cali-
brate BatchNorm statistics. We compare with one optimization-based approach
(TENT [54]) and two BatchNorm calibration based methods (AdaptiveBN [46]
and PT-BN [36]). We use the same protocols to separately conduct test-time
adaptation on multiple unseen target domains. (i.e., setting test batch size to 1
and adapting to each test example individually).

Note that AdaptiveBN [46], PT-BN [36], and our baseline share the same
formulation (equation 8) but using different m values. As shown in Table 2,
while both the simple baseline and AdaptiveBN [46] show improved results,
PT-BN [36] even hurts the pre-trained performance in many cases. TENT [54]
also shows strong results in some of the test settings, but with the price of
significantly increased computation time. In contrast, the proposed InstCal-U



10 Y. Zou et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Calibration strength

34

36

38

40

42

m
Io

U 
(%

)

InstCal-U
InstCal-C
Baseline (m=0.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Calibration strength

33

34

35

36

37

38

39

40

m
Io

U 
(%

)

InstCal-U
InstCal-C
Baseline (m=0.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Calibration strength

41

42

43

44

45

46

47

m
Io

U 
(%

)

InstCal-U
InstCal-C
Baseline (m=0.1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Calibration strength

27

28

29

30

31

32

33

34

35

m
Io

U 
(%

)

InstCal-U
InstCal-C
Baseline (m=0.1)

(a) Cityscape (b) BDD100k (c) Mapillary (d) WildDash2

Fig. 3: Manually set calibration strength m. We show results from a DeepLabv2
model with a ResNet-101 backbone. The source domain is the GTA5 dataset.

and InstCal-C outperform these test-time adaptation methods in most settings.
We also note that InstCal-U performs better in real-world cross-domain settings,
while InstCal-C achieves more promising results in synthetic-to-real settings.

In addition to setting the calibration strength to the default value (0.1), we
also experiment with different values. We try from 0.0 to 1.0 with a step size of
0.1, and visualize the results in Figure 3. As we can see, using scalar as strength
to calibrate BatchNorm is highly sensitive to selecting the values. On the contrary,
the proposed InstCal-U and InstCal-C consistently perform well across unseen
target domains.

Table 2: Generalizing across multiple domains. We show results from DeepLabv2
models with a ResNet-101 backbone. The baseline uses calibration strength m = 0.1.
“C” indicates Cityscapes, “B” indicates BDD100k, “M” indicates Mapillary, and “W”
indicates WildDash2. The best performance is in bold and the second best is underlined.

Source: GTA5 Source: Cityscapes

Method C B M W Avg. B M W Avg.

Pre-trained 35.7 32.9 41.1 27.4 34.3 41.2 49.5 33.9 41.5

Baseline (m = 0.1) 40.1 37.4 45.3 32.0 38.7 42.8 51.9 37.6 44.1
AdaptiveBN [46] 39.0 36.3 44.3 30.8 37.6 43.0 52.4 37.2 44.2
PT-BN [36] 33.9 34.3 40.5 27.8 34.1 34.4 39.1 28.8 34.1
TENT [54] 38.1 37.8 44.7 32.5 38.3 44.2 52.3 36.8 44.4
InstCal-U (Ours) 41.5 39.4 46.0 34.4 40.3 45.1 52.2 40.3 45.9
InstCal-C (Ours) 42.2 40.2 46.8 35.3 41.1 44.3 51.5 39.3 45.0

4.4 Analysis

For the following studies, we use DeepLabv2 models with a ResNet-101 backbone.
Improvement on in-domain performance. We test if our models can im-
prove the performance for source domain. We do so by evaluating the trained
model on the test split of the source data. We report in Table 3(a) that our
learned BatchNorm calibration (both unconditional and conditional) still acheive
sizable performance gain.



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 11

Table 3: Analysis. Results are from DeepLabv2 models with a ResNet-101 backbone.
(a) In-domain performance (b) Input batch statistics

Method GTA5 Cityscapes

Pre-trained 69.1 66.1
InstCal-U 70.3 66.6
InstCal-C 70.5 66.8

Batch size 1 2 4 8 16

Baseline (m = 1) 40.1 39.8 39.7 39.7 39.6
InstCal-U 41.5 41.2 40.9 40.8 40.7
InstCal-C 42.2 41.8 41.5 41.5 41.4

(c) Model calibration (d) Test-time optimization

GTA5 -> CS

10

12

14

16

18

20

EC
E 

(%
)

Pre-trained
Baseline (m=0.1)
PT-BN
InstCal-U (Ours)
InstCal-C (Ours)

Method mIoU (%)

Pre-trained 35.7
TENT [54] 38.1

InstCal-U 41.5
InstCal-U + entropy min. [54] 44.1

InstCal-C 42.2
InstCal-C + entropy min. [54] 44.2

Input batch statistics v.s. instance statistics As mentioned in section 3.2,
we compute input instance statistics for each test example, instead of computing
the batch statistics for mixing statistics across different examples within a mini-
batch. We validate this design choice by replacing instance statistics with batch
statics using different batch sizes during test time. Table 3(b) shows that the
performance drops as we increase the batch size, even though the test examples
come from the same target distribution. We conjecture the performance will
worsen if the mini-batch contains test examples from multiple target domains.
Thus, we stick to using the input instance statistics.
Improvement on model calibration. We compute the expected calibration
error (ECE) [18] for the pre-trained model, baseline update (m = 0.1), PT-BN [36],
and the proposed InstCal-U/InstCal-C. As shown in Table 3(c), calibrating
BatchNorm statistics indeed reduces model calibration error.
Compatible with test-time optimization. We incorporate the optimization-
based method, TENT [54], into our methods, by optimizing the prediction entropy
at test-time. Following TENT [54], we only optimize the weight γ and bias β in
BatchNorm layers. Moreover, we conduct instance-specific adaptation. Table 3(d)
shows the complementary nature of these two strategies.
Running time. We test the inference speed on Cityscapes on a single V100 GPU.
The pre-trained model takes 39 ms to process each testing sample (1024×512
resolution). The BatchNorm calibration method [36] induce a 60 ms overhead.
Our method increases the inference time by 58 ms (for InstCal-U) and 149 ms
(InstCal-C).

4.5 Comparison with one-shot unsupervised domain adaptation

This section compares the proposed method with recent state-of-the-art one-
shot UDA methods. One-shot UDA methods adapt source domain pre-trained



12 Y. Zou et al.

models on one single unlabeled target example offline. In contrast, InstCal-
U and InstCal-C adapt pre-trained models on the fly on each test example
individually. Conceptually, one-shot UDA methods and InstCal-U/InstCal-C
use the same amount of data for adaptation. However, one-shot UDA methods
usually require time-consuming offline training, and thus it is impossible to
adapt models on each target example separately. So these methods only adapt
the models using one single unlabeled (training) example and then deploy the
adapted model at test-time without adaptation. As shown in Table 4, simply
augmenting pre-trained models with InstCal-U/InstCal-C, compares favorably
with recent one-shot UDA methods and even outperforms the state of the arts
by a large margin in Synthia→Cityscapes setting.

Table 4: Comparison with one-shot unsupervised domain adaptation. All
results are from modified DeepLabv2 models (specific for domain adaptation). The best
performance is in bold and the second best is underlined.

GTA5→Cityscapes Synthia→Cityscapes

Method mIoU mIoU (13-class) mIoU (16-class)

CLAN [32] 37.7 40.4 -
AdvEnt [53] 36.1 39.9 -
CBST [62] 37.1 38.5 -
OST [4] 42.3 42.8 -
ASM [31] 43.2 40.7 34.6

Source-only pre-trained 36.2 36.2 31.6
+ InstCal-U (Ours) 42.4 43.5 37.7
+ InstCal-C (Ours) 42.2 44.1 38.1

4.6 Comparison with domain generalizing segmentation

This section compares our InstCal-U/InstCal-C with recent domain generalizing
(DG) semantic segmentation approaches. We use the DeepLabv3+ model with a
ResNet-50 backbone. As shown in Table 5, upgrading non-DG pre-trained weak
models with InstCal-U/InstCal-C compares favorably with these strong domain
generalizing segmentation methods across different testing settings. Our method
even outperforms all the methods except ISW [9] by a large margin.

Note that our method and these domain generalizing methods complement
each other. Thus, we can also incorporate our methods on top of these domain
generalizing segmentation methods. As shown in Figure 4, the proposed method
consistently improves the performance of these methods. Our method can even
improve the strong ISW [9] approach and achieve a new state of the art.

4.7 Backbone network agnostic

In previous sections, we have shown the proposed method can improve pre-trained
model performance on multiple unseen target domains. However, we only conduct



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 13

Table 5: Comparison with state-of-the-art domain generalizing semantic
segmentation methods. We show results from a DeepLabv3+ model with a ResNet-
50 backbone. “C” indicates Cityscapes, “B” indicates BDD100k, and “M” indicates
Mapillary. The best performance is in bold and the second best is underlined.

Source: GTA5 Source: Cityscapes

Method C B M Avg. B M Avg.

SW [39] 29.9 27.5 29.7 29.0 48.5 55.8 52.2
IBN-Net [38] 33.9 32.3 37.8 34.7 48.6 57.0 52.8
IterNorm [23] 31.8 32.7 33.9 32.8 49.2 56.3 52.8
ISW [9] 36.6 35.2 40.3 37.4 50.7 58.6 54.7

Non-DG pre-trained 29.6 25.7 28.5 27.9 46.1 52.5 49.3
+ InstCal-U (Ours) 39.8 32.9 38.6 37.1 51.1 58.5 54.8
+ InstCal-C (Ours) 40.3 32.9 38.7 37.3 50.5 57.7 54.1

Default SW IBN-Net ISW
28

30

32

34

36

38

40

42

44

m
Io

U 
(%

)

Pre-trained
+ InstCal-U
+ InstCal-C

Default SW IBN-Net ISW24

26

28

30

32

34

36

38

m
Io

U 
(%

)

Pre-trained
+ InstCal-U
+ InstCal-C

Default SW IBN-Net ISW
28

30

32

34

36

38

40

42

44

m
Io

U 
(%

)

Pre-trained
+ InstCal-U
+ InstCal-C

(a) GTA5→Cityscapes (b) GTA5→BDD100k (c) GTA5→Mapillary

Fig. 4: Combining domain generalization with our method. In addition to the
model pre-trained with the standard recipe (non-DG, labeled as “Default”), we choose
three DG methods: SW [39], IBN-Net [38], and ISW [9]. All methods use DeepLabv3+
models with a ResNet-50 backbone, trained on the GTA5 dataset.

experiments using the ResNet backbones. In this section, we use the DeepLabv3+
model with ShuffleNetV2 [33] and MobileNetV2 [45] as backbones, to demonstrate
our methods is network-agnostic. As shown in Table 6, the proposed methods
can also improve pre-trained models with these backbones by a large margin,
outperforming the recent state of the arts.

4.8 Panoptic segmentation results

In this section, we directly apply InstCal-U/InstCal-C to an even more challenging
task, panoptic segmentation [26]. We start with the off-the-shelf models from
Panoptic-DeepLab [8] and train these models on the Cityscapes dataset. We test
the models on Foggy Cityscapes [44], which inserts synthetic fog into the original
Cityscapes clear images with three strength levels (0.005, 0.01, and 0.02). We
adopt panoptic quality (PQ), mean intersection-over-union (mIoU), and mean
average precision (mAP) as the evaluation metrics. As shown in Table 7, InstCal-
U/InstCal-C greatly improves off-the-shelf Panoptic-DeepLab performance on
out-of-distribution foggy scenes by a large margin, validating the proposed method



14 Y. Zou et al.

Table 6: The proposed module is backbone network agnostic. We show results
from a DeepLabv3+ model with ShuffleNetV2 and MobileNetV2 as backbones. These
models are trained on the GTA5 dataset. “C” indicates Cityscapes, “B” indicates
BDD100k, and “M” indicates Mapillary. The best performance is in bold and the
second best is underlined.

ShuffleNetV2 MobileNetV2

Method C B M Avg. C B M Avg.

IBN-Net [38] 27.1 31.8 34.9 31.3 30.1 27.7 27.1 28.3
ISW [9] 31.0 32.1 35.3 32.8 30.9 30.1 30.7 30.6

Non-DG pre-trained 25.7 22.1 28.3 25.4 27.1 27.5 27.3 27.3
+ InstCal-U (Ours) 35.8 31.1 36.4 34.4 37.2 31.2 34.5 34.3
+ InstCal-C (Ours) 35.9 30.8 35.4 34.0 37.8 30.0 33.9 33.9

is universally applicable to different image segmentation tasks without further
tuning. We also provide visual results in Figure 1 and supplementary material.

Table 7: Panoptic segmentation results.We show results on two Panoptic-DeepLab
model variants (w/ and w/o depthwise separable convolution). The best performance is
in bold and the second best is underlined.

Synthetic fog strength
0.005 0.01 0.02

Method w/ DSConv PQ mIoU mAP PQ mIoU mAP PQ mIoU mAP

Pre-trained × 53.3 72.2 25.3 45.0 64.9 18.8 32.6 52.8 11.6
+ InstCal-U × 56.6 75.7 28.9 51.1 71.9 24.3 42.8 64.5 18.5
+ InstCal-C × 56.6 75.7 28.5 51.2 71.9 24.4 42.4 64.8 18.0

Pre-trained ✓ 53.0 73.2 24.5 45.3 66.5 18.3 33.1 54.8 11.5
+ InstCal-U ✓ 55.5 76.0 27.2 49.1 71.3 21.8 40.4 63.2 16.2
+ InstCal-C ✓ 55.6 76.3 27.6 48.9 71.6 22.4 40.9 64.1 16.8

5 Discussions

This paper proposes a simple learning-based test-time adaptation method for
cross-domain segmentation. The proposed method is learned to perform instance-
specific BatchNorm calibration during training, without time-consuming test-
time parameter optimization. As a result, our method is efficient and effective,
demonstrating competitive performance across multiple cross-domain image
segmentation settings.

Limitations. Currently, we conduct calibration for every BatchNorm layers.
It will be interesting to study which layer is more important and thus only
calibrate specific layers to increase inference speed. And it will be interesting
to extend our method to other normalization layers (e.g., LayerNorm for Vision
Transformers [13]) and other challenging tasks. We leave these as future work.



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 15

References

1. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-
alization using meta-regularization. In: NeurIPS (2018) 2, 4

2. Bartler, A., Bühler, A., Wiewel, F., Döbler, M., Yang, B.: Mt3: Meta test-time
training for self-supervised test-time adaption. arXiv preprint arXiv:2103.16201
(2021) 2, 3

3. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A
theory of learning from different domains. Machine learning 79(1), 151–175 (2010)
2

4. Benaim, S., Wolf, L.: One-shot unsupervised cross domain translation. In: NeurIPS
(2018) 2, 4, 12

5. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised
pixel-level domain adaptation with generative adversarial networks. In: CVPR
(2017) 3

6. Chen, M., Xue, H., Cai, D.: Domain adaptation for semantic segmentation with
maximum squares loss. In: ICCV (2019) 8

7. Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: Crdoco: Pixel-level domain transfer
with cross-domain consistency. In: CVPR (2019) 3

8. Cheng, B., Collins, M.D., Zhu, Y., Liu, T., Huang, T.S., Adam, H., Chen, L.C.:
Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up panoptic
segmentation. In: CVPR (2020) 13

9. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: Robustnet: Improving
domain generalization in urban-scene segmentation via instance selective whitening.
In: CVPR (2021) 2, 4, 12, 13, 14

10. Cohen, T., Shulman, N., Morgenstern, H., Mechrez, R., Farhan, E.: Self-supervised
dynamic networks for covariate shift robustness. arXiv preprint arXiv:2006.03952
(2020) 4

11. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR (2016) 8

12. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated
data augmentation with a reduced search space. In: CVPR Workshop (2020) 7, 8, 9

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: ICLR (2021) 14

14. Dubey, A., Ramanathan, V., Pentland, A., Mahajan, D.: Adaptive methods for
real-world domain generalization. In: CVPR (2021) 2

15. Dundar, A., Liu, M.Y., Wang, T.C., Zedlewski, J., Kautz, J.: Domain stylization:
A strong, simple baseline for synthetic to real image domain adaptation. arXiv
preprint arXiv:1807.09384 (2018) 3

16. Fan, X., Wang, Q., Ke, J., Yang, F., Gong, B., Zhou, M.: Adversarially adaptive
normalization for single domain generalization. In: CVPR (2021) 4

17. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks.
JMLR 17(1), 2096–2030 (2016) 2, 3

18. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural
networks. In: ICML (2017) 11

19. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai,
R., Zhu, T., Parajuli, S., Guo, M., et al.: The many faces of robustness: A critical
analysis of out-of-distribution generalization. In: ICCV (2021) 7, 8, 9



16 Y. Zou et al.

20. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:
Augmix: A simple data processing method to improve robustness and uncertainty.
In: ICLR (2020) 7, 8, 9

21. Hoffman, J., Tzeng, E., Park, T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A., Darrell,
T.: Cycada: Cycle-consistent adversarial domain adaptation. In: ICML (2018) 3

22. Hu, X., Uzunbas, G., Chen, S., Wang, R., Shah, A., Nevatia, R., Lim, S.N.:
Mixnorm: Test-time adaptation through online normalization estimation. arXiv
preprint arXiv:2110.11478 (2021) 2, 4

23. Huang, L., Zhou, Y., Zhu, F., Liu, L., Shao, L.: Iterative normalization: Beyond
standardization towards efficient whitening. In: CVPR (2019) 4, 13

24. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML (2015) 4

25. Khurana, A., Paul, S., Rai, P., Biswas, S., Aggarwal, G.: Sita: Single image test-time
adaptation. arXiv preprint arXiv:2112.02355 (2021) 4

26. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In:
CVPR (2019) 13

27. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training
for domain generalization. In: ICCV (2019) 2, 4

28. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for
practical domain adaptation. In: ICLR Workshop (2017) 4, 6

29. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In: ICML (2020) 2, 3, 4

30. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep
adaptation networks. In: ICML (2015) 3

31. Luo, Y., Liu, P., Guan, T., Yu, J., Yang, Y.: Adversarial style mining for one-shot
unsupervised domain adaptation. In: NeurIPS (2020) 2, 4, 12

32. Luo, Y., Zheng, L., Guan, T., Yu, J., Yang, Y.: Taking a closer look at domain
shift: Category-level adversaries for semantics consistent domain adaptation. In:
CVPR (2019) 2, 3, 12

33. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: ECCV (2018) 13

34. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent
domains. In: AAAI (2020) 2, 4

35. Mirza, M.J., Micorek, J., Possegger, H., Bischof, H.: The norm must go on: Dynamic
unsupervised domain adaptation by normalization. arXiv preprint arXiv:2112.00463
(2021) 4

36. Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B., Snoek, J.:
Evaluating prediction-time batch normalization for robustness under covariate shift.
arXiv preprint arXiv:2006.10963 (2020) 2, 3, 4, 9, 10, 11

37. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas
dataset for semantic understanding of street scenes. In: ICCV (2017) 8

38. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: Enhancing learning and general-
ization capacities via ibn-net. In: ECCV (2018) 13, 14

39. Pan, X., Zhan, X., Shi, J., Tang, X., Luo, P.: Switchable whitening for deep
representation learning. In: ICCV (2019) 4, 13

40. Qiao, F., Zhao, L., Peng, X.: Learning to learn single domain generalization. In:
CVPR (2020) 2, 4

41. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth
from computer games. In: ECCV (2016) 8



Learning Instance-Specific Adaptation for Cross-Domain Segmentation 17

42. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset:
A large collection of synthetic images for semantic segmentation of urban scenes.
In: CVPR (2016) 8

43. Rush, A.: Tensor considered harmful, http://nlp.seas.harvard.edu/

NamedTensor 5
44. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with

synthetic data. IJCV 126(9), 973–992 (Sep 2018) 13
45. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted

residuals and linear bottlenecks. In: CVPR (2018) 13
46. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Im-

proving robustness against common corruptions by covariate shift adaptation. In:
NeurIPS (2020) 2, 3, 4, 6, 9, 10

47. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning
from simulated and unsupervised images through adversarial training. In: CVPR
(2017) 3

48. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
In: ECCV (2016) 3

49. Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A., Hardt, M.: Test-time training with
self-supervision for generalization under distribution shifts. In: ICML (2020) 2, 3, 4

50. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: CVPR (2017) 2, 3

51. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014) 3

52. Volpi, R., Namkoong, H., Sener, O., Duchi, J.C., Murino, V., Savarese, S.: Gener-
alizing to unseen domains via adversarial data augmentation. In: NeurIPS (2018)
4

53. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy
minimization for domain adaptation in semantic segmentation. In: CVPR (2019) 2,
3, 12

54. Wang, D., Shelhamer, E., Liu, S., Olshausen, B., Darrell, T.: Tent: Fully test-time
adaptation by entropy minimization. In: ICLR (2021) 2, 3, 4, 6, 9, 10, 11

55. Wu, Y., Johnson, J.: Rethinking” batch” in batchnorm. arXiv preprint
arXiv:2105.07576 (2021) 5

56. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. In: ICML Workshop (2014) 6

57. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell,
T.: Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In:
CVPR (2020) 8

58. Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Dominguez, G.F.: Wilddash
- creating hazard-aware benchmarks. In: ECCV (2018) 8

59. Zhao, L., Liu, T., Peng, X., Metaxas, D.: Maximum-entropy adversarial data
augmentation for improved generalization and robustness. In: NeurIPS (2020) 2, 4

60. Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D.: Domain generalization via entropy
regularization. In: NeurIPS (2020) 2, 4

61. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017) 3

62. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic
segmentation via class-balanced self-training. In: ECCV (2018) 3, 12

63. Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training.
In: ICCV (2019) 3

http://nlp.seas.harvard.edu/NamedTensor
http://nlp.seas.harvard.edu/NamedTensor

